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Abstract 

Background: Closing gaps in draft genomes leads to more complete and continuous 
genome assemblies. The ubiquitous genomic repeats are challenges to the existing 
gap-closing methods, based on either the k-mer representation by the de Bruijn graph 
or the overlap-layout-consensus paradigm. Besides, chimeric reads will cause errone-
ous k-mers in the former and false overlaps of reads in the latter.

Results: We propose a novel local assembly approach to gap closing, called Reg-
Closer. It represents read coordinates and their overlaps respectively by parameters and 
observations in a linear regression model. The optimal overlap is searched only in the 
restricted range consistent with insert sizes. Under this linear regression framework, the 
local DNA assembly becomes a robust parameter estimation problem. We solved the 
problem by a customized robust regression procedure that resists the influence of false 
overlaps by optimizing a convex global Huber loss function. The global optimum is 
obtained by iteratively solving the sparse system of linear equations. On both simu-
lated and real datasets, RegCloser outperformed other popular methods in accurately 
resolving the copy number of tandem repeats, and achieved superior completeness 
and contiguity. Applying RegCloser to a plateau zokor draft genome that had been 
improved by long reads further increased contig N50 to 3-fold long. We also tested the 
robust regression approach on layout generation of long reads.

Conclusions: RegCloser is a competitive gap-closing tool. The software is available at 
https:// github. com/ csh3/ RegCl oser. The robust regression approach has a prospect to 
be incorporated into the layout module of long read assemblers.
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Background
Closing gaps in draft genomes, as an important step in the de novo assembly pipeline, 
remains a challenge due to the ubiquitous repetitive elements in genomes. Repetitive 
elements, as well as chimeric reads, cause ambiguities such as false alignments that dis-
rupt the local assembly in gaps. Particularly, it is very difficult to resolve the copy num-
ber of a tandem repeat whenever it occurs [1]. Third Generation Sequencing (TGS) 
technology is expected to resolve the repeat problem if its long reads can span the repeat 
regions. Nevertheless, many genomes have been or are still sequenced, partially or fully, 
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by Second Generation Sequencing (SGS) technology [2–5], due to its high accuracy, low 
cost, and wide availability. It is desirable to reconstruct, at least some, regions of repeti-
tive elements by the SGS reads. Notably, the insert size of paired-end or mate-pair reads 
carries genomic information that can be utilized to facilitate assembly.

Most existing gap-closing methods including Sealer [6], GapCloser [7], and GapFiller 
[8] are based on the de Bruijn graph (DBG) approach. Although DBG-based methods are 
computationally efficient, they cut reads into k-mers so that some genomic information 
in raw reads are lost. In contrast, the overlap-layout-consensus (OLC) approach such as 
Phrap [9] directly aligns the original reads to detect overlaps. But finding a Hamiltonian 
cycle in the overlap graph is generally NP-complete [10], and heuristic algorithms are 
error-prone to false overlaps caused by either repeats or chimeric reads.

In this paper, we propose a new local assembly approach, referred to as RegCloser, 
to closing gaps. When it searches overlaps between reads from a gap region, insert-size 
information is utilized to guide the pairwise alignment to reduce the ambiguities caused 
by repeats as well as the time complexities. Then, RegCloser adopts a linear regression 
model to represent the detected overlaps. The motivation is to assign a coordinate axis 
to the DNA sequence due to its natural linear structure. Thus, read positions on the 
genome are represented as coordinates to be estimated and overlaps are represented as 
observations on the read coordinates’ differences.

Under the linear regression framework, the local DNA assembly is formalized as a 
parameter estimation problem. The estimation can be solved by well-established robust 
statistical methods [11]. In RegCloser, we customize a two-step robust regression pro-
cedure. In Step 1, it finds the read locations and detects false overlaps simultaneously 
by computing a robust M-estimate, which minimizes the Huber loss function. The loss 
function is convex so that its global optimum can be achieved by an iterative algorithm. 
Each iteration is to solve a sparse system of linear equations. In the M-estimation, the 
influence function of any outlier is bounded. In Step 2, RegCloser eliminates the influ-
ences of the false overlaps by a trimmed least squares estimate.

We will illustrate how RegCloser resolves tandem repeats by a real data example. Tests 
on simulated and real sequence data show that RegCloser outperforms several other 
popular gap-closing methods, especially in the presence of tandem repeats. Its applica-
bility to TGS data is shown as well.

Methods
Overview of RegCloser

The scheme of RegCloser is illustrated in Fig. 1. RegCloser starts off by mapping input 
reads, SGS paired-end or mate-pair reads, onto the draft genome. Then, it collects reads 
from each gap region (Fig. 1a), and performs local assembly to close gaps (Fig. 1b–e). 
RegCloser tackles the problem of false overlaps resulted from repeats or chimeric reads 
by two key ideas. First, in the context of gap closing, each read from the gap region 
has a prior genomic position inferred from the insert size. Rather than an all-against-
all pairwise alignment, RegCloser utilizes the prior positions to guide pairwise align-
ment (Fig. 1b) for overlap detection. In this way, false overlaps in the collecting step are 
substantially reduced. Second, RegCloser adopts a robust regression approach to esti-
mate the reads’ genomic positions, which can detect the remaining false overlaps and 
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eliminate their influences (Fig. 1c, d). Then, the reads are placed at their estimated posi-
tions in the gap, resulting in a multiple sequence alignment on which the consensus 
sequence in the gap is determined (Fig. 1e).

Fig. 1 Pipeline of RegCloser. a Align the input paired-end or mate-pair reads onto the draft genome, and 
collect the reads falling in the gap regions. b An illustrative example of insert-size guided pairwise alignment 
for overlap detection in a gap containing a triple tandem repeat ‘GAA CCC T’. First, on the axis corresponding 
to the DNA sequence in the gap, the collected reads are placed at their prior positions, which are inferred 
from their mate position and the insert size. The prior positions of reads ④ and ⑤ are 11 and 16. Notably, 
two pseudo reads, ① and ⑨, generated from the contig ends flanking the gap are added. Then, a pair of 
reads are aligned only when their prior positions are close, taking into account the variation of insert sizes. 
If an alignment is statistically significant, it is marked by yellow parallel lines between bases as well as by 
double-headed arrows between reads. The tandem repeat causes a false overlap between reads ④ and 
⑥, as indicated by the red double-headed arrow, resulting in an outlier in the latter regression model. The 
repeat also leads to two different significant alignments between reads ④ and ⑤, respectively marked by 
the yellow solid and dotted lines. In this case, RegCloser will select the alignment more compatible with the 
prior positions (solid line), rather than the highest-scoring one (dotted line). c The linear regression model 
of genome assembly. The reads’ real positions on the gap axis are represented as parameters βi (1 ≤ i ≤ n) 
to be estimated. Each detected overlap between reads i  and j  provides an observation on the difference 
between βi and βj : y(i,j) = βj − βi + ε(i,j) . ε(i,j) is the observational error, which is normally caused by 
sequencing errors on the DNA fragment between βi and βj . False overlaps cause outliers, which have 
abnormally large |ε(i,j)| . All the observations in a gap are integrated into the matrix form Y = Xβ + ε . d A 
two-step robust regression estimation of the model parameters. ρH is the Huber loss function. Io is the index 
set of observations with large residuals and identified as potential outliers. e Generate multiple sequence 
alignment of the collected reads by their estimated positions, and determine the gap sequence as the 
consensus between the two pseudo reads ① and ⑨. As a result, the triple tandem repeat is recovered by 
RegCloser
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Preprocessing

In the preprocessing stage, RegCloser first maps paired sequencing reads onto the 
draft genome using BWA [12]. Then, the mapped positions of the paired reads on 
adjacent contigs are used to estimate gap sizes. Next, RegCloser collects reads that 
are inferred to originate from the gap regions (Fig. 1a), and estimates their prior posi-
tions in the gap by the insert size. Specifically, let µ and v be respectively the mean 
and standard deviation of the library insert size. For a read pair, if the left (respec-
tively right) read is uniquely mapped within µ+ 3v bases from the left (respectively 
right) breakpoint of a gap, the mate read is inferred to come from the gap region with 
high confidence and is thus collected. In what follows, RegCloser assembles the col-
lected reads from each gap in parallel.

Overlap detection by insert‑size guided pairwise alignment

We first set a coordinate axis along the gap from left to right, and the left breakpoint 
of the gap is defined as the origin (Fig. 1b, c). Then we represent the genomic position 
of read ri ( 1 ≤ i ≤ n ) by the coordinate of its ending base, denoted by βi . Although 
the true value of βi is an unknown parameter, its prior genomic position, denoted by 
pi , can be inferred from the insert size and the mapping position of the mate read on 
the flanking contig (Additional file 1: Fig. S1). The prior genomic positions guide the 
pairwise alignment to obtain more accurate and efficient overlap detection (Fig. 1b) in 
two aspects:

(i) RegCloser aligns two reads ri and rj only if their prior genomic positions are close 
to each other, i.e., |pi − pj| < �d , where �d is a threshold depending on the standard 
deviation of the insert size (Additional file  1: Note S1). By choosing an appropriate 
�d , we not only avoid false overlaps between reads that come from distant regions on 
the genome, but also reduce the time complexity of pairwise alignments from quad-
ratic to linear (Additional file 1: Note S2). In the illustrative example shown in Fig. 1b, 
where reads ①–⑨ are placed along the gap axis at their prior genomic positions, we 
set �d = 11 . That is, two reads are aligned only if their prior genomic positions are 
within a distance of 11 bp. Consequently, the false overlap “AACCC” between reads 
② and ⑦ is avoided, and the total number of pairwise alignments is reduced to 14 
from 36, which is required by the all-against-all strategy.

(ii) Two overlapping reads may have more than one significant alignment, par-
ticularly when they come from tandem repeats. RegCloser implements an extended 
Smith & Waterman algorithm [13] to find all the significant overlap patterns between 
two reads, and selects the one most compatible with the reads’ prior genomic posi-
tions. In the example shown in Fig. 1b, the two reads ④ and ⑤ actually come from 
a triple tandem repeat and can be aligned in two ways. RegCloser selects the correct 
alignment indicated by the solid line, which is closer to the relative position of p4 and 
p5 , rather than the dotted one, even though it has a higher alignment score.

A real example in “Section  RegCloser’s rationale of resolving the tandem repeat” 
will show that the above insert-size guided pairwise alignment indeed greatly reduces 
false overlaps.
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Representation of detected overlaps by linear regression model

In the coordinate axis along the gap, we aim to solve the true values of the reads’ 
genomic positions, βi ( 1 ≤ i ≤ n ), to form a layout. If a pair of reads ri and rj overlap, the 
alignment provides an observation on the difference of βi and βj . Denote the observed 
genomic distance from ri to rj as y(i,j) (Fig. 1c), then

where ε(i,j) denotes the observational error. In normal cases, {ε(i,j)} are the random errors 
caused by sequencing, and are mostly zeros for Illumina short reads (Additional file 1: 
Note S3). In the case of a false overlap, |ε(i,j)| will be abnormally large, and the observa-
tion will be regarded as an outlier (Fig. 1c). For example, reads ④ and ⑥ in Fig. 1e come 
from different repeat units, so a false overlap is detected between them, causing an out-
lier marked by the red double-headed arrow in Fig. 1b.

Supposing totally m overlaps are detected in the gap, we integrate them into one linear 
regression model in the matrix form as below,

where β = (β1,β2, · · · ,βn)
T denotes the vector of reads’ genomic positions; 

X = (x1, x2, · · · , xm)
T ∈ R

m×n denotes the design matrix, which is sparse as illus-
trated in Fig.  1c; each row of X has only two non-zero elements, − 1 and 1, which 
are signed indicators of two overlapping reads. The corresponding term in Y  repre-
sents their genomic distance’s observation obtained from a detected overlap as in (1); 
Y = (y1, y2, · · · , ym)

T denotes the vector of all the observed genomic distances. Our aim 
is to estimate the reads’ genomic positions β in the linear regression model.

Note that the design matrix X in (2) is actually the oriented incidence matrix of the 
overlap graph, where each read corresponds to a vertex and each overlap creates a 
directed edge connecting two vertices. The overlap graph may have multiple weakly con-
nected components, each of which corresponds to one contig. Accordingly, we can re-
arrange the rows and columns of X in (2) so that it takes a block-diagonal form as below,

where all the blocks except the principal diagonal are zero matrices (Additional 
file  1: Note S4). Each diagonal submatrix X [i] ∈ R

mi×ni ( 1 ≤ i ≤ s , s
i=1mi = m , 

∑s
i=1 ni = n ) is the oriented incidence matrix of one weakly connected component, and 

rank(X [i])= ni − 1 . Next, we can re-arrange the rows of β , Y  , and ε in (2) in accordance 
with that in X . Consequently, model (2) is decomposed into s sub-models, i.e.,

(1)y(i,j) = βj − βi + ε(i,j),

(2)Y = Xβ + ε =
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where β[i] ∈ R
ni×1 , Y [i] ∈ R

mi×1 , and ε[i] ∈ R
mi×1.

Each sub-model Y [i] = X
[i]β[i] + ε[i] in (4) represents one weakly connected compo-

nent, i.e., one contig, and the vector β[i] denotes the genomic positions of the reads in 
this contig. Since X [i] is not full-rank in column, namely, rank(X [i])= ni − 1 < ni , we 
can only estimate the parameters β[i] in the sub-model up to a shift. Although the rela-
tive positions of reads are sufficient to determine a layout uniquely, technically we add 
an initial position of one read to each sub-model to make X [i] full-rank in column so that 
β[i] is identifiable (Additional file 1: Note S4).

Estimating β in (2) is equivalent to respectively estimating β[i](1 ≤ i ≤ s ) in (4). Hence 
without loss of generality, we suppose the linear model (2) represents one contig and the 
design matrix X is full-rank in column hereafter.

It is noted that the presentation (3) and (4) is for the sake of rigorous mathematical 
formulation. In practice, as shown in Fig.  1b, the two pseudo reads that are cut from 
the flanking sequences of a gap were incorporated into overlap detection and the linear 
model (2). Consequently, we only need to consider the typical scenarios shown in Addi-
tional file 1: Fig. S2. First, if the two pseudo reads are contained in one component, then 
the gap is filled and other floating contigs are skipped. Second, if the two pseudo reads 
are in two components that cannot be connected, then each flanking contig is extended 
by the corresponding regression component. Contigs generated from regression compo-
nents other than these two major ones could be from the unfilled gap, or from elsewhere 
due to uncertain factors such as incorrect read mapping. In the current implementation, 
we leave them out for the sake of reliability.

Estimation of the reads’ genomic positions by a two‑step robust regression procedure

Although the false overlaps are significantly reduced by imposing constraint on pair-
wise alignment, a fraction of outliers may still exist, and even a single outlier can break 
down the ordinary least squares (OLS) estimate [14]. Thus, RegCloser adopts a two-step 
robust regression procedure (Fig. 1d) to estimate the parameters β in (2). Note that we 
first relax β from integers to be continuous values.

Step 1: RegCloser detects outliers using the robust M-estimate [11]. That is, minimize 
the sum of a loss function over all observations as below,

where ρ(•) takes the Huber loss function,

(4)






Y [1] = X [1]β[1] + ε[1]

Y [2] = X [2]β[2] + ε[2]

...

Y [s] = X [s]β[s] + ε[s]

,

(5)β̂
M

= arg min
β

m∑
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ρ(εi) = arg min
β

m∑

i=1

ρ

(
yi − x
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i β
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(6)ρH (ε) =
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It is noted ρH (ε) equals to the loss of squares when the observational error is small 
( |ε| ≤ c ). But for large errors, ρH (ε) takes absolute error loss instead (Fig. 2a) to avoid 
being overly influenced by the outliers. The value c in (6) is a tuning constant balanc-
ing robustness and statistical efficiency. Smaller values of c produce more resistance 
to outliers, but at the expense of larger variance of the estimate [11]. It is set to 2 by 
default in RegCloser.

The robustness of the M-estimate can be quantified by the influence function (IF), 
which measures the effect of infinitesimal perturbation of one data point on the esti-
mate [11]. The influence function of the M-estimate (5) at an observation (x0, y0) is 
given by

Fig. 2 IRLS algorithm for computing the robust M-estimate. a The Huber loss function used in the 
M-estimation. Since it is convex, any local optimum is global. b The Huber ψ-function, namely, the derivative 
of the Huber loss function. It shows the influence of any outlier is bounded. c The Huber weight function. 
Beyond a threshold, the weight of an observation drops gradually as the error goes to large. d Pseudocode of 
the iteratively reweighted least squares (IRLS) algorithm. The inputs comprise the design matrix X  , response 
vector Y  of the linear regression model, the tuning constant c , the convergence threshold α , and the iteration 
limit N . The output is the robust M-estimate of the model parameters, which minimizes the Huber loss 
function
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where ψH (•) is the derivative of the Huber loss function (6). The first factor of (7) 
measures the influence from the y-direction, and it is bounded since ψH (•) is bounded 
(Fig. 2b). The second factor of (7) measures the influence from the x-direction, and it is 
also bounded since x0 only consists of 0 and ±1 . Putting together, the influence function 
(7) is bounded so that any outlier would not deviate the estimate from the true values 
much.

Yet we can further improve the accuracy of estimate by completely excluding the outli-
ers. Denote the observations with large residuals by

and they are identified as potential outliers. The value ro in (8) is the residual threshold 
with a default value 10. A smaller value of ro gives more protection on robustness at the 
risk of losing some contiguity of the assembly.

Step 2: RegCloser solves the OLS estimate on the observations excluding the potential 
outliers, i.e.,

Note that one contig may be further decomposed into several contigs after excluding 
the potential outliers. We deal with each contig separately as described in “Section Rep-
resentation of detected overlaps by linear regression model”. Finally, RegCloser obtains 
the estimated genomic positions of reads by rounding off β̂i ( 1 ≤ i ≤ n ) to the nearest 
integers. Placing the reads at their estimated positions on the coordinate axis forms a 
layout. In “Section RegCloser’s rationale of resolving the tandem repeat”, a real example 
will show the superiority of the two-step robust regression procedure over the direct 
OLS regression in terms of the layout quality.

Solving the robust M‑estimate by an iteratively reweighted least squares (IRLS) algorithm

In Step 1 of the two-step robust regression, an IRLS algorithm (Fig. 2d) is used to solve 
the robust M-estimate, i.e., the minimum of the objective function in (5). The IRLS algo-
rithm starts with an initial estimate β̂

(0)
 , such as the OLS estimate. Then it iteratively 

computes the weighted least squares (WLS) estimate as follows,

until � β̂
(k+1)

− β̂
(k)

�∞ < α ( α = 2 by default), where � • �∞ denotes the infinite norm. 
w
(k+1)
i  is the weight assigned to the i-th observation, and relies on the residual from the 

previous iteration. Specifically, w(k+1)
i = wH (ε̂

(k)
i ) , where ε̂(k)i = yi − x

T
i
β̂
(k)

 is the resid-
ual, and wH (•) is the weight function induced by the Huber loss function, i.e.,
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When the residuals are small ( ≤ c ), the weights for the observations are 1. When the 
residual exceeds the threshold c , the weight gradually drops down (Fig. 2c). Intuitively, 
the IRLS algorithm assigns outliers small weights to reduce their influences on the 
M-estimate. Since the Huber loss function is convex and differentiable, the IRLS algo-
rithm converges to the global minimum [15].

In each iteration of IRLS, solving the WLS estimate in (10) is equivalent to solving a 
system of linear equations, i.e.,

The coefficient matrix XT
W

(k)
X is highly sparse (Additional file 1: Note S5). A series 

of efficient numerical algorithms have been developed for solving this kind of sparse 
linear systems. In RegCloser, a kind of accelerated restarted Krylov subspace method, 
LGMRES [16], is used to solve (12), and the matrix manipulation is implemented in the 
sparse format for efficiency.

When the input includes multiple libraries with different insert sizes, RegCloser has an 
option ‘-w’ that assigns an initial weight to each overlap observation, which corresponds 
to a detected overlap. The initial weight depends on the standard deviation of the library 
where the overlapping reads come from. The smaller standard deviation induces a larger 
weight.

Gap sequence determination

For each layout of reads, a multiple sequence alignment is constructed by sequentially 
aligning the next read with the current alignment. A consensus is determined by select-
ing the nucleotide at each base site with the largest Bayesian posterior probability (Addi-
tional file 1: Note S6). The probabilities are converted into Phred scores and output to 
the fastq file with the nucleotide sequence. Finally, the two pseudo reads, which are cut 
from the flanking sequences of a gap in the overlap stage (Fig. 1b), are used to anchor the 
consensus into the gap (Additional file 1: Fig. S2). If the two pseudo reads are contained 
in the layout, the consensus sequence between them is taken to close the gap. Else if only 
one of the two pseudo reads is contained in the layout, RegCloser takes the consensus 
sequence after the left pseudo read to extend the left-flanking contig, or the consensus 
sequence before the right pseudo read to extend the right-flanking contig.

Results
Benchmarking on a GAGE dataset

We compared RegCloser with GapCloser, GapFiller, Sealer, and Phrap on the Staphylo-
coccus aureus sequencing dataset from GAGE [17]. A draft assembly was generated by 
SOAPdenovo2 (version 2.04) [7]. A paired-end library whose insert size has an average 
of 415 bp and a standard deviation of 105 bp was added for closing gaps on the draft 
genome. The density plot of its insert size distribution is shown in Additional file 1: Fig. 
S3a. The read length was 101  bp and the read coverage was 84X. Quality assessment 
was performed through comparison with the known reference genome using QUAST 

(11)wH (ε) =
ρ

′

H (ε)

ε
=

ψH (ε)

ε
=

{
1

c /|ε|
|ε| ≤ c
|ε| > c

.

(12)X
T
W

(k)
Xβ = X

T
W

(k)
Y .
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(version 5.2.0) [18]. The results are shown in Additional file 1: Table S1. Sealer did not 
finish after running for more than 72 h. RegCloser achieved the largest contig N50 with 
the fewest mis-assemblies and local mis-assemblies. GapCloser achieved the largest 
genome fraction (98.927%) but RegCloser is close to it (98.917%). The command lines for 
running the five methods are provided in Additional file 1: Note S7, and their runtime 
and memory usage are listed in Additional file 1: Table S5.

Tandem repeats are ubiquitous in both prokaryote and eukaryote genomes. They are 
distributed in both noncoding and coding regions, and can carry important biologi-
cal functions [19]. However, tandem repeats remain challenges in DNA assembly. It is 
particularly difficult to resolve the copy number of a tandem repeat [1]. In the evalu-
ation of the S. aureus assembly, we found a gap spanned by a tandem repeat as shown 
in Fig. 3a. The tandem repeat was 201 bp long, with a unit size of 69 bp repeated about 
2.9 times. The gap starts from the 32nd base of the first repeat unit, and ends exactly 
after the whole tandem repeat. All the five methods reported that they closed the gap, 
and the result of Sealer was obtained by running the software on the single scaffold con-
taining the gap. However, only RegCloser resolved the copy number accurately (Fig. 3a). 
GapFiller, Sealer, and Phrap underestimated the copy number, while GapCloser overes-
timated the copy number. The result from GapFiller had 0.9 copy, those from Sealer and 
Phrap both had 1.9 copies, and that from GapCloser had 7.9 copies. In the next subsec-
tion, we will dissect the procedure of RegCloser and show its rationale of resolving the 
tandem repeat.

RegCloser’s rationale of resolving the tandem repeat

In essence, the difficulty of solving tandem repeats is that the reads from different repeat 
units are hard to discriminate. False overlaps between reads from different units can lead 
to incorrect copy number. The analysis of the tandem repeat example shown in Fig. 3 
explains how RegCloser overcomes the difficulty efficiently.

In the overlap stage, RegCloser reduced the proportion of false overlaps significantly 
by insert-size guided pairwise alignment. On the one hand, rather than all-against-all 
pairwise alignment, RegCloser detected the overlaps only between reads whose prior 
positions were close, and the number of pairwise alignments were reduced from 140,185 
to 39,106. Consequently, the overlaps between distant repeat units were avoided from 
the beginning. In other words, the large observational errors (the peak of 138  bp in 
Fig. 3c) were eliminated from the insert-size guided overlap results (the right panel in 
Fig.  3c). On the other hand, when two reads from adjoining repeat units are aligned 
in two ways (see the example in Fig.  3b), RegCloser selected the alignment closer to 
the prior genomic positions. In this way, the middle observational errors (the peak of 
69  bp in Fig.  3c) were further reduced substantially, with the proportion from 34.16% 
to 12.97% . Overall, the proportion of nonzero observational errors was reduced from 
48.38% to 14.40%.

In the robust regression stage, RegCloser detected and eliminated the influence of the 
remaining false overlaps. Figure 3d shows the variation of the residual distribution along 
the process of the two-step robust regression. In Step 1, the IRLS algorithm started 
with the OLS estimate, and converged after 8 iterations. The proportion of zero resid-
uals increased from 5.54% to 27.20% , and the proportion of residuals no larger than 2 
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Fig. 3 Closing a gap containing a tandem repeat. a Comparison of the closing results from five methods 
on a gap containing a triple tandem repeat. The repeat unit is shaded in yellow, and the copy number is 2.9. 
The gap starts at the middle of the first copy and ends at the repeat end. The sequences flanking the gap 
are shaded in blue. Existing tools including Phrap, GapCloser, GapFiller, and Sealer make mistakes on the 
copy number; only RegCloser resolves the tandem repeat correctly. b An illustration of the two different 
alignments between two reads from the tandem repeat. The position ① is mapped by the green and red 
alignments respectively to positions ② and ③, which differ in a shift of 69 bp, i.e., the size of the repeat 
unit. c Violin plots for the observational errors of overlaps detected by all-against-all pairwise alignment 
(left) versus by insert-size guided pairwise alignment (right). The observational error of an overlap between 
reads i  and j  refers to the difference between y(i,j) and ( βj − βi ), where βi and βj are true read positions. The 
insert-size guided strategy gets rid of the large errors around 138 bp and substantially reduces the moderate 
errors around 69 bp, thus generating a higher-quality dataset for the regression. d Variation of the residual 
distribution along the process of the two-step robust regression. In Step 1, as the iteration increases in the 
IRLS algorithm for computing the robust M-estimate, most residuals converge towards 0 bp, while a fraction 
of residuals are still between 0 and 69 bp. In Step 2, the read coordinates are estimated by OLS on the data 
excluding the subset of outliers identified in Step 1. The final residuals of all data are clustered into two peaks 
exactly at 0 and 69 bp, which means the outliers have been separated out. e Screenshots of the layouts 
generated respectively from the OLS estimate and the two-step robust estimate of the reads’ genomic 
positions. The former layout is unclean and the latter layout is well aligned
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bp increased from 21.56% to 58.73%. The overlaps with residuals larger than 10 bp were 
identified as potential outliers. In Step 2, the read positions were again estimated by OLS 
on the data excluding the subset of potential outliers. The proportion of zero residu-
als further increased from 27.20% to 85.60 % , and the residuals were clustered into two 
peaks respectively at 0 and 69 bp (the last subplot in Fig. 3d). As illustrated in Fig. 3e, the 
layout resulted from the OLS estimate was full of misplacement. In contrast, the two-
step robust regression in RegCloser produced a well aligned layout.

Complete and accurate reconstruction of E. coli genome with simulated data

We also tested the performance of RegCloser on simulated data. Six Illumina libraries 
were simulated from the Escherichia coli reference genome (strain K-12 MG1655) using 
ART (version 2.5.8) [20]. The detailed information of the six libraries is listed in Addi-
tional file 1: Table S2, and the density plots of their insert size distributions are shown in 
Additional file 1: Fig. S3b.

A draft genome was first assembled using SOAPdenovo2 (version 2.04). The draft 
genome contained only one scaffold of 4,637,015 bp with 136 gaps. Five libraries with 
insert sizes of 300, 500, 800, 2 k, and 5 k were used to close the gaps. We ran RegCloser in 
an iterative way that the output genome served as the input of the next iteration. Merely 
after two iterations the 136 gaps were fully closed. The gap-closed genome was evalu-
ated by QUAST (version 5.2.0). No mis-assemblies or local mis-assemblies were found, 
and the genome fraction was 100%. That is, a complete and accurate E. coli genome was 
reconstructed.

We compared the performance with the other four gap-closing methods. Similarly, 
they were run in an iterative way until no more gaps could be closed. The command lines 
are provided in Additional file 1: Note S7, and the runtime and memory usage are listed 
in Additional file 1: Table S5. The results are shown in Table 1. Only Sealer yielded one 
mis-assembly, while all the four methods yielded multiple local mis-assemblies. Their 
genome fractions were all lower than 100%. Even though GapCloser produced one con-
tig, it contained the most local mis-assemblies. To further validate how many gaps were 
correctly closed, we aligned each “closed” gap sequence to the “true” gap sequence. If 
they were well aligned (by default, 15  bp soft-clip on both ends are allowed), the gap 
would be viewed as correctly closed. Table  1 demonstrates that RegCloser correctly 
closed all the 136 gaps, followed by GapCloser with 112/136, Phrap with 108/136, Gap-
Filler with 103/136, and Sealer with 57/136.

We paid special attention to the correctness of the tandem repeat (TR)-related gap 
closing. We first used the program Tandem Repeats Finder [21] to locate tandem repeats 
on the reference genome, and found 26 out of the 136 gap regions intersected with cer-
tain tandem repeats. Furthermore, we found these tandem repeats accounted for most 
of the incorrectly closed gaps by the four methods. Specifically, 100%, 90.48% , 81.82% , 
and 75% of the total gaps incorrectly closed by GapFiller, Sealer, Phrap and GapCloser 
were TR-related respectively (Table 1).

The detailed information of the 26 TR-related gaps and their closure results are listed 
in Additional file 1: Table S3. RegCloser correctly closed all the 26 TR-related gaps, fol-
lowed by GapCloser with 8, Phrap with 6, Sealer with 6, and GapFiller with 4. These 
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simulation results demonstrate that RegCloser outperformed other methods, especially 
in resolving tandem repeats.

Closing gaps of the plateau zokor draft genome that has been improved by long reads

To understand how the plateau zokor (Myospalax baileyi) adapts to the environment 
of high altitude and low oxygen, our collaborators from Kunming Institute of Zoology, 
CAS, initiated a sequencing project of plateau zokor, the complete genome size of which 
is about 3.17 Gbp [22]. The sequence data contain 22 Illumina libraries with insert sizes 
ranging from 180 bp to 10 kbp, and the total sequence coverage is 130.5 X. In addition, 
10X PacBio long reads were sequenced [23]. The published draft genome was initially 
assembled with the Illumina short reads using SOAPdenovo2, and then was improved 
with the PacBio long reads using PBJelly. However, the improved genome still contained 
99,434 gaps.

We run RegCloser and the other four methods to close the gaps by two rounds, and 
the command lines are provided in Additional file 1: Note S7. The results are shown in 
Table 2. In the first round, three paired-end libraries with insert sizes of 300, 500, and 
800 bp were used for gap closing. In the second round, a mate-pair library with a long 
insert size of 3000 bp was added. The detailed information of the four libraries is pro-
vided in Additional file 1: Table S4, and the density plots of their insert size distributions 
are shown in Additional file 1: Fig. S3c. The runtime and memory usage of the five meth-
ods are listed in Additional file 1: Table S5.

After the first round, RegCloser closed 44,742 (45.0%) gaps, and the contig N50 
increased from 67.4 kbp to 143.9 kbp, exceeding all the other four methods. After 
the second round, RegCloser closed 6,327 more gaps, and the contig N50 further 

Table 1 Comparison of the five methods on the E. coli simulation data

The assemblies are aligned to the reference genome using QUAST 5.2.0. Genome fraction is the percentage of the reference 
genome covered by assembled contigs. Mis-assemblies are locations on assembled contigs where the left and right 
flanking sequences align over 1 kb away, or they overlap by > 1 kb, or they align on opposite strands. Local mis-assemblies 
are positions on contigs where the flanking sequences have a gap or overlap < 1 kbp and > 80 bp on the same strand of 
the reference. The best values of each quality metric are highlighted in bold. RegCloser correctly closes all the 136 gaps 
including the 26 tandem repeat (TR)-related gaps, and leads to a complete genome with 100% genome fraction and no 
mis-assemblies or local mis-assemblies. For the other four methods, the TR-related gaps account for most of the incorrectly 
closed gaps

Methods Draft GapCloser GapFiller Sealer Phrap RegCloser

Contig length 4,531,075 4,642,829 4,631,201 4,542,679 4,641,796 4,641,652

Contig number 137 1 26 59 7 1

Contig N50 78,557 4,642,829 331,261 174,037 1,334,246 4,641,652

Genome fraction 97.532% 99.924% 99.687% 97.851% 99.892% 100%
# mis-assemblies 0 0 0 1 0 0
# local mis-assemblies 0 25 7 20 23 0
# mismatches 0 245 43 55 313 51

# indels 0 32 13 17 42 12
# closed gaps (# total gaps = 136) 136 111 78 130 136
# correctly closed gaps 112 103 57 108 136
# closed TRs (# total TRs = 26) 26 12 25 24 26
# correctly closed TRs 8 4 6 6 26
# incorrectly closed TRs/ # incor-
rectly closed gaps

18/24 8/8 19/21 18/22 0/0
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increased to 173.5 kbp. We used REAPR (version 1.0.18) [24] to identify potential 
assembly mistakes, at which the genome would be broken. The broken contig N50 for 
RegCloser was 156.3 kbp, even outperforming the unbroken contig N50 for the other 
four methods (Table 2). It indicated RegCloser achieved the highest contiguity with 
high accuracy.

BUSCO (version 5.4.2) [25] was used to evaluate the completeness of assemblies 
with conserved single-copy orthologs in Glires. After both rounds, the BUSCO value 
increased from 95.1% to 95.2% for all the methods except GapFiller. Alternatively, the 
mapping rate of reads also measures the completeness of genome assemblies. We used 
the mapping tool, SEME [26] with a strict criterion, to map the reads of an independent 
library to the assemblies. After both rounds, RegCloser achieved the highest mapping 
rate (Table  2), which increased from 79.1% to 79.9% after the first round and further 
increased to 80.1% after the second round.

RegCloser provides an iterative scaffolding and gap closing mode like that in BAUM 
[27]. The mode is specified by the option “-rs” (re-scaffolding). It uses the existing scaf-
folding tool to re-build scaffolds before gap closing in every iteration. In this mode, 
contig extension and gap closing provide more information for constructing longer and 
more accurate scaffolds, which further benefits the gap closing in the next iteration. We 
successively input the 7 libraries with insert sizes of respectively 300, 500, 800, 3 k, 5 k, 
8 k, and 10 k bp, and ran 7 iterations in the re-scaffolding mode. The detailed informa-
tion of the 7 libraries is provided in Additional file 1: Table S4, and the density plots of 
their insert size distributions are shown in Additional file 1: Fig. S3c. After 7 iterations, 
the final contig N50 reached 204 kbp, more than 3 folds of that in the published draft. 
Even after broken by REAPR with both short and long insert size libraries, the contig 
N50 still remained 179 kbp.

Table 2 Comparison of the five methods on closing gaps of the plateau zokor draft genome

The draft genome is initially assembled with high coverage short reads, and then improved with long reads. Two rounds of 
gap closing are performed. In the first round, three paired-end libraries with insert sizes of 300, 500, and 800 bp are used. 
In the second round, a mate-pair library with a long insert size of 3000 bp is added. Mapping rate is measured by mapping 
the reads of an independent library to the assembly. Contig N50 assesses the contiguity of genome assemblies. BUSCO and 
mapping rate assess the completeness of genome assemblies. The best values of each quality metric are highlighted in 
bold. After both rounds, RegCloser closes the most gaps, and achieves the highest contig N50, BUSCO, and mapping rate

Methods Draft GapCloser GapFiller Sealer Phrap RegCloser

3 paired‑end libraries
Contig length 2,527,528,914 2,538,745,631 2,530,456,764 2,528,744,942 2,528,100,353 2,527,758,194

Contig number 113,835 97,906 96,181 102,260 71,066 69,093

Contig N50 (bp) 67,378 76,359 88,200 73,199 130,114 143,871
# closed gaps 15,929 17,654 11,575 42,769 44,742
BUSCO 95.1% 95.2% 95.1% 95.2% 95.2% 95.2%
Mapping rate 79.1% 79.4% 79.3% 79.2% 79.7% 79.9%
3 paired‑end + 1 mate‑pair libraries
Contig length 2,527,528,914 2,541,442,324 2,532,550,654 2,528,949,290 2,526,621,405 2,524,372,994

Contig number 113,835 96,437 92,755 100,611 65,445 62,766

Contig N50 (bp) 67,378 77,295 93,380 74,852 146,599 173,542
# closed gaps 17,398 21,080 13,224 48,390 51,069
BUSCO 95.1% 95.2% 95.1% 95.2% 95.2% 95.2%
Mapping rate 79.1% 79.5% 79.4% 79.2% 79.7% 80.1%
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The robust regression approach to generating an optimal layout of TGS long reads

We tested the applicability of the robust regression approach to layout generation in 
de novo assembly of long reads using a PacBio HiFi dataset of E. coli. The read length 
ranges from 10 to 17 kbp and the sequence coverage utilized in this assembly case was 
about 20X. To detect overlaps, we implemented an all-against-all pairwise alignment by 
BLASR [28], restricting the hanging-out length to a maximum of 50 bp. Then we filtered 
out the suspicious chimeric reads using the information of the detected overlaps. In de 
novo assembly, the read orientations, namely, the strands from which the reads origi-
nate in the target genomic DNA, are unknown. Thus we first used a heuristic algorithm 
reported in RegScaf [29] to orientate all reads, c.f. Additional file 1: Note S8.

After orientating reads, we considered only one of the DNA double strands, and all 
reads from the other strand were transformed by reverse complement. Then these reads 
along with their orientation-supported alignments were input into the linear regression 
model described in “Section  Representation of detected overlaps by linear regression 
model”, as depicted in Fig.  4a. The two-step robust regression procedure described in 
“Section Estimation of the reads’ genomic positions by a two-step robust regression pro-
cedure” was used to generate an optimal layout. The trimming step may split the resulted 
layout into multiple unconnected layouts. Next, we further constructed a layout-level 
graph in which each layout corresponds to a vertex and overlaps between layouts cor-
respond to edges. Then the only path in the new graph led to the final layout. Its length 
was 4.6 M, nearly the length of the complete genome of E. coli.

We assessed the accuracy of the final layout by aligning all long reads to the reference 
genome and comparing their estimates in layouts with their real positions. The layout 
was shifted by a constant so that the median of errors is zero. Figure 4b is the box-plot 

Fig. 4 Generating an optimal layout of TGS long reads by the robust regression approach. a Illustration of the 
regression representation. In the linear axis corresponding to the real genome, the position of each TGS long 
read is represented by a parameter βi to be estimated. Each overlap, marked by the yellow double-headed 
arrow, provides an observation on the difference between two reads’ positions. However, chimeric reads, 
as well as repeats from distant regions in either the same or reverse strain of the genome, will bring in false 
overlaps, as those marked by red crossings, where ① indicates a false overlap caused by a chimeric read, ② 
indicates one caused by a repeat in the same strain, and ③ indicates one caused by a repeat in the reverse 
strain. All the overlap observations are integrated into the linear regression model Y = Xβ + ε . Then the 
two-step robust regression procedure gives a globally optimal estimate of the read positions, which lead to a 
layout. Meanwhile, it detects the outliers, which correspond to the false overlaps. b Boxplot of the differences 
between the estimated and true positions of the reads in the layout that was generated by RegCloser for de 
novo assembly of the E. coli genome using a HiFi dataset
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of the errors of the estimated read positions. It shows that all reads were positioned near 
their true loci with a standard deviation of 451 bp.

Discussion and conclusions
In this article, we propose a new local assembly approach, RegCloser, for closing gaps in 
draft genomes. On the one hand, it utilizes the insert size information in the SGS paired 
sequencing reads to guide the pairwise alignment, thereby reducing both the computing 
cost and ambiguities caused by repeats in overlap detection. On the other hand, Reg-
Closer represents the detected overlaps by a linear regression model, which regards the 
false overlaps caused by repeats or sequencing errors as outliers. This representation 
transforms the sequence assembly into a statistically robust estimation problem.

Note that if we take the Hamiltonian graph representation in the OLC paradigm, find-
ing an optimal layout in the overlap graph is NP-complete. Hitherto the existing OLC 
methods generate layouts by greedy search. Here with the linear regression representa-
tion, the global optimal layout under the Huber loss function is achievable by the IRLS 
algorithm, which is to iteratively solve the sparse system of linear equations. Statistically, 
the influence function, a robustness measure, of the Huber M-estimator is bounded in 
both x - and y-directions.

The aim and approach of RegCloser are different from those of the scaffolding method 
RegScaf we recently proposed [29], although the linear model is used in both problems. 
RegScaf focuses on the scaffolding problem, which is to order contigs and estimate gap 
sizes, while RegCloser focuses on the gap-closing problem, which is to locally assemble 
short reads into contigs. Technically, RegScaf adopts the least trimmed squares (LTS) 
estimator. Although no efficient algorithm for computing the exact LTS solution is avail-
able in the multiple regression, an approximation is sufficiently good for the accuracy 
required by scaffolding. In comparison, the layout generation in the assembly problem 
needs more accurate estimation of read positions. Therefore, RegCloser adopts the more 
efficient robust estimator, the Huber M-estimator, whose exact solution can be com-
puted. RegCloser can be used to improve genome assemblies in combination with any 
scaffolding methods.

When the repeat unit size is beyond the length of sequencing reads, the repeat struc-
ture can hardly be resolved by SGS data alone.  However, we demonstrated that mak-
ing full use of the library insert size information combined with robust regression can 
resolve some tandem repeats successfully. The insert-size guided pairwise alignment 
helps distinguish repeats from different units, and the two-step robust regression lays 
out reads at the right places. Compared with existing gap-closing methods, RegCloser 
closes more gaps and achieves higher contiguity and completeness, especially outper-
forms at gaps containing tandem repeats. The simulation results and the quality assess-
ment by REAPR indicate that the gaps closed by RegCloser are of high quality.

The results on the plateau zokor draft genome suggest that RegCloser is scalable to 
large genomes. The zokor draft genome was initially assembled from SGS data, then long 
reads were applied to improve its contig N50 to 67 kbp. RegCloser further increased the 
contig N50 to 204 kbp based on the iterative scaffolding and gap closing strategy, which 
indicates that RegCloser can still improve on the basis of the results from long reads.
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Conceptually, the robust regression approach is a general assembly framework that is 
applicable to de novo assembly of both SGS and TGS data. We tested it on the layout 
generation for TGS long reads. Despite the long read length of TGS technology, issues 
like chimeric reads and indistinguishable repeats of a longer unit size still exist. Our 
results suggest that these issues can be partly solved by robust regression. Therefore, the 
proposed robust regression approach has a prospect to be incorporated into the layout 
module of long read assemblers.
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