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Abstract 

Background: Entity normalization is an important information extraction task which 
has recently gained attention, particularly in the clinical/biomedical and life science 
domains. On several datasets, state-of-the-art methods perform rather well on popular 
benchmarks. Yet, we argue that the task is far from resolved.

Results: We have selected two gold standard corpora and two state-of-the-art meth-
ods to highlight some evaluation biases. We present non-exhaustive initial findings on 
the existence of evaluation problems of the entity normalization task.

Conclusions: Our analysis suggests better evaluation practices to support the meth-
odological research in this field.
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Background
Introduction

Entity normalization (EN), also known as concept normalization/grounding or entity 
linking/disambiguation/grounding, is a challenging information extraction task. Interest 
for this task emerged in the biomedical field in the early 2000s [1]. Nowadays, biomedi-
cal annotated corpora still represent the majority of the gold standards for evaluation of 
EN methods [2–4]. Our focus in this article is to show potential biases of existing evalu-
ation benchmarks, and to make recommendations for better evaluation practices.

Definition of the entity normalization task

The goal of EN is to link identified entity mentions to standard entities from an avail-
able set of unambiguous references (ontology, terminology, thesaurus, dictionary, …) 
(see Fig. 1). The entity mentions are possibly represented by multi-word non-contigu-
ous expressions, for which it is known that they are of interest for the task (e.g. animal 
mentions). This task commonly assumes an entity recognition step firstly extracts the 
mentions (i.e. mention detection/extraction) and determines whether or not they are of 
interest to the task, that is, to classify them in some entity type of interest or not. The 
normalization task then consists in linking these identified mentions of interest to zero, 
one or several standard entities. Zero is for mentions that should be normalized by a 
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standard entity of interest, but which is absent from the set of references. These cases 
are known as not-in-lexicon/not-in-list (NIL) cases or out-of-KB. Cases where more 
than one standard entity is possible are referred to as multi-normalization. For instance, 
a mention such as “pasteurized milk cheeses” which may be normalized by concepts 
<cheese> and <pasteurized food> (sometimes called a multi-labeled mention), or an 
unprocessed composite mention such as “breast or ovarian cancer” which may be nor-
malized by concepts <Breast Neoplasms> and <Ovarian Neoplasms>. The set of refer-
ences often takes the form of an ontology or a knowledge base (or can often be related to 
it), and each standard entity is therefore a concept or an instance, that is a unique identi-
fier and one or many associated textual labels (e.g. a preferred term, some synonyms). 
To standardize the vocabulary used in the remainder of this article, we mainly use the 
“ontology” (as set of references) and “concept” (as standard entity) terms, which fit easily 
with the addressed datasets.

Main difficulty: terminological variation

EN in specialized domains is mainly concerned with the problem of terminological vari-
ations, that is, mentions with distinct surface forms that point to the same concept [5, 
6]. Moreover, a mention should be sometimes normalized by a concept whose no label 
matches this surface form [7]. For instance, 60% of the mentions from the Bacteria Bio-
tope dataset from the BioNLP 2013 Shared Task have a surface form different from the 
labels of the concept which should normalize them. The main source of variations are 
inflection (e.g. the mention “tortoises” which could be normalized by a concept <tor-
toise>), synonymy (e.g. “chelonian”), hyponymy (e.g. “Testudo graeca”), nominal expan-
sion (e.g. “georgia populations of gopher tortoises”) and morphosyntactic variation (e.g. 
“gopher tortoises populations in Georgia”).

Fig. 1 An example of a small entity normalization task. The goal is to link animal mentions extracted from 
texts to a standard entity from an available set of unambiguous references. Standard entities have only one 
label which represents the scientific name of an animal and differ here from the vernacular names used in 
text
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Terminological statement: difference between entity normalization and entity 

disambiguation/linking

In many ways, entity disambiguation shares similarities to entity normalization. As 
noticed in [8], the names of several tasks related to entity linking still seem to be 
vaguely defined. For instance, some consider that “entity linking” refers to the overall 
task of entity recognition and entity disambiguation [9], while others consider that it 
is similar to entity disambiguation [10]. Moreover, some consider entity linking and 
entity normalization as synonyms [11, 12]. We will consider in this article that both 
normalization and disambiguation are subtasks of entity linking. So what is the dif-
ference? We believe that in open domains, a basic matcher between labels and men-
tions gives many concept-candidates for each mention, and the main focus is then 
to select the unique correct concept among those candidates [10, 13]. For instance, 
simple heuristics would match the surface form of a mention “paris” to numerous 
titles of Wikipedia pages, but it is more difficult to find if this mention points to a 
city, a person, a movie, etc. Moreover, entity disambiguation deals mainly with named 
entities, while entity normalization deals mainly with terminological variations. In 
a similar way, semantic categories are more often concepts in specialized domains, 
where there are mainly instances in open domains (e.g. persons, localizations, organi-
zations). Finally, the reference vocabulary in open domains is often based on Wiki-
pedia data [14, 15], resulting in the availability of descriptions for each category (i.e. 
each Wikipedia article is considered as a reference, and its title as a label), which can 
be used as a supplementary information. These descriptions remain rare in ontologi-
cal references developed in specialized domains. Nevertheless, some disambiguation 
tasks propose tracks where the use of these descriptions are not allowed [16].

How is EN commonly addressed?

To our knowledge, methods can be mainly characterized by four types of strate-
gies: dictionary-based (DictB), distributional representations (DistR), symbolic rules 
(SymR) and machine learning (ML), that can be combined. Historically, the first 
approach [1, 12] was a linguistic approach based on dictionaries, association meas-
ures, morphological and/or syntactic properties of texts [6], and which mainly aimed 
to find a match between the mention’s surface form and a label’s surface form of 
a concept. If a match is found, then the concept that has the label is predicted for 
the mention. That type of approach is often referred to as dictionary-based (DictB), 
or sometimes as lexicon-based. This is often done by increasing the possibilities of 
matching (e.g. lemmatize the surface forms or increase the number of labels associ-
ated with the references) while trying to deal with the potentially created ambigui-
ties (e.g. collapsing two semantically different mentions/labels by applying stemming). 
Rather than using surface forms, another approach is based on distributional repre-
sentations (DistR) of words and multi-words expressions, with the aim to deal with 
terminological variations. In that way, two different surface forms with a similar 
meaning can have close vector representations. Concurrently, normalization meth-
ods can use symbolic rules (SymR) or machine learning (ML) tools, whether it uses 
surface forms or distributional representations. For the ML approach, we define here 
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a training example as a pair [mention, concept(s)], which allows us to define normali-
zation as a multiclass classification of mentions (possibly multi-output when multi-
normalization cases are possible).

To address normalization, some preprocessing of input data is typically applied. Such 
preprocessing seems to have gained little interest in the community, even if the few arti-
cles describing ablation studies show significant impacts on results [11, 17, 18]. We can 
broadly categorize the preprocessing into two types: domain-specific (e.g. ambiguous 
word blacklist, typo resolution) and generic (e.g. lowercasing, lemmatization, stopword 
and punctuation removal).

Most recent NLP methods, based on deep learning, require heavy computing 
resources, which limits their applications when limited computing facilities are avail-
able. In addition, they have a significant ecological impact and invite the production of 
less greedy methods [19]. As explained recently in [11, 20], some competitive EN meth-
ods are based on BERT models, which are indeed computationally expensive. They each 
propose a “lightweight” DistR-ML method, but speed of calculation is only observed at 
inference time and on professional computing infrastructures.

Finally, several add-on strategies have emerged in order to integrate more informa-
tion to methods, with the aim to address the common scarcity of data in normalization 
tasks. For instance, Ferré et al. [21] is the first work to integrate subsumption knowledge 
from the ontology in concept representations with some success. More recently, Patti-
sapu et al. [22] proposed a variant using existing tools to build dense concept representa-
tions from ontological graphs. A weak supervision strategy, that is, a strategy based on 
the production of non hand-labeled training data (i.e. of lower quality) can be used too 
by ML-based methods. The usual way is to augment training data by using each label of 
concepts (e.g. the label “testudines” from the concept identified by the unique identifier 
id:8459) as a mention, and the associated concept (e.g. the concept id:8459) as the cat-
egory to predict [17, 23].

How is EN evaluated?

Evaluation based on manually annotated corpora To evaluate and compare normaliza-
tion methods, some corpora manually annotated with ontology concepts have been cre-
ated. In all cases, these corpora are the result of annotations by domain experts on texts 
where the boundaries of the mentions of interest are identified, and for which concept(s) 
from one or many chosen ontologies are associated. To be able to compare results fairly, 
an annotated corpus is then separated into at least two parts: a training and a test set. The 
training set is used to learn and optimize parameters of methods. The trained method 
is then used to do predictions on the test set. The difference between predictions and 
annotations on the test set enables to estimate the performance of a method. Frequently, a 
third set is further produced, called the development set. This one enables method devel-
opers to estimate the generalization capacity of their method, while limiting overfitting 
on the test set [24, 25].

To limit some dataset overfitting and thus have a fair estimation of how accurate a 
method is, k-fold cross-validation techniques have emerged. It mainly results in a sepa-
ration into k folds of train(+ development) + test sets [6, 26]. The final score of a method 
is then the average of the scores on the k sub-sets.
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Evaluation measures The consensus evaluation metric used at the task level is the accu-
racy, which is basically the average of a strict metric over all evaluated mentions (see 
Eq. 1). More recently, less strict metrics have been introduced in normalization evalua-
tions, such as top-k accuracy or similarity scores. Top-k accuracy (see Eq. 2) can be used 
when a method ranks at least k candidates for each mention, which is quite common with 
DistR-based methods. If the top-k accuracy of a method is high, a database curator could 
validate annotations more quickly by inspecting only k concept proposals (i.e. not all the 
concepts of the ontology), among which there is a great probability that the correct con-
cept is. This might save time during database curation.

where strict(m, c) = 1 if c is the correct concept of m, 0 otherwise.
Equation  1: General equation of accuracy. Here ci is the predicted concept for the 

mention mi , and N is the number of mentions in the dataset.

where strict m, c1, . . . , ck = 1 if one of the concepts in 
{

c1, . . . , ck
}

 is the correct 
concept of m, 0 otherwise.

Equation  2: General equation of accuracy. Here 
{

c1, . . . , ck
}

 is the predicted k most 
ranked candidates.

Also, a similarity score uses the ontological graph (when available) to calculate a non-
strict score by calculating a similarity distance between the predicted concept and the 
correct one. The objective is to evaluate the overall severity of errors, which means that 
a wrongly predicted concept may get some reward proportional to its distance to the 
correct concept. Wright [27] introduces the Lowest Common Ancestor distance and 
compares the result of their method with this score and the accuracy score. A possible 
limitation of this distance is that it does not take into account the depth of the concepts 
in the ontology, which could however allow a more accurate estimation of semantic 
similarities between concepts. Overcoming this limitation, Maynard et al. [28] proposes 
to use the “learning accuracy” measure [29], and all the Bacteria Biotope datasets from 
2013 [7] used the measure from [19].

Threats for validity

Identifying biases in an evaluation protocol is a key path to meaningful comparisons of 
methods. In the following, we formulate a number of sources of biases we have identified 
and that we seek to illustrate. For this, we report several experiments we conducted to 
demonstrate the existence of these biases through two popular gold standards. We also 
used two state-of-the-art methods, and a custom baseline method.

H1: uncertain method robustness on dataset variability It is expected that the per-
formance of a method on a dataset is similar to that on any corpus of the same specific 
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domain, type of texts and language. In practice however, small variations in experi-
mental conditions often yield to drastic changes in performance. While overclaiming 
is not the rule, some authors may be over optimistic about the generalization of their 
approach. For instance, in [23], the authors wrote “Our work is generally applicable to 
any type of entity”, even if in most cases, authors tend to delimit the range of applica-
bility of their method. For instance, some methods are assumed as ontology-specific, 
such as MetaMap: “[…] providing access to the concepts in the unified medical language 
system (UMLS) Metathesaurus from biomedical text” [30]. Others delimit the type of 
text and the domain, such as in [31]: “we deal with medical concept normalization in 
user generated texts”.

As a consequence, to estimate the robustness of their method, more and more 
authors evaluate it on several datasets. For instance, Sung et  al. [23] presents: “our 
model […] consistently outperforms previous state-of-the-art models almost reaching 
the upper bound on each dataset”. But even in that case, what do multiple evalua-
tions demonstrate? If several gold standards share common features, a method could 
greatly perform on them, but not at all on distinct others. By the way, to our knowl-
edge, there is no study on the feature similarities or dissimilarities of these used data-
sets, and their impact on robustness. And yet, it seems that the datasets from used 
batches often have relatively similar domains and/or types of documents. Moreover, 
datasets are often created with some simplifications compared to realistic normaliza-
tion tasks. For instance, NIL and multi-normalization cases can be removed [32] or 
training examples can be adapted to better fit the associated test set, as the opposite 
is considered as a challenging task for ML approaches.

H2: scoring metrics bias If there is no online evaluation platform or independent 
evaluation programs, authors compute the scores for their methods by themselves. 
Thus, it is very likely that everyone does not use the exact same scoring function, 
which is disturbing. In entity linking, Röder et al. [33] starts from this observation to 
evoke that: "this heterogeneous landscape of […] measures leads to a poor repeatability 
of experiments, which makes the evaluation of the real performance of novel approaches 
against the state-of-the-art rather difficult”.

H3: unclear description about the resources/processing used A method is the assem-
bly of some components that take some resources as input. However, some compo-
nents may receive more attention in an article (e.g. a new neural architecture) at the 
expense of others (e.g. data preprocessing) without regard for what really matters in 
the end. Moreover, different resources could be used (e.g. a handmade typo resolution 
list). The threat for validity would not be a performance issue, but a poor description 
of what actually has a significant contribution to the performance of the method. As 
a result, for instance, one whole method could perform better than another one, but 
only through preprocessing, which could itself be used for a specific method for a 
performance gain. If such preprocessing and its contribution is poorly analyzed, there 
is a possible bias on what is really at the source of the effectiveness of the associated 
method. This also can cause reproducibility issues (see “H4: reproducibility issues” 
section).
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H4: reproducibility issues To validate the effectiveness of a method, it should be possible 
to reproduce its results independently. This becomes difficult if the method is not fully 
described, if its code is not shared and usable, or if a used gold standard is not available.

Related works

Gold standards overview

For entity normalization in specialized domains, we present popular normalization 
datasets whose main features are summarized in Table  1. Entity normalization is not 
addressed as much as entity recognition or relation extraction. Maybe partly because 
it implies detailed and specialized references, which implies a great deal of effort on the 
part of experts in the field. As a consequence, there are not many gold standard datasets, 
and most of them are in English. In some cases, the normalization is not evaluated as a 
separate task but jointly with an entity recognition task [34], which limits the estima-
tion of performance specifically on it (i.e. the errors on recognition are propagated on 
normalization). For this reason, we limited our study to datasets for the normalization 
task alone. There are also some disambiguation datasets in open domains of which the 
most used seems to be the AIDA-CoNLL-YAGO dataset [35], but as stated above, the 
difference of difficulties and approaches between disambiguation and normalization has 
led us to not consider these datasets in this work. Note that unlike open domains, even if 
local and global contexts of extracted mentions are often available, the majority of exist-
ing methods use only the surface forms of mentions.

Table 1 Summary of the 11 EN datasets presented

We categorize as small an ontology with less than 10,000 concepts, intermediary with between 10,000 and 100,000 
concepts, and big with more
* Note that on some corpora, due the availability of the test set, methods are sometimes evaluated on a subpart of the 
ontology, although the range of entities to extract do not invite to this
** The annotated corpus is openly available, but not the specific version of the ontologies
a Test set is publicly available at: https:// github. com/ tiger chen52/ Biome dical- Entity- Linki ng/ tree/ master/ output/ adr

Text Ontology Ontology size Publicly available?

BB-norm 2019 Scientific literature OntoBiotope Small Yes

NCBI-DC Scientific literature MEDIC Small Yes

BC5CDR-D Scientific literature MEDIC Small Yes

BC5CDR-C Scientific literature CTD-Chemical Big Yes

Custom CADEC Social media “Clinical Finding” from SNOMED-
CT + AMT

Big* Partially**

COMETA Social media SNOMED-CT Big Yes (SNOMED-CT 
from the UMLS)

PsyTAR Social media SNOMED-CT + UMLS Big* Partially**

SMM4H 2017 Social media MedDRA Intermediary Yes

TwADR-L Social media SIDER 4 database of drug profiles Small Yes

TAC-ADR 2017 Drug labels MedDRA Intermediary Yesa

ShARe/CLEF Clinical report Disorder semantic group from the 
UMLS

Intermediary No

MCN Clinical report SNOMED-CT + RxNorm Big Yes

https://github.com/tigerchen52/Biomedical-Entity-Linking/tree/master/output/adr
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BB-norm dataset of  bacteria biotope 4 from  BioNLP OST 2020 The BioNLP Open-
Shared Tasks1 proposed several datasets, including 6 tasks on the Bacteria Biotope 4 
corpus [2], of which the “BB-norm” normalization task. This task can be separated into 
three distinct normalization subtasks, which are evaluated separately: normalization of 
microorganisms by the NCBI Taxonomy [36], normalization of bacterial habitats by the 
biotopes part of the OntoBiotope ontology2 [37], and normalization of phenotypes by the 
phenotypes part of the same OntoBiotope ontology. The dataset is separated into train-
ing/development/test sets, but the test annotations are not provided. The evaluation is 
done by an online platform3 by uploading the predictions. This dataset is based on the 
entity “categorization dataset” of Bacteria Biotope 3 from BioNLP Shared Task 2016 [24]. 
For instance, similarly to the example in Fig. 1, the mention “populations of gopher tor-
toises” should be normalized by the Ontobiotope concept OBT:001351 (with label “Tor-
toise”), because a tortoise is in particular a bacterial habitat.

The NCBI Disease Corpus (NCBI-DC) The NCBI Disease Corpus [25] is an annotated 
corpus divided into training/development/test sets. All the disease mentions have been 
normalized in 793 PubMed abstracts by disease concepts from MEDIC (MErged DIsease 
voCabulary). MEDIC [38] is the result of merging the Medical Subject Headings4 (MeSH) 
and the Online Mendelian Inheritance in Man5 (OMIM) ontologies, resulting in 9661 
disease concepts. A particularity of this corpus is the presence of few rare unresolved 
composite mentions (e.g. “breast or ovarian cancer”), which should be normalized by the 
conjunction of several individual constituents concepts (e.g. <Breast Neoplasms> and 
<Ovarian Neoplasms>).

The CSIRO adverse drug event corpora (CADEC) There are nowadays three CADEC 
datasets. The initial corpus [39] is the result of the annotation of posts from the medi-
cal forum AskaPatient.6 The annotated mentions are drugs, adverse effects, symptoms 
and diseases. Two ontologies are used: the non-hierarchical Australian Medicines Ter-
minology (AMT) for drug names and the “Clinical Finding” subpart of the Systematized 
Nomenclature of Medicine Clinical Terms (SNOMED CT) for all the rest. Both ontologies 
have licency issues.7 Another version uses the Medical Dictionary for Regulatory Activi-
ties8 (MedDRA). To compare approaches, Limsopatham and Collier [26] proposed a new 
dataset separated in 10 folds train/dev/test, now frequently named “Random CADEC”9 
by the community (sometimes also named AskaPatient). The dataset does not come along 
with the ontologies, and researchers evaluate their methods on this corpus by using only 
the list of the 1036 concepts used to annotate the corpus. Tutubalina et al. [6] finds that 

2 https:// tinyu rl. com/ OntoB iotop e2019.
3 http:// bibli ome. jouy. inra. fr/ demo/ BioNLP- OST- 2019- Evalu ation/ index. html.
4 https:// www. nlm. nih. gov/ mesh/ meshh ome. html.
5 https:// www. ncbi. nlm. nih. gov/ omim.
6 https:// www. askap atient. com/.
7 A NCTS license is needed to obtain the ontologies. Contact the support team to obtain the former versions used to 
annotate the corpus (australianhelp@digitalhealth.gov.au).
8 https:// www. meddra. org/.
9 https:// zenodo. org/ record/ 55013.

1 https:// 2019. bionlp- ost. org/.

https://tinyurl.com/OntoBiotope2019
http://bibliome.jouy.inra.fr/demo/BioNLP-OST-2019-Evaluation/index.html
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.ncbi.nlm.nih.gov/omim
https://www.askapatient.com/
https://www.meddra.org/
https://zenodo.org/record/55013
https://2019.bionlp-ost.org/
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approximately 60% of mentions from each test set were also in the training set, suggesting 
an easy benchmark. Consequently, it proposes a third dataset named “Custom CADEC”, 
more popularized in [32], which is a fivefold cross-validation dataset (no development 
sets) avoiding redundancy between training and test sets. The mentions without an asso-
ciated concept in the ontology as well as ambiguous mentions have also been removed.

The Corpus of Online Medical EnTities (COMETA): The COMETA corpus [40] con-
sists of 20 K English biomedical mentions in layman’s language from an internet forum, 
and shares some similarities with all the CADEC datasets. A version of the whole 
SNOMED-CT is used as ontology, and almost half of the mentions are annotated by a 
concept from the “Clinical Finding”. There are two splits of this corpus: a “stratified split” 
in which, for each concept appearing in the test/dev sets, this concept appears at least 
once in the training set, and a “zero-hot split” in which there is no overlap between the 
concepts appearing in the test/dev sets and the train set.

Task 4 of  adverse drug reaction extraction from  drug labels (ADR) dataset from  TAC 
2017 The Text Analysis Conference10 (TAC) proposed a track to extract adverse reac-
tions from drug labels [3]. Task 4 was an independent normalization task which uses the 
MedDRA ontology, which contains around 20,000 concepts. Originally, the task did not 
use accuracy measure, but nowadays, authors that evaluate their methods on this dataset 
use it preferably.

The chemical disease relation track of the BioCreative V challenge This track was origi-
nally designed for joint entity recognition and normalization [41]. Two types of entities 
should be extracted and normalized: disease and chemical. The disease mentions are to 
be normalized with the MEDIC ontology and the chemical mentions by the non-hierar-
chical Comparative Toxicogenomics Database11 (CTD). Authors use now separated cor-
pora, one for each entity type: the disease dataset (BC5CDR-D) and the chemical dataset 
(BC5CDR-C). The accuracy is also the preferred evaluation metric. Earlier, the BioCrea-
tive challenges have shared some others normalization datasets, such as the Gene Nor-
malization datasets from BioCreative I [40], BioCreative II [42] and BioCreative III [43], 
but to our knowledge, they are more rarely used nowadays as gold standards.

The psychiatric treatment adverse reactions corpus (PsyTAR) This annotated corpus 
[44] is also based on the AskaPatient forum and on annotations from the SNOMED-CT 
and the UMLS Thesaurus. It deals with effectiveness and adverse reactions of psychiatric 
medications. For evaluation purposes, Miftahutdinov and Tutubalina [32] proposed two 
datasets (each being a k-fold cross-validation dataset): a “Random PsyTAR ” and a “Cus-
tom PsyTAR ”, the latter avoiding the train/test redundancy.

Task 3 “normalization of  adverse drug reaction mentions” dataset from  SMM4H The 
2nd Social Media Mining for Health Applications12 (SMM4H) proposed an independent 

10 https:// tac. nist. gov/.
11 http:// ctdba se. org/.
12 https:// healt hlang uagep roces sing. org/ share dtask2/.

https://tac.nist.gov/
http://ctdbase.org/
https://healthlanguageprocessing.org/sharedtask2/
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normalization task of adverse drug reactions in social media texts. The MedDRA ontol-
ogy is used for annotations. All data sets are available.13

Task 1 dataset from the ShARe/CLEF eHealth evaluation lab 2013 The annotated men-
tions in this corpus are disorders. The original task is a joint entity recognition and nor-
malization tasks [45]. A disorder is defined as any span of text which can be mapped to a 
concept in SNOMED-CT and which belongs to the Disorder Semantic Group from the 
UMLS. Although the clinical data in the corpus has been anonymized, the corpus is not 
open and requires some registration procedures to be manipulated.

The medical concept normalization (MCN) corpus The fourth i2b2/VA shared task [46] 
proposed a corpus for entity recognition evaluation. Luo et al. [47] start from the full 
SNOMED CT and the RxNorm [48] ontologies to annotate the recognized mentions and 
build the Medical Concept Normalization (MCN) corpus. The mentions are disorders, as 
well as other medical problems, treatments and tests.

TwADR-L This dataset14 [26] is composed of tweets that have been annotated by con-
cepts from the SIDER 4 database of drug profiles.15 The used version of this database 
contains 2220 concepts. The corpus is separated into 10 folds for cross-validation.

Comparative evaluation

In specialized domains, there is no initiative to share entity normalization gold standards 
in a single place that would facilitate multiple evaluations and comparisons of proposed 
methods. Comparatively in the open domain, there are some interesting initiatives to 
compare entity disambiguation gold standards, such as the "Disambiguate to Knowledge 
Base" (D2KB) experiment from the GERBIL benchmarking system [33]. Rosales-Méndez 
et al. [49] suggests focusing on multilingual EL evaluation through a benchmarking set. 
van Erp et al. [50] shows some strengths and weaknesses of EL datasets, some are also 
interesting to EN (e.g. overlapping mentions between train and test sets). Sevgili et al. 
[51] compares some deep learning results of EL methods. One reason for this difference 
between specialized and open domains is that the access to clinical data (i.e. documents 
or knowledge bases) is often restricted [52].

Moreover, there are few detailed comparisons of features of normalization datasets 
in specialized domains. Corpus publications focus mainly on intrinsic information 
about the corpus used: the number of documents, sentences, words, mentions or used 
concepts in the full corpus. In particular, information on the separation into different 
folds, when this separation is done, is rarely provided. Most of the existing inter-anal-
ysis of datasets were done in publications which describe a new method evaluated on 
some datasets. Sometimes, the initial annotated corpus is not separated into different 
folds, and it is the authors of a method who publish a new dataset with specific sets 
for evaluation purpose. For instance, the “Random CADEC” dataset [26] is the result 

14 https:// zenodo. org/ record/ 55013.
15 http:// sidee ffects. embl. de/.

13 https:// data. mende ley. com/ datas ets/ rxwfb 3tysd/1.

https://zenodo.org/record/55013
http://sideeffects.embl.de/
https://data.mendeley.com/datasets/rxwfb3tysd/1
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of the separation of the all-in-one CADEC corpus [39]. Note that during this process, 
some modifications can be made, such as simplifications (e.g. removing NIL or ambigu-
ous mentions).

In [26], the average number of mentions that a concept annotates (considering only 
used concepts from the whole ontology) are presented for three datasets. Although not 
discussed, this information was possibly intended to give an idea of the difficulty of the 
benchmark: if low, the task will fall within more challenging few-shot or one-shot learn-
ing. In [53] or [11], in addition to the usual information but decoupled on the training 
set and the test set, the number of NIL mentions are also presented between the ShARe/
CLEF, the NCBI-DC and the TAC-ADR datasets. For example, 32.7% of the test men-
tions in the ShARe/CLEF corpus are NIL mentions. A method that does not have a con-
ceptless class in its prediction categories would therefore be at a disadvantage on this 
dataset. In [22], two distinct folds were created from a unique dataset where each one 
contains annotating concepts which are not in the other. One is chosen to train their 
method, the other for evaluation. This represents an analysis of the Zero-Shot Learning 
(ZSL) cases, that is, the mentions’ concept to predict have never been seen during train-
ing. In [54], the authors have clarified that some datasets do not use the whole ontol-
ogy initially considered, but a subset built from the concepts contained in the training 
and test sets. They also present some ZSL indicators and the proportion of ambiguous 
mentions per dataset. The ZSL information is interesting because it gives an idea of the 
performance of a method on a real corpus. Indeed, in specialized domains, since the 
ontologies used for annotation contain a large number of concepts, it is futile to hope 
to have even one example for each concept in a gold standard. Tutubalina et  al. [55] 
describes a cross-domain approach to extrinsically evaluate the ability to address zero-
shot: by training a method on a dataset, then using it on another dataset and at inference 
time to estimate the nearest label for each mention.

To our knowledge, the first and unique work which directly concerns entity normaliza-
tion comparative evaluation in specialized domains is [55]. The authors have analyzed 
five datasets (NCBI-DC, BC5CDR-D, BC5CDR-C, TAC-ADR and SMM4H) and have 
compared the NCBI-DC state-of-the-art method BioSyn [23] to a baseline based on 
BERT [56] on them. In particular, they observe in some datasets that a large number of 
mentions appear several times in the test set, and many are also seen at training time. 
This is also true for the Random CADEC dataset, and on refined test sets intended to 
reduce these biases. In fact, Tutubalina et al. [6] shows that the distribution of mentions 
through the folds have a significant impact on performances, leading to an average of 
15% loss between initial and refined test sets.

Contributions

• We propose indicators for characterizing EN datasets. We hypothesize that these 
indicators could help to categorize dataset for future work, regardless of language 
type or domain, but rather in terms of difficulties for current adaptable approaches.
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• We propose a new mixed EN baseline method, which runs in a few minutes on a 
standard laptop (CPU). While not a strong baseline, it is a generic and easy-to-use 
one, whose performance well serves as an indicator of the difficulty of an EN task.

• We formalize an accuracy measure to evaluate EN methods, which takes into account 
the multi-normalization cases, which are often overlooked.

• We identify some potential biases of entity normalization evaluation: (1) Preprocessing 
may not be well described in the reference article of a method, while it may be domain-
specific, and be responsible for the superior performance of a method. (2) Because all 
batches for some datasets are public, some evaluate on the subpart of the target ontol-
ogy that contains only the concepts used in the test set. This can significantly (and 
arbitrarily) increases the performance of a method. (3) As soon as a method possibly 
predicts more than one concept per mention, the classical accuracy measure does not 
penalize wrong predictions. Moreover, in cases of multi-normalization, there may be 

Table 2 Accuracy of methods on the test set from the BB4 bacterial habitat dataset

The baseline is a DictB-SymR method used by task organizers that performs an exact match between lemmatized entity 
mentions and ontology concept labels

Method Accuracy

C-Norm [57] 60.4

HONOR [58] 53.1

CONTES [21] 50.0

PADIA BacReader [59] 48.8

BOUN-ISIK [60] 42.8

BLAIR GMU [61] 21.1

Baseline 22.4

Table 3 Accuracy of methods on the NCBI-DC dataset

Confidence intervals (at a confidence level of 0.05) come from [11]

Method Accuracy

BioSyn + (init. w/) SAPBERT [62] 92.5

[63] 92.1

[64] 91.7

Train:OD + Search:tuned [65] 91.1

BioSyn [23] 91.1

BCNH [66] 90.6

TripelNet [65] 89.9

Lightweight model [11] 89.5 ± 3.22

BERT-based ranking [53] 89.0 ± 3.32

TaggerOne [67] (from CNN-based ranking) 88.8 ± 3.32

NormCo [27] 87.8

BNE [68] 87.7

CNN-based ranking [69] 86.1 ± 3.63

Sieve-based [12] 84.7 ± 3.84

DNorm [70] (from CNN-based ranking) 82.2 ± 4.05
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several formulas or implementations, leading to different scores and thus to potential 
biased comparison.

Methods
Entity normalization methods

We report the leaderboards of the BB4 bacterial habitat task and the NCBI Disease Cor-
pus in Tables 2 and 3 respectively. The main evaluation metric used for the BB4 task is 
a non-strict similarity score [19], but an accuracy metric is also provided by the task 
organizers through an evaluation web platform. For fair comparisons between datasets 
and methods, we only report here the results with accuracy as provided by BB4 task 
organizers and in [57] for the last published methods. This accuracy does not change the 
ranking of the first three methods compared to the similarity score, but has an impact on 
the next ones. To our knowledge, these two leaderboards represent the state-of-the-art 
in mid-2022.

To support our purposes, we have chosen the state-of-the-art method on each cor-
pus at the time we started our experiments in 2020, that is C-Norm [57] for BB4 and 
BioSyn [23] for NCBI-DC. To our knowledge, no previous publication has shown evalu-
ation of C-Norm on the NCBI Disease Corpus, or of BioSyn on the BB4 dataset. Bio-
Syn and C-Norm have the advantage of being at least publicly shared, but it is not yet a 
widespread effort in the entity normalization community. Our experience shows that the 
published results are mainly reproducible. Nevertheless, we have not conducted addi-
tional experiments to study reproducibility issues (e.g. non-significant scores). We also 
created a baseline that basically combines the four strategies (i.e. DictB, DistR, SymR 
and ML), each in their naive version.

BioSyn

BioSyn [23] was the state-of-the-art method on the NCBI Disease Corpus dataset at the 
time we started our experiments in 2020. It’s a ML-based method using TF-IDF bag-
of-word representations [71] (i.e. DictB approach) as well as embeddings (i.e. DistR 
approach) of mentions computed by BioBERT [72]. The method uses both representa-
tions to predict top-k candidates by weighting the influence of one or the other in a final 
score, that is, by weighting the influence of morphological or distributional information. 
During training, BioBERT embeddings are fine-tuned to modify this score. Since con-
cepts regularly have multiple labels, training is done by seeking to maximize the prob-
abilities of predicting all the correct concept labels in the top-k candidates for each 
mention, not only the top-1 as most methods do. During the training, the system learns 
to rank k candidates containing also some negative examples with high probability of 
prediction. The authors claim that this kind of integration of negative sampling allows to 
improve the BioBERT embeddings for the task.

Even if not described in detail in [23], the method includes some preprocessing: low-
ercasing and punctuation removal of mentions and labels, an acronyms resolution with 
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Ab3P,16 some rules to resolve composite mentions and a list of corrections for bad spell-
ing of some words.

We used the official available code17 for preprocessing and the core method.

C‑Norm

C-Norm [57] is the current state-of-the-art method on the BB4 dataset. It’s a DistR-
ML which uses a weak supervision strategy (i.e. use of all label-concept couples from 
the ontology as positive examples) and integrates some ontological information. The 
method does not represent each concept through their labels, but by a unique seman-
tic encoding vector which is mainly based on the subsumption information available in 
ontologies. The method learns a projection from an embedding space to an ontological 
space defined by the semantic vectors of concepts. The objective function tries to glob-
ally maximize the cosine similarities between projected vectors of mentions and their 
concept vector(s).

C-Norm uses as input Word2Vec embeddings which should be fine-tuned in a specific 
way, including preprocessing (lowercasing, lemmatization and stopword removal) and a 
training corpus selection.

We have encountered difficulties in running the method on corpora with larger ontol-
ogies and/or datasets. We have optimized the code so that it can more easily run on a 
Google Colab CPU server18 (limited to 12Go RAM). One of the hyperparameters of the 
method is the number of convolutional filters. The authors state that it should be set to 
the number of concepts in the used ontology. On the NCBI Disease Corpus, we fixed 
that number to 3000 as on the BB4 dataset, rather than 9664 as it should be (i.e. there are 
9664 concepts in the MEDIC ontology). Finally, we don’t exactly use the scripts pointed 
by the authors, but instead reproduce the preprocessing steps. Indeed, these preprocess-
ing should be performed through the corpus processing engine AlvisNLP/ML,19 which 
made it difficult to use on our server. Despite our modifications, we found back similar 
results on the BB4 corpus to those published.

Baseline

As we mentioned, baseline methods are often absent from normalization studies. 
D’Souza and Ng [12] describes the first sieve approach for entity normalization. This 
approach is based on several methods which are sorted by expected precision, and 
inversely, by expected recall. The most precise method is used first on a dataset, and 
the mentions that do not have predictions are then passed to the second most precise 
method, and so on. The first sieve method was based on DictB-SymR methods, but Ferré 
et al. [58] proposed a 2-sieves method where the second sub-method is based on DistR-
ML and trained on the whole training set.

Inspired by this approach, we construct a simple baseline based on two sub-
methods: a first DictB-SymR method, and a second DistR-ML one. This combined 

18 https:// colab. resea rch. google. com/.
19 https:// bibli ome. github. io/ alvis nlp/.

16 https:// github. com/ ncbi- nlp/ Ab3P.
17 https:// github. com/ dmis- lab/ BioSyn.

https://colab.research.google.com/
https://bibliome.github.io/alvisnlp/
https://github.com/ncbi-nlp/Ab3P
https://github.com/dmis-lab/BioSyn
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approach aims to leverage the strengths of each type of classical approach, and, 
rather than being a strong baseline, it is expected to be robust to domain or task 
changes. The DictB-SymR method starts by adding mentions of a training dataset 
as labels of the associated concept, as it is also done by BioSyn. Unlike BioSyn, if 
several mentions with the same surface form are annotated by different concepts, 
the mention is added as a label only for the concept that was the most frequent. 
Then for prediction, the method lowercases and stems all mentions and all labels 
and seeks for exact match. In a very simplified way, by adding training examples, this 
method is also ML-based. The DistR-ML method uses standard biomedical embed-
dings,20 and is trained to project all mention embeddings (i.e. the vector averaging 
the embeddings of the tokens from the mention) near the label embeddings of their 
concept. The learned projection can then be used on prediction, where the predicted 
concept is the one which has a label embedding nearest to the projected mention 
embedding. Other representation models have been proposed that we could have 
used, such as BERT [56], specialized models such as SapBERT [62] for the biomedi-
cal domain, and TF-IDF representations [73]. This is left as future work. We stress 
that our baseline has the advantage of being low on RAM consumption and runs in 
a couple of minutes on a standard laptop, and is not specific to a particular domain.

Dataset description

For this work, we particularly focus on two datasets, which have in common to be 
frequently used to evaluate methods: the BB4 and the NCBI-DC datasets. Both are 
publicly available and use a relatively small and hierarchically organized ontology. 
For BB4, the bacterial habitat hierarchy of the OntoBiotope ontology owns 3172 
concepts. For the NCBI-DC, the MEDIC ontology owns 9664 concepts. Due to the 
hierarchical nature of these ontologies, there are no NIL mentions (i.e. each mention 
of interest can be at least normalized by the root concept).

The full BB4 dataset has three entity types (habitat, phenotype and microorgan-
ism), but as observed in [57]: “the Phenotype part of the dataset is much smaller than 
the Habitat part and thus it is harder to observe clear tendencies on this dataset”. 
Moreover, the microorganism part is not really challenging regarding terminological 
variations, and the ontology used for this part is relatively large. Thus, as others do, 
we only use the habitat part of the dataset. Nevertheless, for some experiments, we 
use the full OntoBiotope ontology, which also owns a phenotype hierarchy with 429 
concepts.

The NCBI-DC has a particularity: the presence of unresolved composite mentions 
(e.g. the composite mention “breast or ovarian cancer” is given as it is, rather than 
resolved in two mentions: “ovarian cancer” and a discontinuous mention “breast 
cancer”). The objective of the task is then to normalize these mentions by all the 
concepts that should normalize each of their component entities. We choose to con-
sider these mentions as any other case of multi-normalization.

20 the “PubMed-w2v.bin” file from http:// bio. nlplab. org/.

http://bio.nlplab.org/
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For comparison purposes, we analyzed some indicators on the “Custom CADEC” 
dataset. This dataset is different from NCBI-DC and BB4: it is separated into five-
folds for cross-validation, their annotating ontologies are relatively big and it has 
been already reworked from its previous version "random CADEC" to correct some 
observed biases. Moreover, the corpus is publicly shared, but not the two ontologies. 
The Clinical Finding hierarchy of the SNOMED-CT owns 99,814 concepts, and it is 
unclear what is the part of the non-hierarchical AMT terminology which has been 
used (the trade and medicinal product types mainly used are 7188).

Our proposal for a quality measure

As discussed, there is no standard evaluation system for the NCBI Disease Corpus. 
Authors typically resort to their own scripts for computing accuracy, without describ-
ing it upon mentioning “we used accuracy”. Thus, the evaluation of multi-normalization 
cases is then not explicit. For instance with BioSyn, the personal accuracy evaluates 
multi-normalization cases, but differently depending on whether they are composite 
mentions (all concepts are needed to validate correct prediction) or multi-labeled men-
tions (just one of the correct concepts is needed to validate correct prediction).

To our knowledge, no formalization of an accuracy measure taking into account the 
multi-normalization cases has yet been proposed (although we believe that such a meas-
ure may have already been implicitly used in some tasks). The measure is detailed in 
Eq. 3:

where strict(m, c) = 1 if c is a correct concept of m, 0 otherwise
Equation  3: Equation of accuracy generalized to multi-normalization cases. Here pi 

is the number of predicted distinct concepts cji for the mention mi , and ni is the correct 
number of distinct concepts to find.

As the NCBI-DC dataset has the specificity of containing some unprocessed compos-
ite mentions, which are evaluated as in Eq. 3, in addition to the cases of multi-labeled 
mentions, the BioSyn method proposes a slightly different evaluation script: a method 
only needs to predict one of the correct concepts to get the full point for a multi-labeled 
mention. This seems to us as relatively mild compared to Eq. 3. As a contribution, we 
therefore propose a generalized accuracy in Eq. 4. In particular, the denominator does 
not involve only the number of correct concepts to predict as in Eq. 3, but also the num-
ber of predicted concepts. Our measure introduces indeed a penalty (i.e. here with a 
choice among others of a max operator) in case a method would predict more concepts 
than expected. Indeed, if a method predicts all the concepts of the ontology for each 
mention, and that it only counts to predict the correct concepts, it would get a perfect 
score. We think that the reason for this unaddressed problem in the classic accuracy 
comes from the fact that the majority of existing methods propose a single prediction 
per mention.

(3)Acc =
1

N
·

N
∑

i=1

∑pi
j=1 strict

(

mi, c
j
i

)

ni
,
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where strict(m, c) = 1 if c is a correct concept of m, 0 otherwise.
Equation 4: Our general equation of accuracy. Here pi is the number of predicted dis-

tinct concepts cji for the mention mi , and ni is the correct number of distinct concepts to 
find.

We also use this accuracy function on the BB4 corpus, which seems to give the same 
results as the one used on the BB4 online evaluation platform.21 Note that if a method 
predicts a single concept per mention in a multi-normalization dataset, then Eq.  4 
reduces to Eq. 3.

Indicators for comparison

To be capable of comparing datasets, we choose some general indicators, including some 
which have never been used in our context. We categorize these indicators as “intra-
folds” and “inter-folds”.

Intra‑folds indicators

As in [26], we compute the average number of mentions that a concept annotates (con-
sidering only used concepts from the whole ontology). As in [53] or [11], we analyze 
the number of NIL mentions, and we choose to use the percentage of NIL mentions to 
enable comparisons. Finally, as in [54], we compute the percentage of ambiguous men-
tions, that is, the percentage of mentions with the same surface forms that are annotated 
by different concepts. We also show the percentage of multi-normalization cases, that is, 
the mentions which should be normalized by two or more distinct concepts (including 
composite mentions in NCBI Disease Corpus).

(4)Acc =
1

N
·

N
∑

i=1

∑pi
j=1 strict

(

mi, c
j
i

)

max(ni, pi)
,

21 http:// bibli ome. jouy. inra. fr/ demo/ BioNLP- OST- 2019- Evalu ation/ index. html.

Table 4 Few-shot learning (FSL) indicators, that is, the average (or median) of mentions annotated 
by concepts in the training set

Only the concepts that annotate at least one mention are considered. The “distinct” indicators mean that mentions with the 
same surface form contribute only for one example

BB4 (train) NCBI-DC (train + dev) Custom CADEC 
(average on all train 
folds)

FSLaverage 5.1 8.8 9.5

FSLmedian 2 2 6.4

FSLmax 133 235 59

FSLaverage (distinct) 3.1 2.9 9.5

FSLmedian (distinct) 2 1 6.4

FSLmax (distinct) 34 61 59

http://bibliome.jouy.inra.fr/demo/BioNLP-OST-2019-Evaluation/index.html
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Inter‑folds indicators

As observed in [6] and in [55], some datasets have a high overlap of mentions between 
training and test sets. This could lead to relatively optimistic results. Thus, we compute 
a redundancy indicator, which is the percentage of examples (i.e. not the mentions, as in 
other studies) seen in the training set and seen again in the test set. Conversely, we com-
pute a ZSL indicator (i.e. for Zero-Shot-Learning) which is the percentage of concepts 
met in the test set but never in the training set. For instance, the “zero-shot split” of the 
COMETA corpus has a ZSL of 100%: no concept of the test set is seen in the training 
material. These ZSL cases are considered challenging, and we think that the proportion 
of these in a dataset can give an estimation of the difficulty of a task.

Results
Intrinsic analysis of corpora

Our first aim is to illustrate the difference between the NCBI Disease Corpus and the 
BB4 datasets. If they are too similar, it should be difficult to estimate the robustness of a 
method by only analyzing their results on these two datasets. To measure this difference, 
we use our intra and inter-folds indicators previously introduced.

Intra‑folds

We report in Table 4 that the BB4 and NCBI-DC corpora are both realistic representa-
tives of a Few-Shot Learning (FSL) corpus, with half of the concepts in the training set 
annotating only one or two distinct mentions  (FSLmedian = 2). Compared to them, the 
Custom CADEC corpus seems to offer many more distinct examples of mentions per 
concept, with half of the concepts annotating at least 6 distinct mentions. Note that 
there is an important imbalance in the number of examples per concept, whatever the 

Table 5 Multi-norm cases are the mentions which should be normalized by two or more distinct 
concepts (including composite mentions in NCBI Disease Corpus)

Ambiguity is the percentage of mentions with same surface forms that are annotated by different concepts through the 
considered corpus. NIL (not in lexicon) is the percentage of mentions which should not be normalized by any concept in the 
reference (often normalized by a “CONCEPT_LESS” label)

BB4 (train + dev) (%) NCBI-DC (train + dev + test) (%) CADEC 
custom (all 
folds) (%)

Multi-norm 8.1 2.3 0.0

NIL 0.0 0.0 0.0

Ambiguity 19.3 4.6 1.2

Table 6 Redundancy is the percentage of examples met in the training set and met again in the 
test set

ZSL (zero-shot learning) is the percentage of concepts met in the test set and never met in the training set

BB4 (train on dev) (%) NCBI-DC (train + dev on 
test) (%)

Custom CADEC (average 
on all train on test folds) 
(%)

Redundancy 24.6 63.3 0.0

ZSL 48.2 27.3 0.0
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corpus: there are some concepts with dozens of distinct mentions and many with only a 
few.

We show in Table 5 that the BB4, NCBI-DC and Custom CADEC corpora can be dif-
ferentiated by the percentage of multi-normalization cases and the percentage of ambig-
uous mentions. Notably, BB4 has 8.1% of multi-normalization cases in its training set. If 
the test set has a similar ratio, this would result in at least 4 points less in accuracy for 
methods which do not address this problem. In contrast, as indicated in [32], all multi-
normalization cases (called “ambiguous mentions” in the study) have been removed from 
the Random CADEC corpus to build the Custom CADEC corpus.

The most notable difference between the three datasets is the rate of ambiguous men-
tions. Indeed, while NCBI-DC and Custom CADEC contain a low ambiguity rate (less 
than 5%), almost one in five BB4 mentions is ambiguous. To resolve those ambiguities, it 
would be necessary to use the context of the mentions, but to our knowledge, this infor-
mation is never used by existing methods in entity normalization (at the difference of 
entity linking methods).

It is noteworthy that in the three datasets, there are no NIL mentions. The hierarchy of 
the OntoBiotope and MEDIC ontologies means that all mentions can at least be normal-
ized by their root. Nevertheless, in practice, there are no mentions normalized by the 
root in these datasets: a NIL mention could be resolved by completing the ontology with 
a more specific concept during the corpus building (e.g. it was the case for the BB4 data-
set). Moreover, a direct mention in text of a root concept (e.g. “bacterial habitat”) can 
usually be considered as too uninformative to be extracted. Finally, the NIL mentions 
can simply be deleted from the corpus. For instance, because of the non-hierarchical 
structure of the AMT part of the Custom CADEC dataset, there are NIL mentions in 
the initial CADEC corpus. But these ones have been deleted when building the Custom 
CADEC dataset.

Inter‑folds

As shown in Table 6, redundancy and zero-shot-learning indicators can also clearly dif-
ferentiate the three corpora. As redundancy was a major bias in the Random CADEC 
corpus, we observe indeed that there is nothing left in the Custom CADEC. The authors 
were able to obtain 5 folds (rather than 10 initially) by redistributing examples (seeming 
to duplicate examples from the initial corpus between batches) and obtain only 181 used 
concepts (rather than 1036 initially). This modification could also explain the higher 
number of distinct examples by concepts observed in Table  4. Compared to this, the 
NCBI Disease Corpus displays a high rate of redundancy (63.3%), close to the initial rate 
of the Random CADEC dataset. Because of their relatively low rate of ambiguities (see 
Table  5), redundancy appears also as a major biais in the NCBI Disease Corpus. The 
redundancy is lower in the BB4 dataset (24.6%).

ZSL is also an interesting indicator to differentiate the datasets. Notably, although 
Custom CADEC addressed the redundancy problem, it keeps a distribution of examples 
between sets, which results in a perfect overlap between concepts used in the training 
sets and their associated test sets. Compared to this one, around a quarter of concepts 
to predict in the test set have never been used in the training set of the NCBI Disease 
Corpus, and around a half for the BB4 dataset. Without judging the relevance of having 
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a strong ZSL value in an evaluation corpus, a null value does not allow to evaluate the 
capacity of a system to predict a concept it has never seen.

Significativity/variability of methods

A screening of all methods’ parameters has a significant cost in time. This time needs to 
be multiplied to estimate the significativity and the variability (due to stochastic parts in 
numerous methods) of the results. These efforts are particularly important when the aim 
is to compare different methods that obtain very similar scores on the same dataset. This 
may be the reason why some authors do not test for significance and present only one 
result in their publication (e.g. BioSyn). This represents a bias when we try to unknow-
ingly compare a method that would give a significant score with a method that would 
give its best score, enough to change a leaderboard. Nevertheless, in this study, we seek 
to observe important differences. Based on the articles of the BioSyn and the C-Norm 
methods, and on our tests, we assumed in our experiments that a difference of 3 points 
is significant enough to make observations on single runs, regardless of the modifica-
tions made.

Influence of preprocessing and used resources

We evaluate the impact of preprocessing on the performance of the methods. If a pre-
processing gives a positive impact on a dataset, not on another one, then it reveals that 
these preprocessing are somehow domain-specific, thus lacking robustness. We think 
that a realistic and non-domain-specific baseline method can also help to characterize 

Table 7 Ablation study of BioSyn preprocessing on the two datasets

We use our accuracy metric (see Eq. 4) rather than the one used by the BioSyn method. The “X/Y” means that training was 
performed on X and evaluation on Y

BB4 train/dev NCBI-DC 
train + dev/
test

Baseline 55.4 78.7

Baseline + BioSyn preprocessing 54.1 82.9

BioSyn 59.1 89.6

BioSyn (without any preprocessing) 56.6 81.3

BioSyn—lowercasing and punctuation removal 57.9 88.4

BioSyn—acronym resolution 57.0 86.8

BioSyn—composite mention resolution 57.3 88.4

BioSyn—typo resolution 57.8 90.2

Table 8 Accuracy of C-Norm (with 3000 filters) on the both datasets, with and without using the 
preprocessing of BioSyn on the data

BioSyn preprocessing are lowercasing, punctuation removal, acronym resolution with Ab3P, and handmade typo resolution 
(for NCBI-DC dataset). Composite mention resolution was not applied on the BB4 dataset because the composite mentions 
were already resolved

BB4 (train on dev) NCBI-DC 
(train + dev 
on test)

C-Norm 64.8 73.8

C-Norm + BioSyn preprocessing 65.0 74.3
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a corpus. This baseline serves as a control through different datasets. Rather than only 
measuring the score of a method alone on a dataset, observing the difference between 
this score and that of the baseline should give a better appreciation of the quality of the 
results.

BioSyn

For BioSyn, it should be noted that score variation doesn’t come from training (with 
same BioBERT version at least), but only from preprocessing. As shown in Table 7, the 
whole preprocessing seems to have a marginal influence on the accuracy of the method 
on the BB4 dataset (+ 2.5 points), and has even a slightly negative influence on our 
baseline method (− 1.3 points). On the other hand, preprocessing has a global positive 
influence on the accuracy on the NCBI-DC dataset (+ 8.3 points). It seems to indicate 
that preprocessing is globally over-specialized to the NCBI-DC dataset. However, on 
a single run, it is difficult to estimate the real individual contribution of each preproc-
essing option (maximum observed contribution of 2.8 points). Surprisingly, it can be 
noted that removing the typo resolution, though specialized to the typos contained in 
the NCBI-DC corpus, gave a slightly higher score (+ 0.6 points) for the method with all 
the preprocessing. Thus, it is not a significant observation, but it is enough to question 
the relevance of this preprocessing which would require important manual efforts while 
being strongly domain-specific.

We also observe a huge gap between the results of BioSyn on the two datasets: + 30.5 
points on the NCBI-DC dataset compared to the BB4. We have a similar observation 
with our baseline method (+ 23.3 points) or with our baseline with BioSyn preprocessing 
(+ 28.8 points). The difference of measures presented earlier between the two corpora 
may explain this difference. Moreover, from our observations, BB4 ambiguous cases in 
particular lead BioSyn to predict too many concepts. And finally, we show that BioSyn 
outperforms our baseline, with or without BioSyn preprocessing (+ 3.7 compared to the 
baseline on BB4, and + 6.7 to the baseline with BioSyn preprocessing on the NCBI-DC).

C‑Norm

In Table 8, we compare the impact of BioSyn preprocessing on the results of C-Norm. 
Surprisingly, C-Norm does not seem to gain any particular benefit from the NCBI-DC 

Table 9 Accuracy of C-Norm (with 3000 filters) and our baseline on the both datasets, with custom 
embeddings and more standard embeddings

The “X on Y” means that training was performed on X and evaluation on Y

BB4 (train on dev) NCBI 
(train + dev 
on test)

Baseline (with standard biomedical embeddings) 55.4 78.7

C-Norm (with standard biomedical embeddings) 58.9 67.0

Baseline + C-Norm embeddings 58.8 72.3

C-Norm 64.8 73.8
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over-specialized BioSyn preprocessing. Thus, the method seems relatively robust and 
can mitigate the need of these kinds of preprocessing.

Despite the suboptimal use of only 3000 convolutional filters on the NCBI-DC data-
set, we can still observe a gap between the results of C-Norm on the two datasets: + 9.0 
points on the NCBI-DC dataset compared to the BB4.

C-Norm applies as preprocessing only lowercasing, lemmatization and stopword 
removal and no strongly domain-specific preprocessing is used. But on the contrary, 
C-Norm is based on a specialized Word2Vec embedding set, optimized directly on the 
BB4 development set with another normalization method [17]. As shown in Table 9, the 
use of a standard embedding set (even specialized for the biomedical domain and trained 
on the same type of literature) has a negative impact on the C-Norm results: − 5.9 points 
on the BB4 and − 6.8 points on the NCBI-DC. A similar observation can be done with 
our baseline method on the BB4 (− 3.4 points) but not on the NCBI-DC (+ 6.4 points). 
For C-Norm, which is strongly based on word embeddings, the main explanation could 
be the number of out-of-vocabulary tokens. Indeed, 31.7% of tokens from NCBI-DC 
dataset and MEDIC terminology are out-of-vocabulary in the BB4 embedding set. The 
DictB-SymR submethod of our baseline, which is not based on embeddings, could 
explain why this one performs better.

As noted, a minimized value of the number of filters seems to have a real negative 
impact on C-Norm scores on NCBI-DC. But from a reproducibility point of view, our 
use of both methods gives accuracy scores close to the ones published:

• For BioSyn on the NCBI-DC: 89.6 with our run on the test set, and 91.1 for the run 
in the publication.

Table 10 Number of concepts considered in some subparts of the OntoBiotope ontology for the 
BB4 task

Full OBT Habitat OBT Train + dev habitat OBT Train habitat OBT

Number of concepts 3602 3172 294 232

Table 11 All methods are trained on training dataset and evaluated on dev dataset

For train + dev, train and dev versions of OntoBiotope, we do not reorganize the broken subsumption hierarchy

Full OBT Habitat OBT Train + dev habitat OBT Train 
habitat 
OBT

C-Norm 63.8 64.8 74.0 50.7

BioSyn 53.5 59.1 61.8 42.6

Baseline 53.9 55.4 59.2 42.8

Table 12 Number of concepts considered in some subparts from MEDIC for the NCBI Disease 
Corpus

Full MEDIC Train + dev + test MEDIC Train + dev MEDIC

Number of concepts 9664 751 695
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• For C-Norm on the BB4: 64.8 with our run on the development set (with other sen-
tence/word segmenters), and 63.3 for the average run in the publication (standard 
deviation of 0.9).

Influence of reference size

As noticed in [54], some datasets use a subpart of the initial reference ontology. We 
analyze the impact of choosing different parts of the ontology. Mainly, we built smaller 
ontologies in keeping only the concepts used in train and/or test sets. For OntoBiotope, 
we also use the whole ontology with the phenotype part.

As shown in Table 10, the BB4 dataset used in our experiment contains 3172 concepts 
of bacterial habitats (88%) out of the 3602 of the whole OntoBiotope ontology. The habi-
tat part is the main part of OntoBiope. Compared to that, the train + dev dataset repre-
sents only 294 concepts (8% of the whole, 9% of the habitat part).

As shown in Table 11, these differences of the possible target concepts have a strong 
influence on the results on the dev set for C-Norm (+ 9.2 points). The gain is less vis-
ible for BioSyn (+ 2.7 points) and our baseline (+ 3.8 points). Certainly because of the 
relatively low number of overlaps between used concepts in the train and the dev (51.8%, 
see ZSL indicator in Table 6), all the methods strongly decrease their results when using 
only the concepts from the train (− 14.1 points for C-Norm, − 16.5 for BioSyn and 
− 12.6 for our baseline). We also observe that C-Norm has a slight loss when using the 
whole ontology (− 1 point), notably compared to BioSyn (− 5.6 points). Thus, C-Norm 
seems more robust to concepts addition than BioSyn on the BB4 dataset.

With the availability of the annotated test set of the NCBI-DC dataset, the meth-
ods can use more different subsampled ontologies. We do not use the MEDIC ontol-
ogy with only the concepts used in the test set, which would be borderline, as the dev 
Habitat Ontobiotope for BB4. As shown in Table 12, the NCBI-DC dataset used in our 

Table 13 All methods are trained on train + dev dataset and evaluated on test dataset

For train + dev + test and train + dev, we do not reorganize the broken subsumption hierarchy

Full MEDIC Train + dev + test MEDIC Train + dev 
MEDIC

C-Norm 73.8 86.3 76.2

BioSyn 89.6 90.8 79.2

Baseline 78.7 81.9 73.1

Table 14 Comparison of score calculated with our proposed accuracy or with the proposed BioSyn 
accuracy

BB4 with our 
accuracy

BB4 with BioSyn 
accuracy

NCBI-DC with our 
accuracy

NCBI-DC 
with BioSyn 
accuracy

C-Norm 64.8 68.7 73.8 74.2

BioSyn 59.1 65.6 89.6 89.7

Baseline 55.3 57.2 78.7 79.3
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experiment contains 9664 concepts, with the train + dev + test dataset representing only 
751 concepts (8%) and the train + dev dataset only 695 (7%). There is thus a certain simi-
larity of distribution between the concepts used in the annotated data and all the pre-
dictable concepts.

As shown in Table 13, the use of the train + dev + test MEDIC has no visible influence 
on the results of BioSyn (+ 1.2 points), and a weak gain for our baseline (+ 3.2 points). In 
contrast, it has a strong influence on C-Norm (+ 12.5 points). Thus, we can observe here 
a similar behavior of the three methods whether on the BB4 or on the NCBI-DC data-
sets. Because of a higher number of overlaps between used concepts in the train + dev 
and the test (72.7%, see ZSL indicator in Table 6), the effect of using only the train + dev 
concepts seems to be less drastic (− 10.4 points for BioSyn and − 5.6 points for our base-
line), with C-Norm even obtaining a little gain (+ 2.4 points). Therefore, C-Norm seems 
to better benefit from concepts filtering which are not in the set of possible predictions.

Influence of scoring metric

The BioSyn script proposes a scoring evaluation with different features than ours (see 
Eq. 3). Notably, it evaluates multi-labeled mentions differently: if the predicted con-
cept is in the list of correct concepts, it is considered as a good prediction (i.e. maxi-
mum points for the current mention). With our metric, a good prediction means all 
expected concepts are predicted. From Table 14, we see that this difference has not 
a significant impact on the NCBI-DC dataset (0.1 point variation for our baseline, 
0.4 for C-Norm and 0.6 point for BioSyn). The reason is that there are only 2.3% of 
multi-normalization cases in the NCBI-DC (see Table  5), and therefore even fewer 
multi-labeled mentions. On the contrary, for the BB4 dataset, there are exactly 8.1% 
multi-labeled mentions in the train + dev dataset (see Table  5). And we can indeed 
observe that with the BioSyn accuracy, there are significantly better scores for 
C-Norm (+ 3.9 points) and BioSyn (+ 6.5 points). It is less visible for our baseline 
(+ 1.9 points).

Therefore, this experiment shows that it is possible to have a biased scoring met-
ric. Without clarification and caution on the scoring measure used, a reported evalu-
ation could in fact be misleading. In our experiment on BB4, we show that BioSyn 
could have been used to present a higher accuracy than C-Norm (65.6 points vs. 64.8 
points).

Discussion
To better evaluate the robustness and the adaptability of methods, evaluation on dis-
tinct datasets are needed. Nevertheless, on the existing datasets, some have no pub-
licly available resources (e.g. the specific version of the SNOMED CT-AU annotating 
part of the CADEC datasets is not open source, and not free for everyone). This is 
an obstacle for the reproducibility of the work. In this way, the work described in 
this article could be extended to more datasets and more methods. The community 
should also make efforts to produce datasets from outside the biomedical (or bio-
logical) domain. An open source warehouse with many datasets could support this 
purpose.
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A personal evaluation system seems to us to be a significant source of possible 
errors. Notably, we showed that it can induce a bias if there are differences in the 
scoring measure used. The full access to the annotated test set can also induce a bias 
by enabling some concepts filtering in the ontological reference making the task eas-
ier and/or less real world oriented. For these reasons, an independent online evalu-
ation platform, similar to the one used by the Bacteria Biotope tasks, seems to be 
essential. Nevertheless, the unavailability of the annotated test set limits the possibil-
ity of discussions (e.g. on possible errors of annotation, on comparison of mentions/
concepts distribution between train/dev dataset and test set or on designing k-fold 
cross-validation). By the way, for significativity purposes, k-fold cross-validation 
should become a standard, as well as a ZSL evaluation, notably to better apprehend 
the capacity of a method to address real world tasks.

We were surprised by the number of recently published methods that do not even 
share their code. But without taking into account this bad practice, there can also be a 
usability problem with the methods sharing their code. For instance, C-Norm needs a 
lot of computing resources, which means that even if it can be easily installed, it is not 
very usable without having access to a suitable computer. Compared to C-Norm, Bio-
Syn seems much more usable (as we could run it on a free Google Colab GPU server).

A standardization of the normalization task could be a step forward for reproducible 
work and fairer comparison. For instance, some datasets already resolve the composite 
mentions in the provided dataset (e.g. BB4) while some others do not (e.g. NCBI-DC). 
Some datasets use a conceptless concept (e.g. CADEC), some others remove them (e.g. 
Custom CADEC) and some others give a hierarchical ontology which means that any 
mention can at least be normalized by the root concept (e.g. BB4). Some datasets are 
designed with some simplifications (e.g. ambiguous mentions have been removed for 
Custom CADEC). Some datasets had an intervention on the distribution of the exam-
ples (e.g. removing duplicate mentions in Custom CADEC). And as shown previously, 
there are some distinct accuracy functions. On this subject, our recommendations are:

• Separate into two tasks the resolution of composite mentions and the entity normali-
zation.

• Promote hierarchical ontology rather NIL concept. Minimally, a list of concepts can 
be attached to a root that represents the entity type (i.e. the type of entity targeted by 
the prior recognition).

• Avoid simplifying datasets, and instead intervene to make them more realistic. In 
particular, redundancy should be minimized and ZSL cases should be amplified, 
because of the performance biases. Separate evaluations (e.g. cases of multinorm, 
redundancy, ZSL and ambiguity) could also help to estimate the strengths and weak-
nesses of methods.

What is often missing is a comparison with a good baseline that is relatively robust. 
This would allow to estimate the difficulty of a dataset, and also to estimate a bit better 
the real performance of a method by observing the difference from it. Ideally, such a 
baseline should be openly shared and easily manipulable. The baseline we have proposed 
here, if efforts to make it more easily usable were produced (e.g. by integrating it into 
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a standard Python library), seems to us to meet this need. It also has the advantage of 
being able to perform a training phase and a prediction phase in only a few minutes.

We expect to improve our analysis by expanding our experiment to some other entity 
normalization datasets and methods in future work, and to study in more depth the per-
formance of the methods according to the different cases mentioned.

Conclusions
Even if some methods reach scores higher than 90 points of accuracy on some entity 
normalization datasets, we show that there exists some evaluation bias that renders 
comparisons between methods hazardous, and tends to distort the real performance of 
the state of the art methods. We hope that these biases will be taken into consideration 
by the entity normalization community, notably by the dataset/method providers. We 
were able to make some suggestions that could avoid these biases and therefore consid-
erably support a methodological research on entity normalization.
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