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Abstract 

Background:  GPR151 is a kind of protein belonging to G protein-coupled receptor 
family that is closely associated with a variety of physiological and pathological pro-
cesses.The potential use of GPR151 as a therapeutic target for the management of met-
abolic disorders has been demonstrated in several studies, highlighting the demand 
to explore its activators further. Activity prediction serves as a vital preliminary step 
in drug discovery, which is both costly and time-consuming. Thus, the development 
of reliable activity classification model has become an essential way in the process of 
drug discovery, aiming to enhance the efficiency of virtual screening.

Results:  We propose a learning-based method based on feature extractor and deep 
neural network to predict the activity of GPR151 activators. We first introduce a new 
molecular feature extraction algorithm which utilizes the idea of bag-of-words model 
in natural language to densify the sparse fingerprint vector. Mol2vec method is also 
used to extract diverse features. Then, we construct three classical feature selection 
algorithms and three types of deep learning model to enhance the representational 
capacity of molecules and predict activity label by five different classifiers. We conduct 
experiments using our own dataset of GPR151 activators. The results demonstrate high 
classification accuracy and stability, with the optimal model Mol2vec-CNN significantly 
improving performance across multiple classifiers. The svm classifier achieves the best 
accuracy of 0.92 and F1 score of 0.76 which indicates promising applications for our 
method in the field of activity prediction.

Conclusion:  The results suggest that the experimental design of this study is appro-
priate and well-conceived. The deep learning-based feature extraction algorithm 
established in this study outperforms traditional feature selection algorithm for activity 
prediction. The model developed can be effectively utilized in the pre-screening stage 
of drug virtual screening.

Keywords:  Activity prediction, Deep learning, Feature extractor

Background
G protein-coupled receptors (GPCR) are the largest family of membrane protein 
receptors in the mammalian genome, widely distributed in the central nervous sys-
tem, immune system, cardiovascular and other organs and tissues. They are involved 
in both physiological and pathological processes including nociception. In recent 
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years, GPCR research is highly sought after by pharmaceutical companies due to the 
potential of GPCRs as candidate targets in the search for new therapeutics. GPR151 
is an orphan receptor belonging to the class A GPCR family that is highly enriched in 
receptor nuclei neurons. It plays a role in regulating mood, stress, nicotine withdrawal 
and preventing obesity. GPR151 is abundantly expressed in the dorsal root ganglia 
and is closely associated with nociception, making it a potential drug target for treat-
ing a variety of psychiatric, neurological, and metabolic disorders. Xia et al. [1] first 
identified the molecular and cellular mechanisms through which GPR151 can mod-
ulate neuropathic pain by regulating P2X3 function and microglia activation. Jiang 
et al. [2] found that GPR151 acts as a Gβγ-coupled receptor to induce ERK (signal-
regulated kinase)-dependent neuroinflammation and may be a potential drug target 
for the treatment of trigeminal neuralgia. Beatriz et al. [3] demonstrated that GPR151 
regulates sensitivity and aversion to nicotine, indicating that small molecule modula-
tors of this receptor may be useful to treat nicotine addiction. The findings of Ewa 
et al. [4] showed that GPR151 can regulate gluconeogenesis in the liver, highlighting 
the therapeutic potential of targeting GPR151 for the treatment of metabolic diseases. 
The above studies indicate that investigations into activators targeting GPR151 is rel-
evant and important.

Traditional screening of molecular activity is accomplished through high-throughput 
screening experiments. Existing techniques for investigating GPR151 activators are usu-
ally cell-based experimental studies which are expensive in research progress. Drug 
virtual screening technology has emerged as a cost-effective and efficient method for 
modern drug development, offering a new way to reduce costs and increase the prob-
ability of drug discovery. Despite the advantages of virtual screening methods, they still 
face certain challenges. Firstly, when the active pocket of a target protein is unknown 
or cannot be determined, it may be necessary to traverse the protein structure space 
to obtain optimal docking results, which can decrease the accuracy of docking results 
and lead to computational inefficiencies. Secondly, traditional molecular docking-based 
virtual screening can be time-consuming and labor-intensive. The resource and time 
consumption are still significant and unaffordable for many users even when using high-
throughput screening to optimize performance.

The PubChem database has incorporated four high-throughput screening experimen-
tal datasets for small molecule activators of GPR151 since 2020. The comprehensive 
dataset provides a valuable resource for conducting broader molecular activity studies of 
GPR151 activators. The recent surge in machine learning and deep learning techniques 
has accelerated the development of intelligent systems in the field of molecular research. 
Artificial intelligence-assisted drug design (AIDD) [5] can be used for molecular activ-
ity prediction. This approach is not only effective in reducing the time and cost asso-
ciated with experimental screening, but also in expanding the chemical space that can 
be explored. Deep learning models have demonstrated remarkable proficiency in han-
dling high-dimensional and complex features. Such methods are beneficial in reducing 
dependence on expert knowledge and improving the predictive capabilities of the mod-
els. Feature representation and model selection are key aspects of molecular deep learn-
ing [6, 7]. Current AIDD-based activity prediction methods can be broadly categorized 
based on feature dimensions, extraction methods and classifiers, as illustrated in Fig. 1.
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Molecular features can be SMILES sequences [8], molecular images [9] or three-
dimensional structures and coordinates, with the development of graph neural net-
works [10, 11] in recent years. Molecular feature extraction methods are normally 
divided into molecular descriptors, similarity matrix and neural fingerprints. Molecu-
lar fingerprint is a form of qualitative descriptor, which represents molecular struc-
ture and substructure through data encoding. RDKit fingerprints [12], MACCS Keys 
[13], ECFPs [14] and Daylight fingerprints [15] are widely used. Similarity matrix-
based methods typically employ molecular sequences or molecular descriptors to 
calculate sequence similarity matrix for proteins and compounds. Another approach 
known as neural fingerprint was proposed by Merkwirth et  al. [16], which mapped 
discrete chemical structures of compounds to a continuous vector space using deep 
neural networks. It has emerged as a popular method for molecular activity predic-
tion, with commonly-used techniques including AttentiveFP [17], NeuralFP [18] and 
FP-GNN [19]. Logistic regression, K-nearest neighbor, random forest, decision tree 
and support vector machine [20] are all traditional classifiers with well-established 
libraries, fast training speeds, and wide applicability in molecular activity research. 
Meanwhile, deep learning models such as convolutional neural networks (CNN) [21], 
long and short-term memory neural networks (LSTM) [22] and generative adversarial 
networks (GAN) [23] are increasingly favored in the field. Among the studies related 
to drug activity prediction, representative unsupervised learning models include 
Mol2vec [24], which utilizes the Word2vec [25] model to learn vector representations 
of molecular substructures. By summing the vectors of individual substructures, com-
pounds can ultimately be encoded as vectors. Mol2vec is a useful library for molecu-
lar feature extraction.

Fig. 1  Classification of molecular activity prediction techniques based on artificial intelligence-assisted drug 
design
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This paper proposes a data collection method aimed at assisting molecular docking 
computations, thereby facilitating the rapid virtual screening of large molecular data-
bases for drug discovery. The method incorporates molecular docking computation and 
high-throughput experimental data to generate consistent GPR151 activator datasets. 
Additionally, we propose an improved algorithm which utilizes the idea of bag-of-words 
model in natural language processing to densify the sparse fingerprint vector. We also 
systematically compare the performance of various classical feature selection algorithms, 
deep learning models and traditional classifiers for molecule activity prediction tasks 
and find out the best model Mol2vec-CNN. To assess generalization performance, an 
experiment based on ZINC sub database is performed for well-performing deep learn-
ing models. The activity prediction labels of the trained model show an agreement of 
over 70% with results obtained from molecular docking software. These findings have a 
significant impact on the efficiency of screening active compounds from large molecule 
databases.

Methods
Molecular feature extraction

A molecular fingerprint is a condensed representation of a molecule that encodes its 
structural features into fixed-size arrays of bits for comparison. The typical process is 
to extract the molecular fragments and then hash them to generate bit variables, where 
each bit relates to a molecular fragment. This study employs two molecular fingerprint 
algorithms: topological fingerprint (RDKFP) and morgan fingerprint (MorganFP). RDKit 
version 2022.3.5 [26] is applied to compute fingerprint features, with the topological fin-
gerprint parameters set as default values and morgan fingerprint using radius=2 and 
nBits=2048 to obtain feature lengths of 2048. Mol2vec [24] is an unsupervised machine 
learning model inspired by natural language processing techniques, which learns vector 
representations of molecular substructures with similar chemical structures. Mol2vec 
encodes compounds into vectors by summing individual substructure vectors, overcom-
ing issues such as sparsity and bit conflicts commonly associated with feature represen-
tations. This provides a robust foundation for constructing molecular activity prediction 
models using supervised learning.

In this paper, we use traditional feature selection methods and deep learning meth-
ods to carry out further extraction for molecular fingerprint and Mol2vec to enhance 
model characterization capability. The study employs three traditional feature selection 
methods, namely principal component analysis (PCA) [27] linear discriminant analysis 
(LDA) [28] and decision tree algorithm (DTA) [29], as well as common deep neural net-
work structures, namely CNN [21], LSTM [22] and bidirectional long short-term mem-
ory (Bi-LSTM) [30]. CNNs are feed forward neural networks including convolutional 
computation, which are outstanding in computer vision field. In drug activity predic-
tion research, one-dimensional molecular sequences processed by molecular fingerprint 
and other feature extraction methods can serve as input to 1D-CNN. LSTM is a special 
type of recurrent neural network (RNN) to overcome gradient explosion or disappear-
ance in the original RNN when processing longer sequence data. Bi-LSTM is a vari-
ant of the LSTM structure, consisting of two LSTMs superimposed on top and bottom 
together, with output jointly determined by the states of both LSTMs. To address the 
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bit-sparse characteristics of original features extracted from molecular fingerprints, a 
preprocessing algorithm inspired by the bag-of-words model is proposed. Specifically, 
each bit in the fingerprint vector is treated as a vocabulary, with the nth feature cor-
responding to code n+ 1 ( 0 ≤ n ≤ 2047 , n is an integer). Each compound is seen as a 
sentence and the bit marked as 1 in the molecular fingerprint indicates the presence of 
the word in the sentence, with the corresponding code recorded. All valid bit numbers in 
the 2048-dimensional fingerprint are traversed to acquire a coding vector, then the code 
matrix is padded and input into the embedding layer of the neural network to transform 
the number matrix into dense feature vector. The Mol2vec features (100-dimensional) 
are processed using the open library (https://​github.​com/​samot​urk/​mol2v​ec) and fed 
into different deep models for further feature extraction.

Classification

After using traditional algorithms and deep neural network for molecular feature extrac-
tion, this study employs five basic machine learning classifiers, namely logistic regression 
(LR), k-nearest neighbor (KNN), random forest (RF), decision tree (DT), and support 
vector machine (SVM) for activity classification. These classifiers are also compared with 
the softmax classifier of the deep neural network. The key flow is illustrated in Fig. 2.

Results
Docking preparation

The available conformation of the GPR151 receptor has an influence on molecular dock-
ing results, with the receptor’s activation state also playing an important role [31]. Previ-
ous studies demonstrate significant activation of GPR151 under acidic conditions, with 
maximum activation observed at pH 5.8. This leads to an increase in the receptor’s bind-
ing ability to ligands [32]. Dueto the lack of crystal structure and endogenous ligand for 
GPR151, this study utilizes AlphaFold2 [33] to predict the receptor’s three-dimensional 
structure, followed by molecular dynamics simulations to relax the structure and obtain 
a reasonable starting point for molecular docking. The simulations are conducted using 
the GROMACS 2020 software [34], with the residue protonation state set at pH 5.8, the 

Fig. 2  The flowchart of GPR151 activators activity prediction pipeline. The pipeline contains two types 
of molecular features, deep neural networks and traditional feature selection algorithms for comparison, 
followed by different classifiers to predict activator activity labels

https://github.com/samoturk/mol2vec
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AMBER ff14B force field and the SPC solventization model. A cubic box is utilized and 
Na and Cl equilibrium ions are added. The structures are energy minimized using the 
steepest descent method and subjected to molecular dynamics simulations for 10 ns at 
NPT ensemble in 2fs steps, following equilibration at NVT and NPT ensemble for ade-
quate sampling through energy fluctuations, Root-Mean-Square-Deviation (RMSD) and 
Root-Mean-Square-Fluctuation (RMSF). The modeled GPR151 receptor is found to have 
an average energy of −4.3e + 06 KJ/mol, with an energy fluctuation of less than 3%. For 
the conservative helical region, the RMSD averaged 0.3 nm with RMSF less than 0.5 nm, 
indicating small residue fluctuations. In contrast, the LOOP region exhibits greater 
structural flexibility in the simulations, leading to large RMSD and RMSF values. How-
ever, as the LOOP region is not involved in ligand docking, the simulations generates a 
reasonable three-dimensional structure.

After obtaining a reasonably relaxed three-dimensional structure, a large active 
pocket is selected based on the common structural characteristics of the seven helices of 
GPCRs.The helical region is enclosed and molecular docking calculations are performed 
using AutoDock Vina [35] and AutoDock GPU [36] software to exclude the influence of 
different docking algorithms. AutoDock Vina employs a gradient-based Iterated Local 
Search (ILS) search algorithm and an empirical-based scoring function, whereas Auto-
Dock GPU utilizes Lamarckian Genetic Algorithm (LGA) [37] global conformational 
search combined with Solis-Wet structural search algorithm and a force field-based 
scoring function. Ten independent searches are conducted for each docking and the 
binding energy is calculated. The structure with the lowest binding energy is selected 
and combined with experimental results to determine the binding activity threshold α.

The hardware environment for molecular dynamics and molecular docking calcula-
tions is the “ORISE” supercomputer with a single node equipped with 32 core x86 
processors and 4 GPU accelerators at a base frequency of 2.0 GHz. AutoDock Vina cal-
culations are performed on 32 CPU cores with 8 cores running in parallel intranode. 
AutoDock GPU utilizes 4 GPU cards to perform 4 tasks simultaneously intranode.

Data collection and splitting

The GPR151 activator molecular datasets in this paper are gathered from PubChem Bio-
assay (https://​pubch​em.​ncbi.​nlm.​nih.​gov/​bioas​say/), as shown in Table 1. All four data-
sets are provided by the Scripps Research Institute Molecular Screening Center and the 
receptor protein is G protein-coupled receptor 151. The other three datasets were gen-
erated through high-throughput screening experiments, while activity in AID 1508610 
was determined via high-throughput reaction experiments in the year of 2020.

Table 1  List of GPR151 activator datasets in PubChem Bioassay

S. No. BioAssay AID Total No. of 
compounds

Active 
compounds

Inactive 
compounds

BioAssay type

1 1508602 646675 6756 639919 Screening

2 1508608 2275 18 2257 Screening

3 1508609 6747 6 6741 Screening

4 1508610 600 83 517 Confirmatory

https://pubchem.ncbi.nlm.nih.gov/bioassay/
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This study focuses on two datasets: AID1508602 and AID1508610, containing a sig-
nificant number of active molecules for experimentation. As the model is intended 
to facilitate molecular docking and reduce the imbalance between active and inactive 
classes, a consistent data collection process is implemented for AID1508602. Dock-
ing experiments are conducted on the activators and GPR151 receptor protein within 
AID1508602, following experiment settings outlined in section docking preparation. 
The binding energies are subsequently compared with the activity labels in the original 
dataset.We initially set a threshold of α for binding energy, whereby binding energies less 
than α were considered active, while those greater than α were categorized as inactive. 
The threshold α is established as −8.6 kcal/mol based on an 80% consistency between 
the computational and experimental results obtained from Autodock Vina [35] and 
AutoDock GPU [36]. Based on this threshold, molecules with a binding energy lower 
than −8.6 kcal/mol are considered active, while those with a binding energy greater than 
−8.6 kcal/mol are classified as inactive.

After acquiring consistent results, we select 6066 molecules from the AID1508602, out 
of which 1066 are active. In the case of the AID1508610, all records are included in the 
final dataset, considering its small size and moderate ratio of two type molecules. This is 
done to increase noise and enhance the model’s robustness. The final GPR151 activator 
dataset is presented in Table 2, with test sets divided at the ratio of 0.2, as indicated in 
Table 3.

Model parameters

In this study, TensorFlow and Keras deep learning libraries are employed to train CNN, 
LSTM, and Bi-LSTM models, with backpropagation used to optimize the weights between 
hidden layers. The CNN network architecture designed for molecular fingerprint and 
Mol2vec features is illustrated in Fig. 3, comprising two convolutional layers (with filters of 
32 and 16, kernel size of 8, respectively), a pooling layer (with pool size of 3) and multiple 
dense layers. The relu activation function is employed in all layers except for the last one. 
The category probabilities are output through the sigmoid activation function. The LSTM 
and Bi-LSTM models’ one-way loop structure is set to 128 and 64 when the input features 
are molecular fingerprints and Mol2vec. The maximum number of layers is set to two. 
The model optimizer is Adam, with the learning rate 0.00025. We test multiple learning 

Table 2  The detail of GPR151 activator dataset constructed in this paper

Source BioAssay Active Inactive Total

AID 1508602 1066 5000 6066

AID 1508610 83 517 600

Total 1149 5517 6666

Table 3  The train and test set splitting method for GPR151 activator dataset

GPR151 Active Inactive AID1508602 AID1508610 Total

Train 906 4426 4847 485 5332

Test 243 1091 1219 115 1334
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rates from the parameter list [0.0001, 0.00025, 0.0005, 0.001] to select the most effective 
one. Binary cross-entropy is selected as the loss function and the accuracy is applied to 
evaluate the model’s performance. The number of iterations (epoch) and batch size are 
adjusted based on the different molecular features and network structures. For instance, 
Mol2vec-CNN model has an setting of epochs=100 and batch size=50, while molecular 
fingerprint and CNN use the same batch size, but the model converges in only 15 iterations. 
The parameter ncomponents of PCA is configured to 0.9, which means using a number of 
components sufficient to consider 90% of variance. Meanwhile, the decision tree algorithm 
is applied with a threshold of 0.005, indicating that only the features with an importance 
score greater than 0.005 can be retained. The knn classifier parameter n neighbors is set to 
3, while random state is 42 for logistic regression, random forest and decision tree to ensure 
consistency of the classification results over multiple runs.

Evaluation metrics

The evaluation metrics for model performance are Accuracy, Precision, Recall and F1 
score. Classification results have four types: true positive(TP), false negative(FN), false 
positive(FP) and true negative(TN). Accuracy represents the proportion of all records with 
correct predictions out of the total. Precision is the percentage of true predictions in all pre-
dicted positive results. Recall is the proportion of correctly predicted positive molecules to 
all actual positive ones. The Precision and Recall rate are interdependent, with one affect-
ing the other. F1 score represents the average of them, with higher values indicating better 
model quality. These metrics are calculated as follows:

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
=

2 ∗ TP

2 ∗ TP + FP + FN

Fig. 3  The CNN network architecture used in this paper
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Performance evaluation on predicting molecular activity

For GPR151 activator activity prediction task, this paper first compares the perfor-
mance of three raw molecular features (RDKFP, MorganFP, Mol2vec) and five basic 
classifiers (LR, KNN, RF, DT, SVM) using the test set’s performance metrics as the 
benchmark result. The results are shown in Table 4. The experiment findings indicate 
that MorganFP outperforms Mol2vec on logistic regression, decision tree and svm 
classifiers and doesn’t perform well on knn and random forest. However, MorganFP 
and Mol2vec outperform RDKFP features overall. The svm classifier achieves best 
performance on molecular fingerprint features, while knn is the best on Mol2vec fea-
tures. Moreover, although the accuracy for the three molecular features on five clas-
sifiers reach 0.85, F1 scores are all unsatisfactory. The results indicate that the models 
perform poorly in selecting active molecules.

To extract and learn better features, we perform the preprocessing operation shown 
in Fig. 2 for rdk and morgan fingerprint and input them into three network structures 
of CNN, LSTM and Bi-LSTM. In addition, we extract features by traditional feature 
selection methods to compare with deep models, then feed them into the same five 
classifiers to evaluate the efficacy of our feature extraction algorithm. Table 5 shows 
the performance results of different neural network models and classifiers on RDKFP, 
while Table  6 presents the results on MorganFP. The trend column in both tables 
depicts the performance change of the new model compared with benchmark model 
in Table  4 ( ↑ means better, − means almost the same and ↓ means worse). Table  8 
shows the performance comparison between the proposed algorithm in the paper and 
the traditional feature selection methods for different molecular features. Among the 
feature selection methods are PCA [27], LDA [28] and DTA [29]. The table displays 
the best results obtained by combining traditional methods with five classifiers and 
the optimal model from Table 5, 6 and 7. It can be seen that our algorithm works bet-
ter and gains a major performance improvement.

Table 4  Performance comparision of the test set on five traditional classifiers, and the bold marks 
the best in the group

Feature (raw) Classifier Accuracy Precision Recall F1

RDKFP LR 0.8643 0.6462 0.5638 0.6022

KNN 0.8658 0.7462 0.3992 0.5201

RF 0.8651 0.8 0.3457 0.4828

DT 0.8043 0.4619 0.4486 0.4551

SVM 0.8898 0.8478 0.4815 0.6142
MorganFP LR 0.8928 0.7404 0.6377 0.6829

KNN 0.8598 0.8043 0.3045 0.4418

RF 0.8741 0.8378 0.3827 0.5254

DT 0.8568 0.6313 0.5144 0.5669

SVM 0.9018 0.8256 0.5844 0.6843
Mol2vec LR 0.8928 0.766 0.5926 0.6682

KNN 0.8921 0.7346 0.6379 0.6828
RF 0.8838 0.775 0.5103 0.6154

DT 0.8313 0.5375 0.5309 0.5342

SVM 0.8898 0.7727 0.5597 0.6492
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Table 5 demonstrates that after processing and feature extraction using CNN, F1 score 
of the RDKFP in test set improves by approximately 8%. Furthermore, logistic regres-
sion, knn and svm achieve significant improvement compared to the raw RDKFP fea-
ture, with knn displaying the best performance. However, random forest and decision 
tree are not effective. After processing and LSTM/Bi-LSTM feature extraction, RDKFP 
shows improvement in all five basic classifiers. The poorly model of random forest and 
decision tree in Table 4 also demonstrates great improvement, with F1 score increasing 
from 0.5 to approximately 0.62. Table  6 illustrates that MorganFP performs best after 
processing and LSTM feature extraction, with F1 score increasing by approximately 4% 
to reach 0.73. The F1 scores of all five classifiers improved compared to the raw Mor-
ganFP features. The F1 scores of all classifiers reached 0.7 or higher, except for the deci-
sion tree. Table  7 indicates that Mol2vec performs best after CNN feature extraction, 
with F1 score improving by approximately 5% to reach 0.73. There is an enhancement on 
all classifiers compared to the raw Mol2vec features, with the svm achieving the accu-
racy of 0.92 and F1 score of approximately 0.76. Figure 4 presents the accuracy and loss 
iteration curves of three optimal model RDKFP-CNN, MorganFP-LSTM and Mol2vec-
CNN for train and test sets during training process.

Generalization experiment

Professor John J. Irwin of UCSF [38] released ZINC20 (zinc20.docking.org) in 2020, 
which contains over 1.4 billion compounds. After consistent collection, we select 300 
active and 500 inactive molecules from the AID1508602 dataset as the parent samples. 
Similar molecules of GPR151 activator are obtained from ZINC20-ForSale-22Q1-1.6B 
database and further filtered according to the values of ecfp4 and daylight, which are 
both greater than the value of 0.5. After de-duplication, the final number of molecules is 
about 10k.

To validate the efficacy of the model in this study, we conduct experiments to compare 
the activity prediction results of the model with the docking computational results in the 
set of above molecules from above mentioned ZINC database. Molecular docking com-
putation is performed using AutoDock GPU with the same environment and param-
eter settings as reported in the docking preparation section. The consistency between 
docking results and the ideal three predicted models (RDKFP-CNN, MorganFP-LSTM, 
Mol2vec-CNN-SVM) is evaluated through three metrics: Consistency, Active-Recall 
and Inactive-Recall which can be calculated by the following equations:

where Consistency denotes the overall agreement between docking and prediction 
results, Active-Recall and Inactive-Recall indicate the recall value of docking active 

(5)Consistency =
TA+ TI

TA+ TI + FA+ FI

(6)Active − Recall =
TA

TA+ FI

(7)Inactive − Recall =
TI

TI + FA
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molecules and the recall value of docking inactive molecules, respectively. “A” and “I” 
represent active and inactive and the confusion matrix is shown in Fig. 5. Table 9 dis-
plays the statistical results of consistency evaluation. The best model Mol2vec-CNN-
SVM gains a consistency of 71.6%, with a recall rate of 76.1% for the docking active 
molecules. The results suggest that our model is able to identify most of the docking 
active molecules. Therefore, Mol2vec-CNN-SVM provides a promising approach for 
the preliminary screening and enhances the efficiency of virtual screening from massive 
datasets.

Fig. 4  Iteration curves of accuracy and loss values for RDKFP-CNN (epoch=15), MorganFP-LSTM (epoch=50), 
Mol2vec-CNN (epoch=100) on train and test sets are from top to bottom. As iteration increases, the accuracy 
of train and test sets rises while loss value decreases in the fluctuation until the convergence
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Discussion
As shown in previous results, traditional feature selection algorithms have shown cer-
tain advantages compared to initial molecular features. On the other hand, deep learning 
algorithms exhibits strong learning abilities in high-dimensional features and performs 
well in the molecular field. From the results section, it appears that the deep model are 
valid and applicable on different types of molecular features. The encoding and padding 
operations of molecular fingerprints make the features more dense and lay the founda-
tion for feature input of neural networks. Mol2vec calculates the molecular substruc-
ture vector and leverages neural networks to extract highly effective features that can 
enhance prediction accuracy.

To enhance the interpretability of the model, we attempt to use t-SNE dimensionality 
reduction and visualization methods. By employing t-SNE, we can effectively visualize 
the high-dimensional data in a lower-dimensional space, making it easier to explore the 
correlations and distributions of the features. The feature extraction steps on RDKFP, 
MorganFP are visualized as shown in Figs. 6 and 7. Figure 8 illustrates the impact of two 
deep models on the extraction of Mol2vec features. We utilize a scatter plot to visual-
ize the molecular features, where the red dots represent inactive molecules, and yellow 
dots represent active ones. Effective feature extraction resulted in a clearer separation 
of the two classes of data, enabling the classifier to determine the activator label more 
accurately. This is the major reason for the performance improvement. RDKFP+CNN 
graph has more overlap between two types of data, resulting in a lower F1 score than 

Fig. 5  Confusion matrix of docking and predicted labels

Fig. 6  Visualization of rdk fingerprint feature extraction steps on best model CNN. From left to right are the 
features of raw rdk fingerprint, after encoding and padding, after embedding operation and extracted by 
CNN
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Fig. 7  Visualization of morgan fingerprint feature extraction steps on best model LSTM. From left to right 
are the features of raw morgan fingerprint, after encoding and padding, after embedding operation and 
extracted by LSTM

Fig. 8  Visualization of Mol2vec feature extraction on LSTM and CNN model

Table 5  Evaluation of neural network models and classifiers on test set performance with 
processed rdk fingerprint, and the bold marks the best in the table

Feature Classifier Accuracy Precision Recall F1 Trend

RDKFP processed CNN 0.9003 0.7806 0.6296 0.697 ↑

LSTM 0.8748 0.6759 0.6008 0.6362 ↑

Bi-LSTM 0.8823 0.724 0.572 0.6391 ↑

CNN+LR 0.8913 0.7988 0.5391 0.6437 ↑

CNN+KNN 0.8808 0.7121 0.5802 0.6395 ↑

CNN+RF 0.8546 0.6992 0.3539 0.4699 ↑

CNN+DT 0.8493 0.8088 0.2263 0.3537 ↓

CNN+SVM 0.8913 0.7988 0.5391 0.6437 ↓

LSTM+LR 0.8748 0.6712 0.6132 0.6409 ↑

LSTM+KNN 0.8763 0.6857 0.5926 0.6358 ↑

LSTM+RF 0.8718 0.6765 0.5679 0.6174 ↑

LSTM+DT 0.8718 0.6765 0.5679 0.6174 ↑

LSTM+SVM 0.8748 0.6776 0.5967 0.6346 ↑

Bi-LSTM+LR 0.8808 0.7234 0.5597 0.6311 ↑

Bi-LSTM+KNN 0.8816 0.7202 0.572 0.6376 ↑

Bi-LSTM+RF 0.8756 0.6935 0.5679 0.6244 ↑

Bi-LSTM+DT 0.8711 0.6802 0.5514 0.6091 ↑

Bi-LSTM+SVM 0.8801 0.7044 0.5885 0.6413 ↑



Page 14 of 18Xu et al. BMC Bioinformatics          (2023) 24:245 

MorganFP+LSTM. In addition, Mol2vec features also have clear boundaries between 
two types of data after LSTM and CNN feature extraction. This distribution is appropri-
ate for traditional classifiers, resulting in a significant impact on various classifiers.

Table 6  Evaluation of neural network models and classifiers on test set performance with 
processed morgan fingerprints, and the bold marks the best in the table

Feature Classifier Accuracy Precision Recall F1 Trend

MorganFP processed CNN 0.8898 0.7124 0.6625 0.6866 -

LSTM 0.8981 0.7082 0.749 0.728 ↑

Bi-LSTM 0.8793 0.683 0.6296 0.6552 ↓

CNN+LR 0.8883 0.7238 0.6255 0.6711 ↓

CNN+KNN 0.8756 0.6954 0.5638 0.6227 ↑

CNN+RF 0.8853 0.7368 0.5761 0.6467 ↑

CNN+DT 0.8748 0.7639 0.4527 0.5685 -

CNN+SVM 0.8906 0.7389 0.6173 0.6726 ↓

LSTM+LR 0.8973 0.707 0.7449 0.7255 ↑

LSTM+KNN 0.8958 0.7114 0.7202 0.7157 ↑

LSTM+RF 0.8921 0.6926 0.7325 0.712 ↑

LSTM+DT 0.8831 0.6835 0.6667 0.675 ↑

LSTM+SVM 0.8973 0.707 0.7449 0.7255 ↑

Bi-LSTM+LR 0.8748 0.6667 0.6255 0.6454 ↓

Bi-LSTM+KNN 0.8763 0.6639 0.6502 0.657 ↑

Bi-LSTM+RF 0.8763 0.6639 0.6502 0.657 ↑

Bi-LSTM+DT 0.8778 0.677 0.6296 0.6525 ↑

Bi-LSTM+SVM 0.8741 0.6623 0.6296 0.6456 ↓

Table 7  Comparison of neural network models and classifiers in Mol2vec test set performance, and 
the bold marks the best in the table

Feature Classifier Accuracy Precision Recall F1 Trend

Mol2vec CNN 0.9085 0.7895 0.679 0.7301 ↑

LSTM 0.8996 0.7444 0.6831 0.7124 ↑

Bi-LSTM 0.8988 0.7389 0.6872 0.7122 ↑

CNN+LR 0.904 0.7626 0.6872 0.7229 ↑

CNN+KNN 0.8958 0.7524 0.639 0.6904 ↑

CNN+RF 0.91 0.7971 0.679 0.7333 ↑

CNN+DT 0.8718 0.6651 0.5967 0.6291 ↑

CNN+SVM 0.9153 0.7928 0.7243 0.757 ↑

LSTM+LR 0.8973 0.7431 0.6667 0.7028 ↑

LSTM+KNN 0.8861 0.7136 0.6255 0.6667 ↓

LSTM+RF 0.8973 0.7409 0.6708 0.7041 ↑

LSTM+DT 0.8628 0.65 0.535 0.5869 ↑

LSTM+SVM 0.8951 0.7191 0.6955 0.7071 ↑

Bi-LSTM+LR 0.8973 0.7409 0.6708 0.7041 ↑

Bi-LSTM+KNN 0.8921 0.7302 0.6461 0.6856 -

Bi-LSTM+RF 0.8973 0.7477 0.6584 0.7002 ↑

Bi-LSTM+DT 0.8711 0.6621 0.5967 0.6277 ↑

Bi-LSTM+SVM 0.9003 0.7523 0.6749 0.7115 ↑
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The time complexity of the proposed method primarily involves two tasks: calculating 
molecular features and training the model. While the calculation time for molecular fin-
gerprints and Mol2vec increases linearly with the number of input molecules, the input 
features of deep neural networks remain constant, resulting in consistent calculation 
time during model training. The spatial complexity of our method is independent of the 
number of input molecules, as the dimensions of the molecular fingerprint and Mol2vec 
features remain fixed at 2048 and 100, respectively.

However, our model still face several challenges. Figures 4b and d show that the loss 
value of the test set is higher than that of the training set. This suggests to some extent 
that there may be over-fitting present in the data. To mitigate this issue, we adjust the 
learning rate and batch size, add Dropout layers, and stop the training process when 
iterative convergence. Despite our efforts to mitigate over-fitting, it could not be fully 
eliminated. The characteristics of the GPR151 activator dataset may account for this 
observation. The different distributions of molecular structures between the train and 
test sets present a challenge for the learning algorithm. Furthermore, our encoding rules 
primarily reflect the location of effective bits in molecular fingerprints and are not based 
on domain-specific expertise. This may further worsen the distribution gap between 
the molecular features of the train and test sets, potentially leading to over-fitting to 
some extent. We believe that our algorithm can be further improved by using more 
domain-specific knowledge to encode molecular fingerprints. Along with the issue of 

Table 8  Comparison of different feature selection algorithms on test set performance. The results of 
traditional methods in the table are the best with five classifiers, and the bold marks the best in the 
group

Feature Algorithm Accuracy Precisionn Recall F1

RDKFP PCA 0.8958 0.8291 0.5391 0.6534

LDA 0.8583 0.6089 0.6214 0.6151

DTA 0.8576 0.6626 0.4444 0.532

CNN 0.9003 0.7806 0.6296 0.697
MorganFP PCA 0.8988 0.7647 0.642 0.698

LDA 0.8726 0.654 0.6379 0.6458

DTA 0.8816 0.7707 0.4979 0.605

LSTM 0.8981 0.7082 0.749 0.728
Mol2vec PCA 0.8816 0.7157 0.5802 0.6409

LDA 0.8876 0.736 0.5967 0.6591

DTA 0.8928 0.7525 0.6132 0.6757

CNN 0.9153 0.7928 0.7243 0.757

Table 9  The consistency results of molecular docking calculation and model prediction, and the 
bold marks the best in the table

Consistency (%) Active-recall (%) Inactive-
recall 
(%)

DOCKING:RDKFP-CNN 69 74.5 61

DOCKING:MorganFP-LSTM 70.6 76.1 61.7

DOCKING:Mol2vec-CNN-SVM 71.6 76.1 64.8
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over-fitting, lack of interpretability is also a drawback of neural networks. Visualization 
techniques are obviously lack of adequate theoretical support. We plan to utilize inter-
pretative machine learning methods to gain a deeper understanding of neural network 
performance in the future work.

To summarize, the prediction performance of the test set can generally be improved 
by implementing molecular feature representations after neural network feature extrac-
tion. The LSTM model is more suitable for molecular fingerprints, while the CNN 
model is more appropriate for Mol2vec features. The performance of different classifiers 
varies, with svm yielding the best result for Mol2vec features extracted by CNN. This 
model can be applied to screen active molecules from massive databases. Our designed 
GPR151 activator classification model achieves over 70% accuracy in screening active 
molecules in large molecular datasets. Furthermore, deep learning model significantly 
accelerates the screening speed, thereby reducing time consumption. The molecular 
activity prediction model is executed on a single CPU of 12th Gen Intel(R) Core(TM) 
i7-12700 while AutoDock Vina and AutoDock GPU are executed on the “ORISE” super-
computers, with calculation time of 109 h on 32 CPUs and 1 h on 4 GPUs to process 
10,000 molecules, respectively. However, the prediction time of our deep learning model 
is controlled within a few minutes, which is ten times faster than traditional molecular 
docking. This provides a novel method for rapidly enriching potential active compounds 
for large-scale virtual screening in drug discovery.

Conclusion
In this paper, we propose a molecular fingerprint enhancement algorithm that preproc-
esses bit-sparse fingerprint features using the idea of bag-of-words model in natural 
language processing. By combining this encoding step with neural network models for 
feature extraction, we can better extract effective information from molecules than tra-
ditional feature selection algorithms such as PCA, resulting in improved classifier per-
formance. Moreover, we perform experiments on different types of molecular features, 
neural networks, and classifiers to systematically compare the adaptability of multiple 
network structures and classifiers for molecular features. Our optimal model, Mol2vec-
CNN-SVM, achieves an accuracy and F1 score of 92% and 76%, respectively. Our model’s 
effectiveness is demonstrated through generalization experiments on large-scale data-
bases. The model is capable of narrowing down the range of potential compounds in the 
initial stages of virtual screening through activity classification, which assists molecular 
docking in rapidly identifying active molecules. In our future research, we will focus on 
improving the encoding rules and exploring state-of-art artificial intelligence architec-
tures to optimize our proposed method. We will continue to explore molecular property 
prediction model to provide more reliable results for virtual screening.
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