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Abstract 

Background:  Clinical studies have shown that miRNAs are closely related to human 
health. The study of potential associations between miRNAs and diseases will contrib-
ute to a profound understanding of the mechanism of disease development, as well as 
human disease prevention and treatment. MiRNA–disease associations predicted by 
computational methods are the best complement to biological experiments.

Results:  In this research, a federated computational model KATZNCP was proposed 
on the basis of the KATZ algorithm and network consistency projection to infer the 
potential miRNA–disease associations. In KATZNCP, a heterogeneous network was 
initially constructed by integrating the known miRNA–disease association, integrated 
miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was 
implemented in the heterogeneous network to obtain the estimated miRNA–disease 
prediction scores. Finally, the precise scores were obtained by the network consist-
ency projection method as the final prediction results. KATZNCP achieved the reliable 
predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value 
of 0.9325, which was better than the state-of-the-art comparable algorithms. Further-
more, case studies of lung neoplasms and esophageal neoplasms demonstrated the 
excellent predictive performance of KATZNCP.

Conclusion:  A new computational model KATZNCP was proposed for predicting 
potential miRNA–drug associations based on KATZ and network consistency projec-
tions, which can effectively predict the potential miRNA–disease interactions. There-
fore, KATZNCP can be used to provide guidance for future experiments.

Keywords:  miRNA–disease associations, KATZ algorithm, Network consistency 
projection

Background
In recent years, the association of miRNAs with complex human diseases has been 
a research focus from a wide range of researchers. A large amount of data has been 
generated in the course of research, and researchers have established a large num-
ber of related databases, such as HMDD [1], miR2Disease [2], dbDEMC [3], miR-
Cancer [4], PhenimiR [5], OncomiRDB [6], OncomiRdbB [7], and MiREC [8]. These 
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databases provide a solid data for the study of disease-associated miRNAs, and a large 
number of computational methods have continuously emerged to predict the associa-
tion between miRNAs and diseases [9, 10]. The current computable prediction mod-
els can be broadly classified into two categories: prediction models driven by network 
and prediction models based on machine learning. The computational methods for 
disease-associated miRNA prediction are described from two perspectives.

The prediction model driven by a network is focused on building a network of rela-
tionships based on miRNAs, disease, proteins, and environmental factors [11]. From 
a general biological assumption, “functionally similar miRNAs are likely to be associ-
ated with phenotypically similar diseases, and vice versa” [12, 13]. The corresponding 
algorithm is designed on the basis of the topology of the relational network. Jiang 
et  al. [14] initially proposed a computational model of hypergeometric distribution 
for predicting the miRNA–disease association methods. The relationship between the 
regulatory target genes of miRNAs was used to construct miRNA functional simi-
larity networks. In 2010, Jiang et  al. [15] proposed an approach based on genomic 
data integration for predicting miRNA–disease associations. The abovementioned 
methods performed predictions based on miRNA–target associations. As the false 
positives of target genes were high, they cannot achieve high predictive performance. 
Afterward, a series of prediction methods was produced. For example, Xuan et  al. 
[16] proposed a prediction method HDMP based on k most similar neighbors (KNN) 
based on the hypothesis that miRNAs in the same miRNA family or subcluster may 
lead to similar diseases [17]. The prediction model was strongly dependent on the 
miRNA neighbor profile. In addition, Yang et  al. [18] and Chen et  al. [19] designed 
new KNN-based disease association ranking algorithms, namely, NBMDA and RKN-
NMDA. However, the prediction of these models was biased toward miRNAs with 
multiple known associated diseases.

Considering that global network similarity can improve the prediction accuracy 
more effectively than local network similarity, many scholars adopted the global simi-
larity approach to make predictions. In 2013, Zhang et  al. [20] proposed a method to 
predict miRNA–disease associations using the network consistency NetCBI. Chen et al. 
also proposed a series of miRNA–disease association methods by calculating the Tul-
apras score to obtain consistent network similarity [21–23]. Randomized wandering 
algorithms with restart were used for miRNA–disease association prediction by many 
researchers [24]. In 2012, Chen et al. [25] first proposed a random walk association pre-
diction model, RWRMDA, based on global network. This method cannot predict iso-
lated diseases (diseases without any known association) and new miRNAs (miRNAs 
without any known association). Xuan et  al. [26] designed a computational model, 
namely, MIDP, based on the random walk algorithm. MIDP can travel randomly in the 
miRNA–disease bidirectional network, thereby allowing for the prediction of isolated 
diseases. Chen et al. also designed two miRNA–disease prediction models with restart 
randomized walk algorithms [27, 28]. Luo et al. [29] hypothesized the potential miRNA–
disease association by searching for bipartite graph subgraphs and implementing an 
unbalanced dual random walk algorithm on a heterogeneous network. Most of these 
methods cannot address the problem of searching for optimal parameters, and their pre-
dictions were overly dependent on known miRNA–disease associations.
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In recent years, many researchers have attempted to predict miRNA–disease associa-
tions from the perspective of graph topology [30]. Chen et  al. [31] constructed a het-
erogeneous map approach to predict the miRNA–disease association in the HGIMDA 
model. You et  al. [32] proposed a pathway-based miRNA–disease association predic-
tion method (PBMDA). Zhao et al. [33] developed a distance-related set-based predic-
tion model (DCSMDA). Zeng et  al. [34] proposed a multi-pathway miRNA–disease 
association prediction method. Chen et  al. [35] developed a miRNA–disease associa-
tion prediction model (BHCN) based on the dichotomous network common neighbors, 
achieving good prediction results. Zhang et al. [36] and Yu et al. [37] applied the meta-
pathway theory to the field of disease-associated miRNA prediction. Many researchers 
have also achieved good prediction results using the KATZ algorithm [38–40]. The pre-
diction effect of such methods based on the graph theory was also biased for miRNAs 
with more known associations, and the parameter selection problem of some models 
remained unsolved.

Recently, the application of the machine learning method in the field of disease-associ-
ated miRNA prediction reached highlight [41]. For example, Liu et al. [42] constructed a 
prediction model (RNSSLFN) based on reliable negative sample selection and improved 
a single-hidden-layer feedforward neural network. Chen et al. [43] proposed a predic-
tion method (EGBMMDA) using extreme gradient lifters. Zhang et al. [44] designed a 
deep learning model (VAEMDA) using a variational self-encoder. Li et al. [45] designed 
a graph autoencoder model (GAEMDA). Liu et al. [46] proposed a deep forest ensem-
ble learning method (DFELMDA) based on self-encoder. Ji et  al. [47] designed a self-
variational auto-encoder model based on SVAEMDA. Wang et  al. [48] and Liu et  al. 
[49] designed the prediction models SAEMDA and SMALF with stacked auto-encoder, 
respectively. ER et  al. [50] improved the miRNA–disease association prediction accu-
racy by the ensemble similarity information and deep auto-encoders. Peng et  al. [51] 
designed a prediction model EKRRMDA by using ensemble learning and kernel ridge 
regression. Chen et al. [52] designed a prediction model DBNMDA based on deep-belief 
network. Xuan et al. [53] constructed a generative adversarial model GMDA using con-
volutional self-encoders and multilayer convolutional neural networks. Although neural 
network methods have been applied and have achieved some results in this field, the 
following problems exist: First, in feature extraction, the rich structural information 
contained in the heterogeneous biological network is ignored, resulting in low-quality 
feature representation, thereby leading to overfitting or underfitting; second, as positive 
and negative samples in training samples are required in most models, selecting negative 
samples for prediction models constructed on the basis of supervised learning is diffi-
cult; third, such models still lack interpretability because of the nonlinear nature of the 
model architecture.

Semi-supervised learning methods can overcome the limitation of negative samples 
requirements for training. For example, Chen et  al. [54] developed a semi-supervised 
model RLSMDA based on regularized least squares. Huang et al. [55] constructed a pre-
diction model LRSSLMDA based on Laplace regularized sparse subspace learning. Peng 
et al. [56] proposed a new information fusion strategy RLSSLP based on the regulariza-
tion framework. However, these methods cannot be used to set the initial values and 
select model parameters during optimization iteration.
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Matrix factorization was also used to predict disease–miRNA associations [57–60]. 
For example, Zeng et al. [61] proposed a miRNA–disease association prediction method 
through a matrix complementation algorithm, which provided a new idea to address 
problems such as insufficient data on known miRNA–disease associations. Li et al. [62] 
constructed a prediction model MCMDA by matrix completion algorithm. Based on 
MCMDA, Chen et al. designed a modified model IMCMDA [63] and NCMCMDA [64]. 
In addition, a series of improved models have emerged, such as the improved inductive 
matrix complementary model (IIMCMP) [65], IMDN model with the addition of biased 
network regularities [66], neural induction matrix complementation method model 
(NIMGSA) combined with graph auto-encoder and self-attention mechanism [67], 
matrix complementation algorithm and label passing algorithm model (MCLPMDA) 
[68], miRTMC model combining the matrix complementation algorithm with kernel 
parametric regularized linear least squares under non-negative constraints [69], and 
DLRMC combining matrix complementation algorithm with double Laplace regulariza-
tion [70]. These improvements enabled the matrix decomposition model to be scalable. 
The specific implementation and solution were concise. Such improvements can con-
tribute to solving the sparsity of heterogeneous biological data networks. Some limita-
tions can still be found in such methods. First, some of the models proposed initially, 
such as MCMDA, cannot predict the potential miRNAs associated with the isolated dis-
eases. Second, a local optimal solution was often obtained through the gradient descent 
method used in the optimization of some algorithms. Thus, further optimization of 
algorithms must be further explored. Third, the optimal parameter selection problem of 
many models has not been solved well.

Given the abovementioned ideas from recent literature, a computational model, 
namely, KATZNCP, was proposed to discover potential miRNA–disease associations in 
this paper. As for KATZNCP, the known disease–miRNA association information was 
initially used to calculate the Gaussian kernel spectral similarity between diseases and 
miRNAs. Then, the semantic interaction network and Gaussian interaction profifile ker-
nel similarity among diseases were integrated to construct an integrated disease similar-
ity network. The functional similarity network and Gaussian kernel spectral similarity 
among miRNAs were integrated to construct an integrated miRNA similarity network. 
Afterward, the known disease–miRNA association network, the integrated disease-
semantic similarity network, and the integrated miRNA functional similarity network 
were constructed into a heterogeneous network. The KATZ algorithm was implemented 
in the heterogeneous network to obtain the initial prediction scores of disease–miRNA 
associations. Finally, the miRNA–disease associations were refined and predicted by 
network consistency projection. The high miRNA–disease relationship score obtained 
by KATZNCP calculations indicated the high likelihood of their association. The 
KATZNCP model first synthesized disease-miRNA association, disease and miRNA into 
a heterogeneous network, then implements the KATZ algorithm to collect the best local 
information in that heterogeneous network. And finally, obtain the global information 
of these three networks by network space projection. The steps above prevented pre-
diction results biased towards the known miRNAs while keeping the model available to 
the prediction of isolated diseases and new miRNAs. It grants a notable solution with 
simple algorithm, single parameter and low time complexity. Solve the problems exist 
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in current state-of-the-art model in a good way.In evaluating the performance of our 
proposed method, the LOOCV was adopted to verify its pre-performance. The com-
parison of the four state-of-the-art methods using the same type of data revealed that 
KATZNCP had an AUC of 0.9325, which was higher than that of the other methods. 
In addition, the AUCs calculated by the KATZNCP model for the cross-validation of 
isolated diseases and new miRNAs were 0.8256 and 0.8351, respectively, which further 
indicated the excellent predictive performance. In validating the actual application of 
KATZNCP, lung neoplasms and esophageal neoplasms were selected for a case study. 
The results show that among the top 50 predicted miRNAs, 50 and 47 were confirmed 
by relevant databases to be associated with lung neoplasms and esophageal neoplasms, 
respectively. For the case study of isolated diseases, 50 and 49 of the top 50 predicted 
miRNAs were confirmed by relevant databases to be associated with lung neoplasms 
and esophageal neoplasms, respectively. The partial miRNAs that were supported by 
available data for validation were not obtained. Evidence of their association with disease 
was also found in the latest repertoire of relevant literature, demonstrating the good pre-
dictive performance of our model KATZNCP.

Materials and methods
Method overview

In predicting the potential miRNA–disease assocation, a new prediction model 
KATZNCP was proposed, which consisted of three stages. The detailed inference steps 
are shown in the flowchart in Fig. 1.

Step 1 Data preparation. First, the known miRNA–disease association prediction data 
and the disease semantic similarity data were downloaded from relevant databases. 
Then, miRNA functional similarity relationships and Gaussian interaction profifile ker-
nel similarity relationships were calculated. Finally, the integrated disease similarity net-
work and integrated miRNA similarity network were constructed.

Step 2 Association score estimation prediction. Three heterogeneous networks of 
known miRNA–disease association prediction data, integrated disease similarity net-
work, and integrated miRNA similarity network were constructed as one network. The 

Fig. 1  The overall architecture of KATZNCP
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KATZ algorithm was implemented to obtain the estimated miRNA–disease association 
prediction scores.

Step 3 Association score refinement prediction. The integrated disease similarity 
network was projected into the prediction network. The integrated miRNA similarity 
network was projected into the prediction network. The two results were weighted to 
obtain the final miRNA–disease association prediction scores.

Known miRNA–disease associations

In order to fairly evaluate the performance of the models. Benchmark datasets were 
employed during the experiments. Specifically, the known miRNA–disease associations 
dataset was downloaded from HMDD v2.0 (http://​www.​cuilab.​cn/​hmdd).​As a result, 
5430 clinical or experimental verified miRNA–disease associations between 495 miR-
NAs and 383 diseases were obtained after screening. Detailed associations were rep-
resented by a Boolean matrix MD, if there is an association between miRNA mi and 
disease dj , corresponding value MD (i,j) would be set to 1, otherwise set to 0.

Semantic similarity calculation of disease

According to the hierarchical information of diseases in MeSH (Medical subject Head-
ings) [1], the relationship between different diseases can be described as a directed acy-
clic graph (DAG). For any disease d, it’s DAG could be represented as DAG(d) = (N(d), 
E(d)), where N(d) represents the disease d’s ancestor node set (including disease d itself ), 
E(d) represents the related connection. Many scholars use this as a basis to calculate the 
similarity between diseases. Wang et  al. [70] proposed a disease similarity calculation 
method based on semantic information which accepted an assumption that if two dis-
eases share more disease (common ancestor) entries, the similarity between the two dis-
eases will be greater. At this time, the contribution value of disease d′s ancestor node da 
to disease d was expressed by the following formula:

Based on formula (1), the semantic value DV(d) of disease d was defined as:

Finally, the semantic similarity between diseases A and B was constructed as follows:

Named the relationship matrix between diseases calculated by formula 3 as DD1.

Xuan et  al. [15] proposed another calculation method for calculating the seman-
tic similarity of diseases. This method expresses the contribution value of the disease’s 
ancestor nodes to the disease as follows:

(1)Dd(da) =
1 if da = d
max 0.5 ∗ Dd d′a |d′a ∈ children of da if da �= d

(2)DV (d) =
∑

da∈N (d)

Dd(da)

(3)DD1
(

i, j
)

=

∑

dt∈N (di)∩N(dj) Ddi(dt)+ Ddj (dt)

DV (di)+ DV
(

dj
)

http://www.cuilab.cn/hmdd).As
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Substituting Formula (4) into Formula (2) and Formula (3), named the relationship 
matrix between diseases calculated as DD2.

Functional similarity calculation of miRNA

Based on the hypothesis that functionally similar miRNAs were likely to be associated 
with semantically similar diseases and vice versa, Wang et al. [17] calculated the func-
tional similarity of miRNA through the disease semantic similarity and known miRNA–
disease associations. The same method was used to calculate the functional similarity of 
miRNAs.

For any two miRNAs, the set of diseases associated with them was 
denoted as two vectors D(mi) =

{

d1, d2, . . . , dm′

}

=
{

di′
}

m
⊂ D and 

D(mj) =
{

d1′′ , d2′′ , . . . , dn′′
}

=
{

dj′′
}

n
⊂ D The functional similarity of miRNA mi and 

miRNA mj was calculated as follows:

where m and n are denoted as the number of diseases associated with miRNA mi and 
miRNA mj , respectively. S

(

di′ , D
(mj)

)

 represents the degree of association between a 

given disease di′ and a given set of diseases D(mj) . The calculation was as follows:

In addition, matrices MM1 and  MM2 were used to denote the miRNA functional simi-
larity matrices obtained by DD1 and DD2 calculations, respectively.

Gaussian interaction profifile kernel similarity calculation

Upon measuring the similarity among diseases through the disease semantic similarity, 
the semantic similarity among various diseases was set as 0 if the data between two dis-
eases were missing. In reducing the impact of this factor on the prediction performance, 
Gaussian kernel function [71] was applied to the network of association relationships 
among topologies of bioinformatics nodes. The specific calculation is shown in Eq. (3).

where MD(:, i) is the i-th column of the known miRNA–disease association matrix MD . 
Parameter γd represents the control kernel bandwidth of Gaussian interaction spectrum 
kernel similarity. It is calculated using the following equation [71]:

(4)Dd(da) = − log

(

the number of N (d)

the number of disease

)

(5)mmij =

∑

dt∈D(
mi) S

(

dt ,D(
mj)

)

+
∑

dt∈D

(

mj

) S
(

dt ,D
(mi)

)

m+ n

(6)S
(

di′ ,D
(mj)

)

= max

dt∈D

(

mj

)

(ddi′t)

(7)GD
(

i, j
)

= exp
(

−γd � MD(:, i)−MD
(

:, j
)

�2
)
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The similarity of the Gaussian interaction spectrum kernel among miRNAs can be cal-
culated using the same method.

MD(i, :) is the i-th row of the matrix MDnm×nd . Parameter γ1 can be obtained by the fol-
lowing equation [71]:

Integrated similarity construction

As mentioned previously, the disease semantic similarity, miRNA functional similarity, and 
miRNA (disease) Gaussian interaction kernel spectral similarity were obtained. By integrat-
ing the complementary information from multiple data sources, an integrated similarity 
approach was used to quantify the similarity of each miRNA (disease) pair, addressing the 
sparsity of the original similarity matrix. The calculation was as follows:

Association score estimation prediction

Based on the previously constructed integrated miRNA (disease) similarity, the Katz 
method was used to obtain the predicted scores estimation of miRNA–disease associa-
tions. The Katz method was successfully applied in social network relationship prediction, 
which calculated the similarity among nodes through the number of walk paths with dif-
ferent step lengths between two nodes. First, a heterogeneous network of miRNA–disease 
relationships was constructed by using the integrated miRNA–miRNA similarity network, 
the known miRNA–disease association network, and the integrated disease–disease simi-
larity network. Then, the miRNA–disease associations were predicted on the heterogene-
ous network using the Katz method. The adjacency matrix of the heterogeneous network 
was expressed as follows:

Then, the association between miRNAs and diseases was expressed by calculating the 
number of paths of different lengths among nodes:

(8)γd =
1

1
nd

∑nd
i=1 �MD(:, i)�2

(9)GM
(

i, j
)

= exp
(

−γl
∥

∥MD(i, :)−MD
(

j, :
)
∥

∥

2
)

(10)γl =
1

1
nm

∑nm
i=1 �MD(i, :)�2

(11)ID
(

i, j
)

=

{

DD(i,j)+DD2(i,j)
2

dianddj have semantic similarity

GD
(

i, j
)

otherwise

(12)IM
(

i, j
)

=

{

MM1(i,j)+MM2(i,j)
2

mi and mj have functional similarity

GM
(

i, j
)

otherwise

(13)A =

[

IM MD

MDT ID

]
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where β is a non-negative constant used to control the influence of different path lengths, 
within a range of values 

(

0,min
{

1, 1/A2

})

 . k indicates the final maximum path length 
obtained. When k tended to infinity, the above equation can be approximated as follows:

where I is the unit matrix. skatz corresponds to the upper right corner matrix of matrix 
A. MDe is the prediction matrix of miRNA and disease.thus,it have the same structure 
as A(Shown in formula(13)). MDe is the prediction matrix of miRNA and disease which 
is the upper right submatrix of matrix skatz that quivalent to the relationship of MD with 
respect to A.

Association score refinement prediction

The accurate prediction scores for miRNA–disease associations calculated by the 
KATZNCP model consisted of two network-consistent projection scores. One was the 
spatial projection score of miRNAs and the other was the spatial projection score of dis-
eases. The calculation process was described by calculating the association prediction 
score between miRNA mi and disease dj.

Assuming that the spatial vector formed by the similarity scores of miRNA mi with 
other miRNAs (including miRNA mi itself ) in the integrated miRNA–miRNA similar-
ity network IM was represented as IM(i, :) (the ith row of matrix IM), the spatial vec-
tor formed by miRNAs associated with disease dj in the miRNA–disease predicted score 
matrix MD was represented as MDe

(

:, j
)

 (the jth column of matrix MDe ). In the miRNA 
space, the vector IM(i, :) represents the relationship between miRNA mi and all miRNAs, 
the vector MDe

(

:, j
)

 represents the relationship between diseases dj and all miRNAs. 
Therefore, the similarity of the variation law could be characterized by the projection of 
IM(i, :) on vector MDe

(

:, j
)

 , which is called as space consistency projection score based 
on miRNAs. The calculation formula is as shown below:

where MDe

(

:, j
)

  is the two norms of MDe.
The consistency projection score based on the disease space can be obtained by using 

the same method.

where MDT
e

(

:, j
)

 is the two norms of MDT
e .

Finally, the miRNA space consistency projection score and disease space consistency 
projection score were integrated by using Eq. (13) to form the final prediction score.

(14)skatz(A)ij =

k
∑

l=1

β l
(

Al
)

ij

(15)skatz =
∑

l>1

βlAl = (I− βA)−1 − I

(16)MDpm

(

i, j
)

=
IM(i, :)×MDe

(

:, j
)

MDe

(

:, j
)

(17)MDpd

(

i, j
)

=
ID

(

j, :
)

×MDT
e (:, i)

MDT
e (:, i)
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Results
Evaluation metrics

In order to systematically evaluate the performance of KATZNCP as well as other com-
parative methods, A leave-one-out cross-validation (LOOCV) was employed to test the 
predictive performance of the model. Specifically, one miRNA–disease association was 
selected as a test sample and all other miRNA–disease associations were regarded as 
training samples. Repeat these procedure until all miRNA–disease associations were 
used as a test sample once. The prediction effect was expressed by the receiver operating 
characteristic (ROC) curve, and the accuracy was quantified by the area under the ROC 
curve (AUC).ROC curve is a comprehensive indicator reflecting sensitivity (Sensitivity) 
and specificity (Specificity). The ROC curve reveals the relationship between sensitivity 
and specificity in a graphical way. By setting different thresholds, a series of correspond-
ing sensitivities and specificities are calculated. Then draw a curve with the true positive 
rate (True positive rate, TPR, sensitivity or sensitivity) as the vertical axis and the false 
positive rate (False positive rate, FPR or 1-Specificity) as the horizontal axis. The calcula-
tion methods of TPR and FPR are as follows:

which TP (True Positive) refer to the number of positive samples that are correctly pre-
dicted, that is, the number of positive samples that are predicted as positive samples; FP 
(False Positive) refer to the number of positive samples that are incorrectly predicted, 
that is,the number of negative samples predicted as positive samples; TN (True Nega-
tive) refer to the number of negative samples correctly predicted, that is, the number of 
negative samples predicted as negative samples; FN (False Negative) refer to The num-
ber of mispredicted negative samples, that is, the number of positive samples that were 
predicted as negative samples. Considering that we have no confirmed negative samples, 
we used an alternative.First obtain the upper and lower bounds of the threshold accord-
ing to the prediction results.Then determine a set of thresholds accordingly. For any cer-
tain threshold, if the predicted value is greater than the threshold, the prediction will be 
considered as positive, otherwise the forecast will be considered as negative.

Effect of parameter selection

In equation skatz =
∑

l>1

βlAl = (I− βA)−1 − I , the value of parameter β was associated 

with the prediction effects. In ensuring the convergence of the series, the value of β shall 
be smaller than the inverse of the maximum eigenvalue of the adjacency matrix A. In 
obtaining the optimal parameter β , β was set to β = α × 1/eigA (eigA was the maximum 

(18)MD∗ =
MDpm +MDT

pd

2
.

(19)TPR =
TP

TP+ FN

(20)FPR =
FP

FP+ TN
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characteristic root of matrix A). Then, with steps of 0.1 and increment of α from 0 to 0.9, 
10 LOOCV were to calculate the AUC values. The experimental results obtained by 
implementing LOOCV are shown in Fig.  2a The results showed that when α = 0, the 
equation was degenerated to skatz = 0 , indicating that KATZNCP had no prediction 
capability. When α was increased from 0.1 to 0.9, AUC gradually decreased. AUC 
reached the maximum at 0.9316 when α was 0.1, followed by 0.9299 when α = 0.2 . Then, 
the steps were taken as 0.01 to obtain more accurate weighting parameters. α was gradu-
ally increased from 0 to 0.2. Then, LOOCV was performed again. The obtained results 
are shown in Fig. 2b. The calculated AUC values fluctuated from 0.9299 to 0.9316. When 
α ranged between 0.01 and 0.05, AUC fluctuated to approximately 0.9320. AUC reached 
the maximum at 0.9325 when α was 0.02. When α gradually increased from 0.05 to 0.2, 
the AUC value gradually decreased from 0.9316 to 0.9299. Therefore, 0.02 was finally 
selected as the value of α.

Comparison with state‑of‑the‑art methods

Similar to the data resources used by KATZNCP, prediction models with excellent pre-
diction results consisted of MDHGI [72], NSEMDA [73], RFMDA [74], and SNMFMDA 
[75]. These methods were selected for comparison with KATZNCP. Figure 3 shows the 
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Fig. 2  a the value of the AUC when α was increased from 0 to 0.9. b the value of the AUC when α was 
increased from 0 to 0.2
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LOOCV results of each model, with AUC values of 0.8945, 0.8899, 0.8891, 0.9007, and 
0.9325 for MDHGI, NSEMDA, RFMDA, SNMFMDA, and KATZNCP, respectively. 
KATZNCP showed the best prediction results, which was 4.25%, 4.79%, 4.88%, and 
3.53% higher than MDHGI, NSEMDA, RFMDA, and SNMFMDA, respectively. There-
fore, the prediction ability of KATZNCP was better than that of MDHGI and other 
models.

Validation of new miRNAs and isolated disease prediction capabilities

New miRNAs refer to miRNAs with unknown association information with disease. 
With the continuous improvement of miRNA recognition techniques, an increasing 
number of miRNAs were being identified. Inspired by Liang et  al. [76], here, another 
assessment metric was adopted to evaluate the predictive power of the model for new 
miRNAs, namely, leave one miRNA out cross validations (LOMOCV). In particular, one 
miRNA was selected as the test sample at one time. All diseases associated with this 
miRNA were removed before testing. Then, all candidate diseases were prioritized by 
using the information from other miRNA-associated diseases only, until all miRNAs had 
been validated as predicted samples.

Isolated diseases refer to diseases with unknown association information with miR-
NAs. Similar to the simulation of new miRNAs, all its associated miRNAs were removed 
for each isolated disease to simulate isolated diseases. All candidate miRNAs were prior-
itized by using the information from other disease-associated miRNAs, which is known 
as leave one disease out cross validations (LODOCV).

As shown in Fig. 4, the AUC of KATZNCP was 0.8256 under the LODOCV frame-
work and 0.8351 under the LOMOCV framework.

Case study

In demonstrating the predictive capability of our proposed model KATZNCP for dis-
ease-associated miRNA, two diseases, namely, lung neoplasms and esophageal neo-
plasms, were selected for case studies. All the prediction results were validated in the 
two independent databases, namely, HMDD v3.2 [77] and dbDEMC 2.0 [78].
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Lung neoplasm is a kind of malignant tumor with rapid progression and poor progno-
sis. Distant metastasis often occurred, which then led to death. The detection rate of this 
disease in the early stage was not high, which posed a great threat to people’s health [79]. 
The prediction of miRNA associated with lung neoplasms was of great practical signifi-
cance. For lung neoplasms, the top 50 miRNAs related to lung neoplasms predicted by 
KATZNCP have been supported in two data sets, namely, HMDD v3.2 and dbDEMC 
(Table 1).

Esophageal neoplasm is the eighth most common cancer worldwide. The effectiveness 
of treatment for esophageal cancer was largely dependent on its cause [80]. For esopha-
geal neoplasms, among the predicted top 50 miRNAs, 47 miRNAs have been supported 
in two data sets, namely, HMDD v3.2 and dbDEMC (Table 2). Only the supporting evi-
dence of hsa-mir-200b, hsa-mir-302b, and hsa-mir-302c cannot be found. However, evi-
dence of the association between hsa-mir-200b and esophageal neoplasms was found 
after searching other literature manually. For example, S. Kirkilevsky [81] found that the 
expression of miRNA-200b and ERCC1 in EC cells can be used to predict the aggressive-
ness of esophageal cancer, which was published in 2020. Yang et al. [18] predicted the 
relationship between hsa-mir-302b and esophageal neoplasms through computational 
method. The predictive power of KATZNCP was further confirmed by the aforemen-
tioned evidence. Although no current medical trials have shown that the two miRNAs, 

Table 1  The top 50 lung neoplasm-related miRNAs

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-16 HMDD, dbDEMC 26 hsa-mir-152 HMDD, dbDEMC

2 hsa-mir-151a dbDEMC 27 hsa-mir-194 HMDD,dbDEMC

3 hsa-mir-130a HMDD, dbDEMC 28 hsa-mir-215 HMDD, dbDEMC

4 hsa-mir-302b HMDD, dbDEMC 29 hsa-mir-92b dbDEMC

5 hsa-mir-708 HMDD, dbDEMC 30 hsa-mir-367 dbDEMC

6 hsa-mir-193b dbDEMC 31 hsa-mir-129 HMDD, dbDEMC

7 hsa-mir-99a HMDD, dbDEMC 32 hsa-mir-302d dbDEMC

8 hsa-mir-429 dbDEMC 33 hsa-mir-449a dbDEMC

9 hsa-mir-149 HMDD, dbDEMC 34 hsa-mir-23b dbDEMC

10 hsa-mir-302c dbDEMC 35 hsa-mir-328 HMDD, dbDEMC

11 hsa-mir-106b HMDD, dbDEMC 36 hsa-mir-320a dbDEMC

12 hsa-mir-141 HMDD, dbDEMC 37 hsa-mir-345 dbDEMC

13 hsa-mir-451a HMDD, dbDEMC 38 hsa-mir-153 HMDD, dbDEMC

14 hsa-mir-625 dbDEMC 39 hsa-mir-452 dbDEMC

15 hsa-mir-15b dbDEMC 40 hsa-mir-130b HMDD, dbDEMC

16 hsa-mir-195 HMDD, dbDEMC 41 hsa-mir-339 dbDEMC

17 hsa-mir-15a HMDD, dbDEMC 42 hsa-mir-372 HMDD, dbDEMC

18 hsa-mir-378a dbDEMC 43 hsa-mir-196b HMDD, dbDEMC

19 hsa-mir-296 dbDEMC 44 hsa-mir-370 dbDEMC

20 hsa-mir-373 HMDD, dbDEMC 45 hsa-mir-342 HMDD, dbDEMC

21 hsa-mir-20b dbDEMC 46 hsa-mir-449b dbDEMC

22 hsa-mir-139 HMDD, dbDEMC 47 hsa-mir-122 HMDD, dbDEMC

23 hsa-mir-204 dbDEMC 48 hsa-mir-99b dbDEMC

24 hsa-mir-10a dbDEMC 49 hsa-mir-151b dbDEMC

25 hsa-mir-302a dbDEMC 50 hsa-mir-211 dbDEMC
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hsa-mir-302b and hsa-mir-302c, were related to esophageal neoplasms, biologists will 
conduct further experiments to uncover their potential relationship.

In testing the predictive performance of KATZNCP for isolated diseases, isolated dis-
eases were simulated by the same approach as that of LODCV. Alternatively, all miR-
NAs associated with the disease to be verified were deleted before KATZNCP was 
implemented. For lung neoplasm, 132 known associations between lung neoplasm 
and miRNAs were deleted. KATZNCP was used to predict the potential associations 
between miRNAs and lung neoplasm. All of the top 50 predicted miRNAs can be sup-
ported in HDMM3.2 and dbDEMC databases (Table 3). For esophageal neoplasms, 74 
known associations were deleted, and KATZNCP was used for prediction. Of the top 
50 predicted associations, 49 were supported in the databases HDMM3.2 and dbDEMC 
(Table 4). Only hsa-mir-200b was not demonstrated by either database. However, based 
on previous case analysis of common disease prediction, available studies showed a close 
relationship between hsa-mir-200b and esophageal neoplasms.

Discussion and conclusion
Considerable studies have shown that miRNAs play an important role in a wide range 
of biological processes. miRNAs are associated with the occurrence and development 
of many complex diseases. Many miRNAs are considered as the ideal biomarkers for 

Table 2  The top 50 Esophageal Neoplasms-related miRNAs

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-218 dbDEMC 26 hsa-mir-222 dbDEMC

2 hsa-mir-10b HMDD, dbDEMC 27 hsa-mir-7 HMDD, dbDEMC

3 hsa-mir-200b Unconfirmed 28 hsa-mir-224 dbDEMC

4 hsa-mir-18b HMDD, dbDEMC 29 hsa-mir-429 dbDEMC

5 hsa-mir-107 dbDEMC 30 hsa-mir-146b dbDEMC

6 hsa-mir-127 dbDEMC 31 hsa-mir-497 dbDEMC

7 hsa-let-7f dbDEMC 32 hsa-mir-221 dbDEMC

8 hsa-let-7d dbDEMC 33 hsa-mir-17 dbDEMC

9 hsa-mir-125b HMDD, dbDEMC 34 hsa-mir-30c dbDEMC

10 hsa-let-7g dbDEMC 35 hsa-mir-302c Unconfirmed

11 hsa-mir-135a dbDEMC 36 hsa-mir-24 dbDEMC

12 hsa-mir-142 dbDEMC 37 hsa-mir-181b dbDEMC

13 hsa-let-7i dbDEMC 38 hsa-mir-151a HMDD, dbDEMC

14 hsa-mir-16 dbDEMC 39 hsa-mir-629 dbDEMC

15 hsa-let-7e dbDEMC 40 hsa-mir-181a dbDEMC

16 hsa-mir-18a dbDEMC 41 hsa-mir-93 HMDD, dbDEMC

17 hsa-mir-124 HMDD, dbDEMC 42 hsa-mir-15b dbDEMC

18 hsa-mir-133b dbDEMC 43 hsa-mir-195 dbDEMC

19 hsa-mir-182 HMDD, dbDEMC 44 hsa-mir-1 dbDEMC

20 hsa-mir-302b Unconfirmed 45 hsa-mir-139 HMDD, dbDEMC

21 hsa-mir-199b dbDEMC 46 hsa-mir-708 dbDEMC

22 hsa-mir-125a dbDEMC 47 hsa-mir-338 dbDEMC

23 hsa-mir-9 dbDEMC 48 hsa-mir-138 dbDEMC

24 hsa-mir-106a dbDEMC 49 hsa-mir-193b dbDEMC

25 hsa-mir-191 dbDEMC 50 hsa-mir-194 HMDD, dbDEMC
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disease prevention, diagnosis, and treatment. Given the time consumption and intensive 
labor to verify the association between miRNA and disease through traditional biologi-
cal experiments, the prediction of the potential association between miRNA and disease 
through computational methods as an effective supplement to biological experiments 
has become a hot topic in bioinformatics.

In this paper, a new prediction model KATZNCP was proposed, which consisted 
of three stages: constructing accurate similarity network, obtaining miRNA–disease 
prediction score by KATZ algorithm, and obtaining two miRNA–disease refinement 
score by network consistency projection. Reasonable construction of the similarity 
relationship between disease and miRNA can improve the prediction accuracy of the 
computational method. In constructing a reasonable similarity relationship, Gauss-
ian kernel function was applied to the topological association relationship network 
among biological information nodes. The similarity of Gaussian kernel spectrum 
between diseases and miRNAs was calculated by experimentally verifying disease–
miRNA association information. Then, an accurate disease similarity network was 
constructed by integrating the experimentally verified disease-miRNA association 
information, semantic similarity network among diseases, and Gaussian interaction 
profifile kernel similarity information among diseases. An accurate miRNA similarity 

Table 3  The top 50 lung neoplasms-related miRNAs candidates predicted by KATZNCP with 
removed all known lung neoplasms-miRNAs associations and the confirmation of these associations

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-21 HMDD, dbDEMC 26 hsa-mir-34c HMDD, dbDEMC

2 hsa-mir-155 HMDD, dbDEMC 27 hsa-mir-182 HMDD, dbDEMC

3 hsa-mir-146a HMDD, dbDEMC 28 hsa-mir-218 HMDD, dbDEMC

4 hsa-mir-126 HMDD, dbDEMC 29 hsa-mir-210 HMDD, dbDEMC

5 hsa-mir-145 HMDD, dbDEMC 30 hsa-mir-133a HMDD, dbDEMC

6 hsa-mir-125b HMDD, dbDEMC 31 hsa-mir-34b HMDD, dbDEMC

7 hsa-mir-34a HMDD, dbDEMC 32 hsa-mir-205 HMDD, dbDEMC

8 hsa-mir-221 HMDD, dbDEMC 33 hsa-mir-146b HMDD, dbDEMC

9 hsa-mir-16 HMDD, dbDEMC 34 hsa-mir-124 HMDD, dbDEMC

10 hsa-mir-200b HMDD, dbDEMC 35 hsa-mir-200a HMDD, dbDEMC

11 hsa-mir-200c HMDD, dbDEMC 36 hsa-mir-148a HMDD, dbDEMC

12 hsa-mir-20a HMDD, dbDEMC 37 hsa-mir-183 HMDD, dbDEMC

13 hsa-mir-29a HMDD, dbDEMC 38 hsa-mir-223 HMDD, dbDEMC

14 hsa-mir-122 HMDD, dbDEMC 39 hsa-let-7b HMDD, dbDEMC

15 hsa-mir-17 HMDD, dbDEMC 40 hsa-mir-101 HMDD, dbDEMC

16 hsa-mir-199a HMDD, dbDEMC 41 hsa-mir-18a HMDD, dbDEMC

17 hsa-mir-196a HMDD, dbDEMC 42 hsa-mir-181a HMDD, dbDEMC

18 hsa-let-7a HMDD, dbDEMC 43 hsa-mir-92a HMDD, dbDEMC

19 hsa-mir-222 HMDD, dbDEMC 44 hsa-mir-214 HMDD, dbDEMC

20 hsa-mir-1 HMDD, dbDEMC 45 hsa-mir-9 HMDD, dbDEMC

21 hsa-mir-29b HMDD, dbDEMC 46 hsa-mir-133b HMDD, dbDEMC

22 hsa-mir-15a HMDD, dbDEMC 47 hsa-mir-142 HMDD, dbDEMC

23 hsa-mir-143 HMDD, dbDEMC 48 hsa-mir-195 HMDD, dbDEMC

24 hsa-mir-27a HMDD, dbDEMC 49 hsa-mir-15b dbDEMC

25 hsa-mir-31 HMDD, dbDEMC 50 hsa-let-7d HMDD, dbDEMC
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network was constructed by integrating the experimentally verified disease–miRNA 
association information, the functional similarity network among miRNAs, and the 
Gauss kernel similarity among miRNAs. Afterward, the integrated disease simi-
larity network, the integrated miRNA similarity network, and the known miRNA–
disease association were used to construct a heterogeneous network. The KATZ 
algorithm was applied on the heterogeneous network to obtain the initial associa-
tion score between miRNA and diseases. The calculated association scoring network 
of the initial score was projected into the integrated disease similarity network and 
integrated miRNA similarity network to obtain the consistency information among 
vectors. Then, the consistency projection scoring matrix based on the disease space 
and miRNA space was obtained. Finally, the two consensus prediction scores were 
weighted as the final miRNA–disease association prediction score. The predic-
tion model algorithm was simple in design and low in time complexity, and it can 
be applied to the prediction of isolated diseases and new miRNAs. Given the local 
information obtained in heterogeneous networks through KATZ and the global infor-
mation among the experimentally verified disease–miRNA association network, the 
integrated miRNA similarity network, and the integrated disease similarity network 
obtained through the consistency projection, the prediction results were ensured to 

Table 4  The top 50 esophageal neoplasms-related miRNAs candidates predicted by KATZNCP with 
removed all known esophageal neoplasms-miRNAs associations and the confirmation of these 
associations

Rank miRNA name Evidences Rank miRNA name Evidences

1 hsa-mir-21 HMDD, dbDEMC 26 hsa-mir-27a HMDD, dbDEMC

2 hsa-mir-146a HMDD, dbDEMC 27 hsa-mir-146b dbDEMC

3 hsa-mir-155 HMDD, dbDEMC 28 hsa-mir-133b dbDEMC

4 hsa-mir-125b HMDD, dbDEMC 29 hsa-mir-10b HMDD, dbDEMC

5 hsa-mir-126 HMDD, dbDEMC 30 hsa-mir-142 dbDEMC

6 hsa-mir-145 HMDD, dbDEMC 31 hsa-mir-34c HMDD, dbDEMC

7 hsa-mir-221 dbDEMC 32 hsa-mir-18a dbDEMC

8 hsa-mir-16 dbDEMC 33 hsa-mir-101 HMDD, dbDEMC

9 hsa-mir-200c HMDD, dbDEMC 34 hsa-mir-375 HMDD, dbDEMC

10 hsa-mir-34a HMDD, dbDEMC 35 hsa-let-7b HMDD, dbDEMC

11 hsa-mir-31 HMDD, dbDEMC 36 hsa-mir-107 HMDD, dbDEMC

12 hsa-mir-200b Unconfirmed 37 hsa-mir-9 dbDEMC

13 hsa-let-7a HMDD, dbDEMC 38 hsa-mir-182 HMDD, dbDEMC

14 hsa-mir-20a HMDD, dbDEMC 39 hsa-mir-223 HMDD,dbDEMC

15 hsa-mir-196a HMDD, dbDEMC 40 hsa-mir-210 HMDD,dbDEMC

16 hsa-mir-218 dbDEMC 41 hsa-mir-34b HMDD, dbDEMC

17 hsa-mir-1 dbDEMC 42 hsa-mir-181a dbDEMC

18 hsa-mir-17 dbDEMC 43 hsa-mir-24 dbDEMC

19 hsa-mir-222 dbDEMC 44 hsa-let-7d dbDEMC

20 hsa-mir-200a HMDD, dbDEMC 45 hsa-mir-92a HMDD, dbDEMC

21 hsa-mir-29a dbDEMC 46 hsa-mir-133a HMDD,dbDEMC

22 hsa-mir-143 HMDD, dbDEMC 47 hsa-mir-205 HMDD, dbDEMC

23 hsa-mir-148a HMDD, dbDEMC 48 hsa-mir-183 HMDD, dbDEMC

24 hsa-mir-124 HMDD, dbDEMC 49 hsa-let-7i dbDEMC

25 hsa-mir-199a HMDD, dbDEMC 50 hsa-mir-125a dbDEMC
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be unbiased to the miRNA with more known associations (Additional file  1, Addi-
tional file 2, Additional file 3).

In the case study, lung neoplasms and esophageal neoplasms were selected for experi-
mental study. Among the top 50 miRNA prediction related to corresponding diseases, 
the validation accuracy in HDMM3.2 and dbDEMC databases was 100% and 94%, 
respectively. For the prediction of isolated disease cases, 100% and 98% of the top 50 
miRNAs were confirmed by the two above mentioned databases. For some miRNAs 
without experimental verification, relevant correlation evidence was found in recent lit-
erature. The reliable prediction of KATZNCP provided insight into the identification of 
potential miRNA biomarkers and contributed to the future work on the involvement of 
miRNA in human disease mechanisms.
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