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Abstract 

Background: Recent epidemic outbreaks such as the SARS-CoV-2 pandemic and the 
mpox outbreak in 2022 have demonstrated the value of genomic sequencing data for 
tracking the origin and spread of pathogens. Laboratories around the globe generated 
new sequences at unprecedented speed and volume and bioinformaticians developed 
new tools and dashboards to analyze this wealth of data. However, a major challenge 
that remains is the lack of simple and efficient approaches for accessing and process-
ing sequencing data.

Results: The Lightweight API for Sequences (LAPIS) facilitates rapid retrieval and 
analysis of genomic sequencing data through a REST API. It supports complex muta-
tion- and metadata-based queries and can perform aggregation operations on massive 
datasets. LAPIS is optimized for typical questions relevant to genomic epidemiol-
ogy. Using a newly-developed in-memory database engine, it has a high speed and 
throughput: between 25 January and 4 February 2023, the SARS-CoV-2 instance of 
LAPIS, which contains 14.5 million sequences, processed over 20 million requests with 
a mean response time of 411 ms and a median response time of 1 ms. LAPIS is the core 
engine behind our dashboards on genspectrum.org and we currently maintain public 
LAPIS instances for SARS-CoV-2 and mpox.

Conclusions: Powered by an optimized database engine and available through a 
web API, LAPIS enhances the accessibility of genomic sequencing data. It is designed 
to serve as a common backend for dashboards and analyses with the potential to be 
integrated into common database platforms such as GenBank.

Background
Pathogen genomic sequencing data are a key public health resource for responding to 
epidemic outbreaks. During the early stages of an outbreak, genomic sequencing data are 
essential for understanding the origin, evolution, and extent of spread of the pathogen [15, 
16]. At later stages, sequencing data are the primary early indicator of evolutionary and epi-
demiological changes, as demonstrated repeatedly with SARS-CoV-2 variants [9, 19, 20]. 
Rapid analysis of sequencing data is therefore a crucial component for evidence-based pub-
lic health responses. Although a lot of infrastructure for generating and analyzing genomic 
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sequencing data in real-time was established during the SARS-CoV-2 pandemic, major 
challenges remain [4, 7, 14, 15].

The unprecedented scale of SARS-CoV-2 sequence generation, coupled with enormous 
popular interest in these data, highlights a need for user-friendly tools for analyzing massive 
sequence data sets. One such category of tools is web dashboards. Once set up, these can 
be used by a wide audience without requiring programming and data science knowledge. 
Examples of popular dashboards that digest massive SARS-CoV-2 data sets include the 
CDC’s COVID Data Tracker [6], CoVariants [13], Outbreak.info [12], and our own CoV-
Spectrum dashboard [8]. Another category of tools that facilitate quick, ad-hoc analyses are 
“notebooks” like Jupyter Notebooks and R Markdown scripts. Notebooks are useful to data 
scientists with programming knowledge to quickly perform their own statistical analyses 
and generate their own plots. Combined, dashboards and notebooks allow different users 
to access different visualizations and focus on different aspects of the data. In this way, eve-
ryone from experts like scientists and public health agencies to the general public can ben-
efit from sequence data.

Many of these tools for sequence data analysis require common operations on sequence 
data like filtering, stratification, and aggregation. For instance, filtering for sequences with 
certain mutations and calculating the relative frequency of mutations are commonly per-
formed operations for genome sequencing data. Although these operations are simple in 
principle, the gigantic size of modern genome sequence data sets makes them non-trivial. 
Over 14 million SARS-CoV-2 sequences are available, and up to hundreds of thousands of 
new sequences are added weekly. General-purpose database systems such as PostgreSQL 
are not optimized for genomic sequence analysis on this scale.

Our resource LAPIS (Lightweight API for Sequences) is designed to perform common 
data operations on millions of genomic sequences within milliseconds, facilitating interac-
tive data exploration. Using a self-written in-memory database engine, it is optimized for 
filtering and aggregating large genomic sequencing data sets. Accessible through a web 
API (application programming interface), we believe that LAPIS can serve as a common 
backend for many dashboards and analyses (e.g., through notebooks). This would relieve 
scientists and dashboard builders from the costly but boring task of developing their own 
databases and implementing common basic operations. Instead, they would be free to focus 
on analysis and visualization tasks. Furthermore, LAPIS streamlines the direct download of 
cleaned and pre-processed data including aligned and unaligned sequences.

In contrast to data repositories like GenBank [3], LAPIS is not a broad database but a 
targeted data service. While GenBank contains sequences from more than 400,000 species 
and aims to provide a general and stable data source, LAPIS supports features specific to an 
outbreak species like lineage/clade annotation and filtering by mutations from a reference 
genome. In this way, LAPIS aims to support answering current research and public health 
questions about emerging pathogen threats.

Results
Functionalities

LAPIS implements many of the same functionalities as GenBank and additionally sup-
ports novel download, filter, and aggregation functionalities to support outbreak analysis 
(Table 1).
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The simplest way to use LAPIS is to encode a query in a URL prefixed with a par-
ticular LAPIS endpoint. Each LAPIS endpoint supports a different type of query and 
returns a different type of data (e.g., aggregated data, sequence data, mutations, etc.). 
Figure 1 illustrates a URL query structure. In the following sections, we explain the 
different parts of a query in more detail.

Aggregation and stratification

LAPIS implements two types of endpoints: endpoints that provide aggregated data 
and endpoints that provide per-sample data. We describe the first type in this section 
and the second type in the next.

The aggregated endpoint counts the number of samples that fulfill user-defined 
filters in a query. If the fields parameter is not set, it returns the total number of 
samples. By setting fields, we can stratify the data. E.g., /aggregated?fields=p
angoLineage,country will return the number of samples per Pango lineage and 
country. The fields parameter accepts all metadata and lineage-defining fields but not 
mutations or insertions.

To calculate the distribution of mutations and insertions, LAPIS offers the end-
points nuc-mutations, aa-mutations, nuc-insertions, and aa-inser-
tions. They return the number of occurrences of mutations in a set of samples and 
their proportions. When calculating the proportions, the unknown or ambiguous 
bases are excluded. For example, if there are 10 sequences, 3 sequences have a muta-
tion from A to G at position 5, 3 sequences have the reference base A, and 4 sequences 
have an N (i.e., unknown) at position 5, the proportion of the mutation A5G is 3

6
= 0.5 

(and not 3
10

= 0.3).

Table 1 Feature comparisons between GenBank and LAPIS

Feature GenBank LAPIS

Download metadata � �

Download unaligned sequences � �

Download aligned sequences × �

Download protein amino acid sequences × �

Download mutations × �

Filter by basic metadata (country, date, etc.) � �

Filter by lineage/clade � �

Filter by mutations × �

Perform aggregation × �

Fig. 1 Components of a query link
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Data download

LAPIS can also be used to obtain non-aggregated data. The details endpoint returns 
the metadata and supports an optional fields parameter that can be used to limit the 
desired metadata fields. The nuc-sequence and nuc-sequence-aligned end-
points return the original and aligned nucleotide sequences, respectively. Finally, the 
aa-sequence-aligned/gene endpoint (e.g., aa-sequence-aligned/S for the 
SARS-CoV-2 Spike protein) returns the aligned amino acid sequences.

Filters and advanced variant queries

By default (i.e., without specifying additional parameters), a query is evaluated on the 
whole set of sequences. To query a subset of sequences, a wide range of filters is avail-
able. It includes filtering by metadata, lineage names, and mutations. As shown in Fig. 1, 
filters can be set by adding request parameters to the end of the URL. If multiple filters 
are set, the samples that fulfill all of them will be selected.

For ordinal data like dates, there are two available filters: one with a From-suffix for the 
lower bound and one with a To-suffix for the upper bound. E.g., dateFrom=2023-01-01 
&dateTo=2023-01-31 will filter for samples from January 2023.

LAPIS additionally supports two different ways to specify a variant. The simple 
approach is similar to the metadata filters and can be used to filter samples that fulfill all 
of a list of conditions. Possible parameters for the SARS-CoV-2 instance include pango-
Lineage, aaMutations, nucMutations, aaInsertions, etc. For the mutations/
insertions, it is possible to use a comma-separated list. An example of a simple variant fil-
ter would be pangoLineage=XBB.1* &aaMutations=S:E484R,S:K417T. The 
* behind XBB.1 means all sub-lineages of the Pango lineage XBB.1 will also be included 
in the query. Insertion queries may contain wildcards, for instance, ins:1000:AAT?. 
This filters for all sequences with an insertion that starts with AAT  between positions 
1000 and 1001.

The second approach is using advanced variant queries. Advanced variant queries sup-
port more than the conjunction of a list of conditions – they also allow Boolean logic 
and threshold queries. One example is shown in Fig.  2. Examples of real-world, user-
defined advanced variant queries can be found in the CoV-Spectrum Collections1 where 
users can define and monitor sets of variants specified by advanced variant queries. In 
particular, the threshold queries have proven highly valuable. For example, they have 
been recently used to group sequences that share the same number of mutations in the 
receptor binding domain (RBD) [5].

“Maybe” queries

Advanced variant queries further support “maybe” queries. These queries find sequences 
that might have a certain mutation instead of definitely having a certain mutation. By 
default, when filtering for a mutation, LAPIS returns sequences for which the mutation 
is confirmed. E.g., the query A5G selects sequences with a G at position 5. This is a con-
servative way of filtering. In practice, we don’t know the values at every position of every 

1 https:// cov- spect rum. org/ colle ctions.

https://cov-spectrum.org/collections
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sequence: for some sequences, we might have a N (=unknown/everything is possible) 
or another ambiguity code that includes G such as K (=G or T) at position 5. For those 
samples, it is possible that, in reality, they do have the mutation A5G. This implies that 
the aggregated endpoint usually2 provides the lower-bound number of samples when 
we filter for mutations. “maybe” queries allow us to obtain the corresponding upper 
bound. For the A5G example, sequences with a N, X, R, S, V, D and B at position 5 will 
also be included. Maybe queries are part of the advanced variant queries. For example, 
we can query maybe(5 G) & maybe(6T). In fact, we can write arbitrary variant 
query expressions in a maybe() clause. Equivalent to the previous example, we can 
write maybe(5 G & 6T). A more complex example would be maybe((S:10K & 
!S:11 H) & [2-of: 100A, 101T, 102 G]).

While the previous examples appear simple and intuitive, it is not always straight-
forward to determine the semantics of a maybe query. Let us consider the nucleotide 
sequence ATGCNT. It has one unknown at position 5. The sequence would neither 
match the query 5A nor 5C but it would match maybe(5A) and it would also match 
maybe(5C). What’s about maybe(5A) & maybe(5C)? From a Boolean logic per-
spective, if we consider maybe(5A) and maybe(5C) to be true, then their conjunction 
must be true as well. On the other hand, a sequence cannot have two different bases 
at the same position; thus, shouldn’t maybe(5A) & maybe(5C) be a contradiction 
and unconditionally false? LAPIS would evaluate maybe(5A) & maybe(5C) for the 
aforementioned sequence to be true. The main reason we decided on this semantic is 
that it is possible to evaluate it efficiently.3

Performance

LAPIS is computationally efficient. It has proven capable of reliably processing millions 
of requests per day with most response times within a few hundred milliseconds as the 
backend to our CoV-Spectrum dashboard.

Fig. 2 Components of an advanced variant query

2 There is an exception for queries that contain a negation.
3 Although the alternative might appear more intuitive in some cases, we believe that it cannot be efficiently computed. 
We have not proven it formally but we think that the complexity of the alternative semantics grows exponentially with 
the length of the query.
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We currently run the LAPIS instance for SARS-CoV-2 data from GISAID on an AWS 
r5.8xlarge server (256 GB RAM, 32 vCPUs).4 Between 25 January5 and 4 February 
2023, it processed over 20 million requests with a mean response time of 411 ms and a 
median response time of 1 ms (Table 2). This low median response time was possible 
because 72% of all responses had been cached (“section Caching”), which greatly reduces 
response time (Fig. 4). Altogether, 83% of requests to the SARS-CoV-2 instance of LAPIS 
were processed within 500 ms.

LAPIS often has to process many requests in parallel. It is quite common to have very 
few requests in one minute and over a thousand in the next (Fig. 3). The CoV-Spectrum 
collections are a major reason for that. In the user-defined collections, users can see 
information about many variants simultaneously. When a collection page is opened, 
the web application sends one request per variant to the server at the same time, and 
some collections (e.g., collection 246) have hundreds of variants. When we consider 
only requests that were executed when the server had less than 100 parallel requests 

Table 2 Empirical data on the usage and performance of the endpoints

Endpoint Number of requests Cache hit Response time 
(mean/median, 
in ms)

aa-insertions 34,212 (0.17%) 14.19% 654/254

aa-mutations 101,346 (0.49%) 20.86% 1050/267

aggregated 20,302,815 (98.85%) 72.66% 404/1

nuc-insertions 34,221 (0.17%) 14.20% 639/252

nuc-mutations 66,731 (0.32%) 24.32% 1203/266

Fig. 3 Number of requests within a day. Each bar represents one minute. In total, there were 208249 requests

4 https:// aws. amazon. com/ ec2/ insta nce- types/.
5 We only started logging the response times in the afternoon of 24 January 2023.
6 https:// cov- spect rum. org/ colle ctions/ 24.

https://aws.amazon.com/ec2/instance-types/
https://cov-spectrum.org/collections/24
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(that is the case for 79% of the requests), 97% of the requests were processed within 
500 ms (Fig. 5).

In summary, the computational efficiency of LAPIS makes it suitable as a back-end 
for other tools and websites, including responsive and interactive dashboards and work-
flows. LAPIS achieves computational efficiency through a newly-developed data pro-
cessing engine (see “section Data query engine”) that is optimized for genomic data. It 
can perform common operations like searching for nucleotide mutations and amino 
acid changes in millions of sequences and hundreds of gigabytes of data within tens to 
hundreds of milliseconds.

Discussion
The unique filtering, aggregation, and download functionalities supported by LAPIS, 
coupled with high computational efficiency, make LAPIS a key resource for the real-time 
analysis of genomic sequencing data from ongoing outbreaks. LAPIS is currently avail-
able for all openly accessible SARS-CoV-27 and mpox8 sequencing data on GenBank [3]. 
We also maintain a private SARS-CoV-2 instance with sequencing data from GISAID 
[11], which serves as the backend for our CoV-Spectrum dashboard.9

LAPIS’ SARS-CoV-2 instances highlight the value of this approach as dataset size 
grows. As of January 2023, more than 14,500,000 SARS-CoV-2 sequences are available 
on GISAID, reaching a size of over 400 GB. LAPIS is capable of querying this entire 
dataset efficiently, supporting an interactive user experience on our CoV-Spectrum 
dashboard. CoV-Spectrum mainly presents aggregated data: it visualizes temporal, geo-
graphic, and mutational distributions of variants through a large variety of charts, tables, 
and maps. It solely uses LAPIS for retrieving genomic data and thanks to the flexibility 

Fig. 4 Proportion of requests for the different response time bins, stratified by cache status

7 https:// lapis. cov- spect rum. org/ open.
8 https:// mpox- lapis. gensp ectrum. org.
9 https:// cov- spect rum. org.

https://lapis.cov-spectrum.org/open
https://mpox-lapis.genspectrum.org
https://cov-spectrum.org
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of LAPIS, it was possible to develop new features in CoV-Spectrum without the need of 
extending or adapting LAPIS.

With LAPIS’ mpox instance, we demonstrated the adaptability of the API approach. 
At the start of the mpox outbreak in 2022, within a few days of the release of the first 
sequence, we set up a LAPIS instance to support rapid sharing and easy access to open 
genomic data. It was accompanied by the MpoxSpectrum dashboard10 which, in addi-
tion to providing overview plots, enabled users to look up samples, download pre-pro-
cessed metadata and aligned sequences, and open them in the Nextclade tool. To use 
the Nextclade integration feature, users can select sequences of interest on the Mpox-
Spectrum dashboard and Nextclade will download the sequences from LAPIS for quality 
analysis. Further, just four hours after we publicized LAPIS for mpox on Twitter, Taxo-
nium announced the launch of a mpox service using LAPIS data as data source [17, 18].

These successes highlight that LAPIS fills a necessary role in addressing common chal-
lenges for accessing and analyzing genomic sequencing data. As demonstrated with 
mpox, LAPIS is easily extendable to other organisms. While supporting a new patho-
gen currently requires changes to the code base, we are actively working to generalize 
the LAPIS code to enable users to deploy instances with their own data and for other 
pathogens, possibly containing additional private metadata, via a configuration file. This 
will allow independent groups to run LAPIS instances for different use cases, akin to 
how Nextstrain publishes phylogenetic analyses for a limited number of pathogens but 
also provides the same analysis tools as an open-source resource for researchers to set 
up their own analyses. We hope to increase the incentive for data sharing in the public 
domain with this open-source philosophy: with the support of the API, researchers can 
directly analyze their own shared data within the global genomic context.

Fig. 5 Same as Fig. 4 but only for requests executed when the server has less than 100 parallel requests

10 https:// mpox. gensp ectrum. org.

https://mpox.genspectrum.org
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Going forward, we see great potential for database platforms such as GenBank to 
directly integrate APIs with functionalities like LAPIS’s into their framework. This 
avoids the necessity of hosting data in a second database and allows researchers to ben-
efit from functionality provided by an API such as LAPIS for many different organisms. 
On the research side, this requires developing techniques for efficiently querying even 
larger genomic data sets. The current implementation of LAPIS is capable of supporting 
up to around 20 to 30 million sequences of length 30kBp. We are working on better algo-
rithms to push this boundary.

Conclusions
In summary, we introduce an in-memory database engine for genomic sequencing data 
which can be accessed through an API. This framework facilitates the analysis of mil-
lions of sequences in real time, meaning users can interactively query and filter sequenc-
ing data. In particular, our framework supports the analysis of open genomic sequencing 
data and enables researchers and authorities to rapidly analyze the evolution and epide-
miology of pathogens for evidence-based public health response.

Methods
Data pre‑processing

For the three LAPIS instances we currently maintain, we download the raw data from 
GISAID (SARS-CoV-2) or Nextstrain which retrieved it from GenBank (SARS-CoV-2 
and mpox). The raw data contain the genomic (consensus) sequences and correspond-
ing metadata. We pre-process the data in two steps. During the first step, we clean up 
the metadata, align the sequences to a reference genome, and translate the nucleo-
tide sequences to protein amino acid sequences. For the alignment and translation, we 
use Nextclade [2] but other tools are equally applicable. The first step is not specific 
to LAPIS and can be replaced by alternative pipelines that produce an alignment and 
protein sequences. During the second step, we perform LAPIS-specific transforma-
tions and generate compressed columnar sequences (“section  Column-wise storage” 
and “Compression”). The pre-processed data are loaded into the in-memory database 
(“section Data query engine”) and exposed through a REST API. Figure 6 illustrates the 
workflow.

Fig. 6 Data pre-processing workflow
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We store the pre-processed data – both after the first and after the second step – in 
a PostgreSQL database. Hereby, the PostgreSQL database only serves as a background 
storage and can be easily replaced by the file system or a different database system. It is 
not crucial to the performance of LAPIS outside of the pre-processing pipeline because 
the in-memory database is used for evaluating the queries.

Data query engine

We developed a novel data query engine for our public web API that is tailored to sup-
port real-time, interactive genomic surveillance and genomic epidemiology. Specifically, 
it is designed to support high numbers of requests and fast query processing of genomic 
sequencing data. Our internal SARS-CoV-2 LAPIS instance based on GISAID data cur-
rently receives hundreds of thousands of requests per day, mostly from users of CoV-
Spectrum. At the same time, it must support interactive and exploratory analyses where 
the user is able to switch quickly between different variants, countries, and time periods 
by responding to most requests within tens to hundreds of milliseconds. Existing data-
base systems are not sufficient for this task.

Column‑wise storage

Our approach is based on techniques developed for column-oriented database systems 
[1]. In the pre-processing step, we transform the sequencing data into a columnar for-
mat. For each position in the aligned nucleotide sequence or in the aligned amino acid 
sequence, we construct a string with the characters of all sequences at that position 
(Fig. 7). The i-th character in the new, columnar sequence corresponds to the sequence 
with the ID i. To find sequences with a mutation at a given position, we then only need 
to read a single string and not filter through each sequence. The columnar sequences are 
easy to compress (“section Compression”), and by compressing them, we can cache them 
in memory and eliminate any disk and round-trip time to the database.

Filter insertions

The column store as described in the previous subsection can only store the aligned 
sequences. It has one column for each base of the reference genome but it cannot 
store insertions which are parts of a sequence that cannot be directly linked to the 

Fig. 7 Transformation of sequences to the columnar format: The row-oriented storage maintains one string 
per sequence; in contrast, the column-oriented storage keeps one string per position
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positions of the reference. To filter for insertions, LAPIS uses a dedicated insertion 
store which maintains for each position of the reference genome a mapping of inserted 
values to sequences with the insertion. E.g., a mapping of AAT GGC  at position 1000 to 
{sequence1, sequence2, sequence3} means that there are three sequences that 
have the insertion AAT GGC  between position 1000 and 1001.

To evaluate a query such as ins:1000:AAT? as described in “section  Filters and 
advanced variant queries”, LAPIS looks up the insertions at position 1000 and matches 
them against the requested pattern. For the SARS-CoV-2 data, this approach works well 
because insertions are rare, short, and not very diverse. For genomic data with many 
long and diverse insertions, this method is not very efficient.

Sequence downloads

To download whole sequences, LAPIS first filters the sequences with the in-memory 
query engine, fetches compressed sequences (“section  Compression”) from the back-
ground storage (“section Data pre-processing”), and decompresses them. If a large set of 
sequences should be downloaded, it fetches the sequences in small batches and streams 
them to the user to ensure a low memory footprint.

Discussion

The data engine was first deployed when there were around one million genomic 
sequences for SARS-CoV-2, and it still performs well for 15 million sequences today. 
It is a significant improvement to using common relational database systems which are 
not optimized for genomic sequencing data. The current algorithm is simple and easy 
to implement. However, it is also rather naive and not using state-of-the-art database 
engineering techniques. We are working on an improved version with reduced response 
times and higher throughput and look forward to sharing our results in the near future.

Data versions

To allow the user to use consistent data, each response of LAPIS contains the version of 
the data. The user can then check if the data versions of multiple requests are the same, 
and reload if that is not the case. The data version is provided in the HTTP response 
header LAPIS-Data-Version. For JSON responses, the data version is further given 
in the dataVersion field.

For example, this is relevant to compute the proportion of a variant in the sequencing 
data. For the calculation, we would fetch the number of sequences of the variant and the 
total number of sequences; that means that two API calls are required. In this case, data 
could be updated between the two calls which would lead to wrong results because the 
nominator and denominator to calculate the proportion are incompatible. Comparing 
the data versions of the two requests would prevent an error.

Caching

To minimize the response time for common requests, LAPIS caches the results of 
previously evaluated queries in a Redis database. Caching is usually a difficult task 
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due to the complexity to determine when a cache entry is stale. In the case of LAPIS, 
however, we have the advantage that we do not have a continuous stream of small 
data changes but perform rare (e.g., once a day) but big updates. This allows us to dis-
tinguish different versions of the data (“section Data versions”).

Each cached result is linked to a data version. If the user defines a data version in a 
request, and the result generated from the data of the specified version is in the cache, 
it can be returned immediately. If the user does not define a data version, LAPIS will 
check if the result for the most recent data version is cached. Figures  4 and 5 and 
Table 2 show the proportions of cache hits.

Compression

We compress the genome sequences before inserting them into the database. We 
use Zstd (level 3) [10] which gives us a good balance between compression ratio and 
speed. For the compression of the whole nucleotide and amino acid sequences, we use 
the respective reference sequence as the pre-defined dictionary to improve the com-
pression ratio. For the columnar sequences, a pre-defined dictionary is not needed 
for a good compression ratio as it is intrinsically easy to compress. We achieve a com-
pression ratio of 94% for the unaligned sequences, 99.3% for the aligned sequences, 
and 96% for the sequences stored in the column-oriented format.
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