
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Fiedler et al. BMC Bioinformatics          (2023) 24:235  
https://doi.org/10.1186/s12859-023-05371-4

BMC Bioinformatics

Detecting gene breakpoints in noisy 
genome sequences using position‑annotated 
colored de‑Bruijn graphs
Lisa Fiedler1*, Matthias Bernt2†, Martin Middendorf1† and Peter F. Stadler3,4,5,6,7† 

Abstract 

Background:  Identifying the locations of gene breakpoints between species of dif-
ferent taxonomic groups can provide useful insights into the underlying evolutionary 
processes. Given the exact locations of their genes, the breakpoints can be computed 
without much effort. However, often, existing gene annotations are erroneous, or 
only nucleotide sequences are available. Especially in mitochondrial genomes, high 
variations in gene orders are usually accompanied by a high degree of sequence 
inconsistencies. This makes accurately locating breakpoints in mitogenomic nucleotide 
sequences a challenging task.

Results:  This contribution presents a novel method for detecting gene breakpoints in 
the nucleotide sequences of complete mitochondrial genomes, taking into account 
possible high substitution rates. The method is implemented in the software pack-
age DeBBI. DeBBI allows to analyze transposition- and inversion-based breakpoints 
independently and uses a parallel program design, allowing to make use of modern 
multi-processor systems. Extensive tests on synthetic data sets, covering a broad range 
of sequence dissimilarities and different numbers of introduced breakpoints, dem-
onstrate DeBBI ’s ability to produce accurate results. Case studies using species of 
various taxonomic groups further show DeBBI ’s applicability to real-life data. While 
(some) multiple sequence alignment tools can also be used for the task at hand, we 
demonstrate that especially gene breaks between short, poorly conserved tRNA genes 
can be detected more frequently with the proposed approach.

Conclusion:  The proposed method constructs a position-annotated de-Bruijn graph 
of the input sequences. Using a heuristic algorithm, this graph is searched for particu-
lar structures, called bulges, which may be associated with the breakpoint locations. 
Despite the large size of these structures, the algorithm only requires a small number of 
graph traversal steps.

Keywords:  Gene breakpoints, de-Bruijn graph, Genome, Mitochondria

†Matthias Bernt, Martin 
Middendorf and Peter F. Stadler 
have jointly supervised this work.

*Correspondence:   
lfiedler@informatik.uni-leipzig.de

1 Department of Computer 
Science, University Leipzig, 
Augustusplatz 10‑11, 
04109 Leipzig, Germany
2 Helmholtz Centre 
for Environmental Research 
-UFZ, Permoserstraße 15, 
04318 Leipzig, Germany
3 Bioinformatics Group, 
Department of Computer 
Science, and Interdisciplinary 
Center for Bioinformatics, 
Universität Leipzig, Härtelstraße 
16–18, 04107 Leipzig, Germany
4 Max Planck Institute 
for Mathematics in the Sciences, 
Inselstraße 22, 04109 Leipzig, 
Germany
5 Department of Theoretical 
Chemistry, University 
of Vienna, Währinger Straße 17, 
1090 Vienna, Austria
6 Facultad de Ciencias, 
Universidad National de 
Colombia, Sede Bogotá, Ciudad 
Universitaria, 111321 Bogotá, 
D.C., Colombia
7 Santa Fe Institute, 1399 Hyde 
Park Rd., Santa Fe, NM 87501, 
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05371-4&domain=pdf


Page 2 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

Introduction
Breakpoints in genomic sequences are locations where related sequences fail to be col-
linear and consequently cannot be globally aligned. Breakpoints thus also delimit struc-
tural variants (SVs), i.e., genomic variations between individuals of a certain species. SVs 
include deletions, insertions, duplications, and inversions. A large number of compu-
tational tools, usually referred to as variant callers, have been developed aiming at the 
identification of breakpoint locations resulting from SVs in high-throughput sequenc-
ing data. Most of these methods require a reference genome, see e.g. [1–5]. Some other 
approaches work with short substrings of length k, called k-mers, but rely on known 
variant or reference k-mers [6–8]. Meanwhile, callers for direct comparison of sequence 
reads have also been proposed [9, 10]. Moreover, some specialized tools have been sug-
gested for identifying SV inversions [11], copy number variations [12], and SVs in long-
read sequencing data [13]. Variant callers are designed to operate on closely related 
sequences and have applications, in particular, in the investigation of disease mecha-
nisms and cancer research [14–17].

Here, we are interested in detecting breakpoint locations that appear at larger evo-
lutionary time scales and are associated with the divergence of the genomes of distinct 
species due to changes in gene content and arrangement of gene orders. A long-standing 
question for mitochondrial genomes is whether rearrangements are created by a dupli-
cation/loss, a cut-and-paste mechanism, or a mixture of both. Thus the ability to detect/
predict such breakpoint regions is important for studying rearrangement mechanisms 
with methods like [18]. In addition, we show that a breakpoint-based approach will sup-
plement purely similarity/local-colinearity-based approaches.

If both, the gene orders and the genes’ exact positions are known, the breakpoints 
between the genes can easily be computed [19, 20]. In general, however, only the nucleo-
tide sequences are available, and annotations of gene positions are approximate at best. 
To detect them nevertheless, one option is to first employ a sequence aligner that can 
consider gene rearrangements. Breakpoints can then be computed by identifying align-
ment blocks that are consecutive in one genome but not in another.

Theoretical concepts of a more direct approach are presented by Lin et al. [21], show-
ing that the de-Bruijn graph is essentially identical to the breakpoint graph. The latter 
has been the most frequently employed data structure for breakpoint analyses in the last 
decades. Lin et al. show that in the de-Bruijn, breakpoints between genes correspond to 
specific structures. These so-called bulges are common paths that branch into two sepa-
rate paths, which join again at a different location. However, so far, no method has been 
proposed to computationally identify such bulges and handle artifacts that arise from 
the sequence dissimilarities when sequences of distinct species are compared. Usually, 
large variations in gene orders are accompanied by large substitution rates, in particular, 
in mitochondrial genomes so that sequence inconsistencies cannot be neglected to study 
gene rearrangements therein.

Several practical applications of bulges in de-Bruijn graphs have been described in 
the literature. These include variant callers such as GRIDDS  [10], TakeABreak  [5], 
and Cortex [6]. Another use case has been the removal of sequencing errors, as imple-
mented in the Velvet [22] software suite. In both applications, short bulges with simi-
lar branch lengths are of interest. This permits employing graph-traversal-based search 



Page 3 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

strategies, such as Velvet’s tour bus algorithm. However, for the identification of the 
here-considered breakpoints between genes, up to genome-length-sized bulges are rel-
evant. This renders such approaches inapplicable, even for moderately sized genomes.

Here, we present a novel approach optimized for identifying breakpoints between 
genes from nucleotide sequences of complete mitochondrial genomes. The method uses 
the input sequences to construct a position-annotated colored de-Bruijn graph. Genome 
rearrangements are frequent in mitogenomes, rendering them particularly interesting 
for breakpoint analysis. At the same time, rearranged genes in mitochondrial sequences 
are particularly prone to suffer from high sequence mutation rates  [23–25], generally to 
a much larger extent than in nuclear genomes. To this end, the concept of a breakpoint 
bulge, as introduced in  [21], is extended to take sequence dissimilarities into account, 
and a heuristic algorithm is presented to identify such bulges with only a small number 
of graph-traversal steps. The vast majority of gene rearrangements in mitogenomes is 
caused by transpositions or tandem duplication random loss (TDRL)  [26] events (see, 
e.g.,  [23, 27]), which is why they will be the main objective of this work. In each such 
case, genes are dislocated only within the same strand. These types of rearrangement 
will thus be referred to as dislocations. Gene inversions, which move genes to the oppo-
site strand, or inverse transpositions (i.e., a combination of transposition and inversion), 
occur much more rarely (cf. [23]). In the “Methods” section below, we discuss disloca-
tions in full detail. To keep the presentation concise, inversions will only be sketched 
briefly.

The proposed methods are implemented in a software package called DeBBI (De-
Bruijn graph-based tool for Breakpoint Identification). DeBBI comprises two inde-
pendent programs for identifying breakpoints caused by gene dislocations and gene 
inversions. This allows for studying both types of breakpoints separately. Both programs 
may be run in arbitrary order without affecting the produced results. DeBBI features a 
parallel program design to take advantage of modern multi-processor systems. To min-
imize the necessary amount of manual interaction, DeBBI provides a routine for the 
automated computation of the (k + 1)-mer size of the de-Bruijn graph and features well-
tested default settings for the remaining program parameters.

In this study, we consider both synthetic, as well as, real-life data sets of different taxo-
nomic groups. Using a simple model of sequence evolution, the synthetic data sets are 
generated to comprise sequence inconsistencies of various degrees and gene arrange-
ments of different deviations. Exact breakpoint locations can be computed in this 
case and used as ground truth data. To assess the result accuracy of the real genome 
sequences, gene annotations generated by the mitochondrial gene annotation tool 
MITOS2  [28] are used to compute putative breakpoint locations.

To our knowledge, there is so far no method specifically dedicated to the task of iden-
tifying gene breakpoints in genomes from nucleotide sequences. Unfortunately, variant 
callers (such as GRIDDS, TakeABreak, or Cortex), which are available in large num-
bers, are not applicable. To give some examples: They work with sequencing reads rather 
than complete genome sequences; they often employ certain assembly-related statistics, 
which do not apply in this case; they are designed to operate locally to detect structural 
variations between individuals of a population, rather than to discover breaks between 
heavily rearranged genes in more distantly related species.



Page 4 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

For this reason, we use the breakpoint predictions that can be determined from the 
sequence alignment blocks of a genome aligner (see above) for a comparative analysis. 
As a representative of this class of tools, we employ progressiveMauve [29, 30]. This 
is one of the most influential and well-established methods in this field. Moreover, it 
computes the large majority of the required parameters from the input data and other-
wise provides well-established settings. Contrarily, in other alignment tools (which like 
progressiveMauve can take into account rearranged sequence segments) certain 
properties, which substantially impact the result quality, need to be specified manually. 
This renders large-scale automatic evaluations infeasible. For example, in Gecko  [31], 
an alignment similarity parameter, which can attain all values between 1 and 100, must 
be provided. Another example is CHROMEISTER, where the k-mer length needs to 
be set. In the supplementary material (Additional file  1), we conduct some additional 
experiments with Gecko and CHROMEISTER on selected real genome sequences that 
have also been analyzed with progressiveMauve, empirically determining suitable 
parameter settings for each case.

Methods
In this section, we assume that genomes are circular, as is the case for most mitochon-
drial sequences. The handling of linear genomes requires only minor changes. These are 
described in Additional file 1: Section Handling linear genomes.

Dislocation breakpoints

For a more comprehensible presentation, we use the toy example scenario of Fig.  1, 
which we refer to throughout this section.

The gene order of a genome is the sequence of its genes in the order in which they 
occur (duplicate genes may be contained). Denote the gene orders of two species by G1 
and G2 . An adjacent pair of genes (gi, gj) of G2 is called a dislocation breakpoint of G2 
with respect to G1 if both genes are also contained in but do not appear consecutively 
in that order in G1 . For better readability, (gi, gj)1,2 is used if (gi, gj) is a breakpoint in G1 
with respect to G2 , and (gi, gj)2,1 in the opposite situation. Thus in the example setting 
(Fig. 1), the dislocation breakpoints are given as (g1, g2)1,2, (g2, g3)1,2 , (g3, g4)1,2 , (g4, g1)1,2 , 
(g1, g4)2,1, (g4, g3)2,1 , (g3, g2)2,1 , and (g2, g1)2,1.

A breakpoint (gi, gj)1,2 means that there is some gene gm  = gj succeeding gi and some 
gene gn  = gi preceding gj in G2 . Every breakpoint (gi, gj)1,2 is thus accompanied by two 
breakpoints (gi, gm)2,1 and (gn, gj)2,1 , which will be referred to as entangled breakpoints 
from now on. For instance, in the toy example the entangled breakpoints of (g1, g2)1,2 are 
(g1, g4)2,1 and (g3, g2)2,1.

Regions of DNA between genomes that share a common order of n homologous genes 
gi, gi+1, . . . , gn are called synteny blocks (gi, gi+1, . . . , gn) . A synteny block is called maxi-
mal (MSB) if it is not contained in any other synteny block. For the gene orders in the toy 
example, the MSBs consist only of the individual genes, i.e., (g1) , (g2), (g3) , and (g4).

Dislocation breakpoints in the de‑Bruijn graph

We consider the de-Bruijn graph over a set of circular input mitogenomes G as a 
directed multigraph. Its vertex set V comprises all k-mers in G, i.e., substrings of length k 



Page 5 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

in G. These can be obtained by sliding a window of length k over the genome sequences. 
The edges are 4-tuples of the form (v, v′, r, p) and correspond to the substring s of length 
(k + 1) in genome r ∈ G with end-position p. The two vertices v and v′ are length k pre-
fix and suffix of s, respectively. Each mitogenome r of length |r| therefore contributes 
exactly |r| edges to the de-Bruijn graph. The position p refers to arbitrary but fixed lin-
ear coordinates on r. The annotated de-Bruijn graph of the toy example is illustrated in 
Fig. 1b. To improve the clarity of the presentation, edges are colored to refer to different 
individual (red and blue) or multiple (green) genomes.

Every dislocation breakpoint (gi, gj)1,2 between two genomes r1, r2 ∈ G translates to 
a special type of bulge between gi and gj , referred to as breakpoint bulge (BB), in the 
de-Bruijn graph. A bulge is formed by two edge-disjoint paths, termed branches, that 
originate from a common vertex vb and meet again in another vertex vm  = vb . In a BB, 
one of the branches is short and of a single color, while the other branch is long and 
color-alternating.

p : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G1 : g1 g2 g3 g4

r1: A G A C T G G A T C A T G C C G

G2 : g1 g4 g3 g2

r2: A G A C G C C G T C A T T G G A

(a)

AGA GAC ACT CTG TGG GGA GAT ATC TCA CAT ATG TGC GCC CCG

CGTGTC

ATTTTG

ACG CGC

CGAGAG

GAAAAG

4

4

5 6 7 8

16

9 10 11 12

12

13 14 15 16

8

5

6

7

13
14

15

1
2

3 9
10

11

1

2

3

(b)

v1 v2 v3 v4 v5 v6 v7 v8
4
4

(g1)

P
g1
r1

P
g1
r2

4
4

5 Ps 7 8
16

(g2)

P
g2
r1

P
g2
r2

8
16

9 11 12
12

(g3)

P
g3
r1

P
g3
r2

12
12

13 15 16
8

(g4)

P
g4
r1

P
g4
r2

16
8

13

13 911

13

P2
a

155

P1
a

7

(c)

Fig. 1  De-Bruijn graph of two genomes r1 and r2 with dislocation breakpoints. a Genome r1 with gene 
sequence G1 = (g1, g2, g3, g4) and genome r2 with gene sequence G2 = (g1, g4, g3, g2) . b The de-Bruijn 
graph of both genomes for k = 3 . An edge is colored red if it corresponds to genome r1 , blue if it corresponds 
to r2 , and green if it corresponds to both genomes. Moreover, it is annotated with its position in the genome, 
where position labels of r1 are red and annotated above the edge, and position labels of r2 are blue and 
annotated below the edge. c The de-Bruijn graph with all condensed single and 2-color paths. Each of the 
2-color paths {Pgir1 , P

gi
r2 } is annotated with the associated maximal synteny block (MSB) (gi). There are eight 

breakpoints between both genomes, resulting in eight breakpoint bulges (BBs) in the graph. Exemplarily, 
the defining single-color paths of the BB for (g1, g2)1,2 are labeled by Ps , P1a and P2a and highlighted in bold 
font. Path Ps constitutes the single-color branch in this bulge. P1a and P2a form the beginning and end of the 
color-alternating branch, respectively



Page 6 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

We make use of the following notion to formally describe BBs. Define a sin-
gle-color path Pr = (V , Er) of genome r ∈ G and length |Pr | = n as a sequence 
V of n distinct vertices (v1, v2, . . . , vn) . These are connected by a sequence 
Er of n− 1 edges ((v1, v2, r, p1), (v2, v3, r, p2), . . . , (vn−1, vn, r, pn−1)) with 
pi+1 = succ (pi, 1) ∀i ∈ {1, . . . , n− 2} . Here, succ (p, l) is the lth position succeed-
ing p. Analogously, pred (p, l) will be used to refer to the lth position preceding p. 
Since the positions of adjacent edges in Pr are also adjacent in the de-Bruijn graph, 
Pr is already uniquely defined by the first and last position of edges in Er and can 
thus be condensed to the ordered tuple (r, p1, pn−1) . We call a collection of m single-
color paths {Pr1 ,Pr2 , · · · ,Prm} where V(Pr1) = V(Pr2) = · · · = V(Prm) and ri  = rj for 
i, j ∈ {1, 2, . . . ,m} and i  = j a m-color path. The m single-color paths Pr1 ,Pr2 , · · · ,Prm 
thus describe identical sequence segments in genomes r1, r2, · · · , rm . Figure 1c shows the 
de-Bruijn graph of Fig.  1b of our toy example with annotated condensed single-color 
and 2-color paths.

Now reconsider the three entangled breakpoints (g1, g2)1,2 , (g1, g4)2,1 and (g3, g2)2,1 . For 
two genes gi and gj that are consecutive in a genome, denote by transition (k + 1)-mers 
all (k + 1)-mers of this genome where the prefix is part of the encoding sequence of gi , 
and the suffix is part of the encoding sequence of gj . Because of the different order of 
genes of r1 and r2 , all of r1 ’s transition (k + 1)-mers between g1 and g2 , are not transi-
tion (k + 1)-mers of r2 (the two genes are not consecutive in r2 ). Likewise, r2 ’s transition 
(k + 1)-mers between g1 and g4 and r2 ’s transition (k + 1)-mers between g3 and g2 are 
not transition (k + 1)-mers of r1.

This results in three single-color paths in the de-Bruijn graph (cf. Fig. 1c): Ps = (r1, 5, 7) , 
which connects 2-color path {Pg1

r1 ,P
g1
r2 } of MSB (g1) with 2-color path {Pg2

r1 ,P
g2
r2 } of MSB 

(g2) , P1
a = (r2, 5, 7) , which connects 2-color path {Pg1

r1 ,P
g1
r2 } with 2-color path {Pg4

r1 ,P
g4
r2 } 

of MSB (g4) , and P2
a = (r2, 13, 15) which connects 2-color path {Pg3

r1 ,P
g3
r2 } of MSB (g3) 

with the 2-color path {Pg2
r1 ,P

g2
r2 } . In the BB of (g1, g2)1,2 , the first of these paths Ps con-

stitutes the single-color branch of the bulge. On the color-alternating branch, paths P1
a 

and P2
a form the beginning and end, respectively. The three paths thus define the BB. 

However, path P1
a also constitutes the single-color branch and Ps forms the beginning of 

the color-alternating branch in the BB of (g1, g4)2,1 , while path P2
a constitutes the single-

color branch and Ps forms the end of the color-alternating branch in the BB of (g3, g2)2,1 . 
That is, every BB B1 shares single-color paths with the two BBs B2 and B3 of its entangled 
breakpoints. More particularly, paths that are located on the single-color branch in B1 
are located on the color-alternating branch in B2 and B3 , while paths that are located on 
the color-alternating branch in B1 are located on the single-color branch in B2 and B3 . To 
better recognize this relation, Fig. 2 shows the three bulges individually.

Small sequence dissimilarities result in short inconsistency bulges of similar branch 
lengths, deteriorating the clear structure of the BBs described above. Figure 3 illustrates 
two such bulges. Removing these inconsistencies from the graph can destroy meaning-
ful biological information. Moreover, it is an expensive operation as the graph must 
usually be modified to a large extent. It is also not clear how to resolve them in many 
cases, i.e., which path should be preferred over the other. As reported by various stud-
ies, a higher variation in the gene order of mitogenomes corresponds with higher sub-
stitution rates and thus promotes a high degree of sequence inconsistency [23–25]. In 



Page 7 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

v2

v7

v8 v5

v6

v3

B1

4
4

(g1)

P
g1
r2

P
g1
r1

4
4

5

P
1
a

7
16
8

(g4
)

P
g4
r2

P
g4
r1

16
8 9 11 12

12
(g3)

P g3r2

P g3r1

12
12

13
P 2a

15

5
Ps 7

16
8

P
g2
r2

P
g2
r1

(g2) 16
8

v2

v3

v4 v5

v6

v7

B2

4
4

P
g1
r1

P
g1
r2

(g1) 4
4

5

Ps
7

8
16

P
g2
r1

P
g2
r2

(g2
) 8

16

9 11
12
12

P g3r1

P g3r2

(g3)
12

12
13

15

5 P1
a 7

16
8

P
g4
r1

P
g4
r2

(g4) 16
8

v6

v7

v8 v1

v2

v3

B3

12
12

(g3)

P
g3
r1

P
g3
r2

12
12

13

15

16
8

P
g4
r1

P
g4
r2

(g4
) 16

8

1 3
4
4

P g1r1

P g1r2

(g1)
4

4
5

P
s

7

13 P2
a 15

8
16

P
g2
r1

P
g2
r2

(g2) 8
16

Fig. 2  Detailed view of three breakpoint bulges (BBs) B1 , B2 , and B3 of the de-Bruijn graph shown in Fig. 1, 
respectively corresponding to breakpoints (g1, g2)1,2 , (g1, g4)2,1 , and (g3, g2)2,1 . Single-color branches are 
shown on the bottom, and color-alternating branches on the top of each bulge. Path PS , which constitutes 
the single-color branch in B1 , is part of the color-alternating branch in B2 and B3 . Path P1a , which forms the 
beginning of the color-alternating branch in B1 , constitutes the single-color branch in B2 and path P2a , which 
forms the end of the color-alternating branch in B1 , constitutes the single-color branch in B3

TAA AAA

AAG AGT GTG

TGA GAT

AAC ACT CTG

r1: TAAA C TGAT

r2: TAAA G TGAT

(a)

TAA AAA

AAC ACT CTG

AAT ATG

TGA GAT

r1: TAAA C TGAT

r2: TAAA TGAT

(b)

Fig. 3  Inconsistency bulges caused by single nucleotide variations between genomes r1 and r2 in a de-Bruijn 
graph with k = 3 . a A single nucleotide polymorphism causes k + 1 = 4 unmatched edges, resulting in an 
inconsistency bulge with two single-color branches of length k + 1 = 4 . b A single nucleotide deletion in 
r2 causes k + 1 = 4 unmatched edges in r1 and k = 3 unmatched edges in r2 , resulting in an inconsistency 
bulge with two single-color branches of length k + 1 = 4 and k = 3 , respectively



Page 8 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

particular, rearranged mitochondrial tRNA genes are often poorly conserved, while at 
the same time being rearranged most frequently among all mitochondrial genes. Thus, 
for the gene breakpoint detection in mitogenomes it is of great importance to take such 
events into account.

Identification of dislocation breakpoints in noisy sequences

The workflow of our method is summarized in Fig. 4. A major problem in our setting is 
that rearranged mitochondrial sequences are “noisy” due to the high degree of sequence 
dissimilarities in the input (see section above). We, therefore, start from suitable pairs of 
branching paths whose combination might give rise to BBs. Steps 1 and 2 in our work-
flow thus create a set of BB candidates. The single-color paths on the branches of the BB 
candidates are subsequently determined by exploiting the threefold entangled nature of 
dislocation breakpoints (Step 3). Thereafter, the candidates are checked for MSBs on the 
branches and bulge flanks (Steps 4–6). Finally, a cleansing routine removes remaining 
spurious candidates (Step 7). The individual Steps are described below.

Step 1 Initially, the graph is examined for two types of possible branch points: Initia-
tion points (IP), where a 2-color path splits into two single-color paths, and termination 
points (TP), where two single-color paths merge into a 2-color path. The precise defini-
tion of both branch points is illustrated in Fig. 5 using the toy example.

Step 2 IPs are locations in the graph where a path common to two genomes diverges, 
and if it later re-converges in a TP, a bulge is formed. Hence, each combination of an IP 
with a TP of the same two genomes r1 and r2 yields two candidates for BBs, one where 
the putative breakpoint is in r1 with respect to r2 and the other one with the roles of r1 
and r2 exchanged. In the IP-TP pair of Fig. 5, the first candidate would be the correct one 

Step 1: Identification of bulge initiation and termination points

Step 2: Combination of bulge initiation and termination points

Step 3: Localization of single-color paths P 1
a and P 2

a

Step 4: Validation of flanking synteny blocks

Step 5: Identification of synteny blocks on the color-alternating branch

Step 6: Validation of synteny blocks on the single-color branch

Step 7: Removal of spurious bulges
Fig. 4  Workflow for the identification of dislocation breakpoints

v1

IP

v2 v3 v4

TP
p1 = 4

p2 = 4

succ(p1, 1
) = 5

succ(p2 , 1) = 5

p3 = 16

p4 = 8

pred(p3 , 1) = 15

pred(p4, 1
) = 7

Fig. 5  A pair of bulge initiation (IP) and termination points (TP) for BB B1 of the toy example (cf. Figs. 1, 2). For 
both IPs and TPs, the four vertices are distinct and the positions of adjacent edges of the same genome are 
succeeding, i.e., have a distance of one



Page 9 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

( r1 with respect to r2 ) and correspond to BB B1 of Fig. 2. For this candidate, the single-
color branch can already directly be determined as Ps = (r1, 5, 7) from the IP-TP combi-
nation. On the color-alternating branch, so far only the first and last edges are specified 
by (v2, •, r2, 5) and (•, v3, r2, 15) , respectively, where • is a placeholder for an irrelevant 
value.

In a true BB, the color-alternating branch contains at least one MSB composed of at 
least one gene. Thus, its length must at least be of the size |gmin| of the shortest gene 
gmin that is typically present in the class of species under consideration. The single-color 
branch, on the other hand, does not contain any synteny blocks and hence is notably 
shorter. Its precise length depends mainly on the degree of conservation between the 
genomes under consideration and the presence and size of intergenic regions but gener-
ally is in the order of k. Details may be found in Additional file 1: Section Branch lengths. 
These two conditions on the branch lengths are used as a rough initial filter to sort out 
combined IP-TP pairs that cannot result in BBs. For the above-considered IP-TP pair, 
this filter would already remove the incorrect second candidate.

Step 3 As discussed in Section “Dislocation breakpoints in the de-Bruijn graph”, every 
true BB shares two paths each with its entangled BBs. For B1 of the toy example, these 
are Ps and one of paths P1

a or P2
a (cf. Fig. 2). This relation is now used to identify the miss-

ing edges of paths P1
a and P2

a on the color-alternating branch of the B1 candidate, elimi-
nating the need for expensive graph traversals. In detail, to complete P1

a , whose first edge 
(v2, •, r2, 5) is already known, other IP-TP combinations are searched whose single-color 
branch is a single-color path of r2 and starts with position 5. Analogously, P2

a , whose last 
edge (•, v3, r2, 15) is already known, can be completed by searching for IP-TP combina-
tions whose single-color branch again is a single-color path of r2 but now ends with posi-
tion 15. These conditions are met by the candidates for bulge B2 and B3 , respectively. 
Consequently, P1

a can be set to the single-color branch (r2, 5, 7) of B2 and P2
a can be set to 

the single-color branch (r1, 13, 15) of B3 . If there were no two such IP-TP combinations 
to complete the paths for the B1 candidate, this candidate could not be a true BB and 
could thus be removed. Hence, this step also serves as an additional filter for random 
candidates.

Sequence inconsistencies may lead to additional IP-TP combinations that satisfy the 
above conditions and could thus be used for the path completion of the considered can-
didate. In this case, the routine selects the pair of IP-TP combinations and, thereby, com-
pletes paths P1

a and P2
a so that among all possible options both paths are furthest apart. 

The rationale is that for every other choice, at least one of the paths contains 2-color 
path segments (otherwise, there would not be a combination of paths with a greater dis-
tance), which are already part of the MSBs on the color-alternating branch enclosed by 
P1
a and P2

a.
Step 4 Every true BB is flanked by one MSB on each bulge end, e.g., (g1) and (g2) for 

BB B1 . The subsequences corresponding to each of the flanking 2-color paths of a BB 
candidate should hence be similar. Since a MSB must consist of at least one gene of size 
|gmin| (cf. Step 2), we consider only subpaths of size ρ = |gmin| + ǫ and thus also sub-
sequences of this length. Here, ǫ is a small value for which in the case of mitogenomes 
ǫ = 20 proved to be a good choice (cf. Additional file 1: Section Local sequence align-
ments for details).



Page 10 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

To assess the similarity between the subsequences, we employ a banded local sequence 
alignment with affine gap costs (cf. Additional file 1: Section Local sequence alignments 
for parameter settings) and accept alignments below a specified E-value threshold where 
at least nmatch nucleotides match perfectly. The latter also implicitly determines the min-
imum length the alignments must have. Candidates, where at least one of the alignments 
does not fulfill these conditions are discarded. These constraints will also be used for the 
alignments of later steps.

Step 5 The homologous regions identified at the two flanks of the candidate BBs could 
still be part of the same MSB, which is interrupted by a series of sequence inconsisten-
cies. This could be due to a longer inset of nucleotides (or a series of deletions) in one 
of the genomes, such as shown in Fig. 6a. Here, genome r2 features such an inset in g1 , 
which is not present in r1 . While Step 1 removes most of such cases, a non-negligible 
number may be retained, in particular, if the considered species are only moderately or 
poorly conserved. To eliminate them, the color-alternating branches of the candidates 
are examined for homologous regions, which are missing in the above scenario.

To see how this can be done, reconsider BB B1 of the toy example (cf. Figs. 1, 2). In 
this case, there are two homologous regions, MSBs (g4) and (g3) , on the color-alternating 
branch. These correspond to the two 2-color paths {Pg4

r1 ,P
g4
r2 } and {Pg3

r1 ,P
g3
r2 } , respectively. 

Since {Pg4
r1 ,P

g4
r2 } starts directly after P1

a , the first edge of its r2 component Pg4
r2  is the posi-

tional direct successor to the last edge on P1
a , i.e., (v7, •, r2, succ (7, 1) = 8) . Likewise, 

2-color path {Pg3
r1 ,P

g3
r2 } ends directly before P2

a . Thus, the last edge of its r2 component Pg3
r2 

is the positional direct predecessor to the first edge on P2
a , i.e., (•, v6, r2, pred (13, 1) = 12).

Like in Step 4, only the first ρ vertices of the first and the last ρ vertices of the sec-
ond putative 2-color paths are considered. For the B1 candidate, the single-color paths 
P1
a and P2

a are already known. The r2 components of the 2-color paths can thus already 
be determined as (r2, 8, succ (8, ρ)) and (r2, pred (12, ρ), 12) . To find out whether the 
corresponding r1 components exist, we search for alignment anchors on the r2 paths by 
combining consecutive (k + 1)-mer matches of r1 . To this end, a local sorting strategy is 
employed, again eliminating the need for graph traversals. This is done by Algorithm 1 
described in Additional file 1: Section Alignment anchor detection.

A point mutation distinguishing r1 and r2 generally results in k + 1 unmatched edges 
in the de-Bruijn graph (cf. Fig.  3). As a consequence, there may be multiple separate 
alignment anchors that are output by Algorithm 1, which are actually part of the same 

va

vb
vc vc ve

vf

(a)

g1

∗ ∗

†

inset

g1 vbva vc

(b)

g2

†

∗ g2

∗

Fig. 6  Two spurious breakpoint bulge (BB) candidates. In each case, the defining path of the single-color 
branch is annotated by † . The two defining paths of the color-alternating branch are annotated by ∗ . a 
Spurious candidate between va and vf  caused by a longer inset of nucleotides in gene g1 in r2 (blue). The 
green edges on the upper bulge branch indicate only short random mappings of both genomes, no actual 
homologous sequence segments. b Spurious candidate between va and vb . There is a homologous region 
between vb and vc on the color-alternating branch of this candidate, but it is equal to the homologous region 
on the right flank, i.e., both overlap to 100% . The candidate is thus not shaped like a bulge



Page 11 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

homologous region. Considered on their own, these individual paths may not be suf-
ficient indicators for homology because the path length is too short. Therefore, we chain 
alignment anchors as long as possible and subsequently extend them linearly to cover 
the r2 components of the 2-color paths. Lastly, the resulting subsequences are aligned. 
The detailed steps are explained in Additional file 1: Section Alignment anchor chaining 
using Algorithm 2.

BB candidates are discarded if only low-quality alignments could be found. Otherwise, 
all good-quality alignments are regarded as homologous regions. As in the case depicted 
in Fig. 6b, these regions might still coincide with the regions that have been identified at 
the bulge flanks in Step 5. To detect such spurious candidates, we evaluate the pairwise 
overlap between these regions. A small overlap is tolerated to account for possible ran-
dom (k + 1)-mer mappings. Based on manual experimentation with a large number of 
different mitochondrial genomes, a threshold of 10% was found to be a good choice to 
sort out the large majority of such cases while still not incorrectly retaining candidates 
where these regions coincide.

Step 6 While the single-color branches are generally only approximately k nucleotides 
long, poorly conserved species or long intergenic regions may also cause longer single-
color branch lengths (confer Additional file 1: Section Branch lengths). Such branches 
would, however, still not contain homologous regions. Candidate BBs with single-color 
branch lengths of at least nmatch (recall trustworthy alignments must involve at least that 
many perfectly matching nucleotides) are thus assessed to see whether they contain such 
regions. To this end, the previous step is repeated in a similar manner with the single-
color branch as input to Algorithm 1. In contrast to Step 5, candidate BBs are discarded 
if an alignment of sufficient quality is encountered.

Step 7 Finally, the last step removes “shifted” BB candidates. Consider Fig. 7: Sequence 
inconsistencies within gene g2 result in an inconsistency bulge (cf. Fig. 3) between ver-
tices vc and vd . This may result in two candidates for breakpoint (g1, g2)2,1 . One of them 
is the correct BB B between vertices va and vb . The second one is a spurious candidate 
B′ between vertices va and vd . There are several criteria that must be met to cause such 
a scenario. For example, the inconsistency region must be close to the start of g2 . The 
complete list of conditions and their detailed explanation is compiled in Additional 
file 1: Section Shifted breakpoint bulge candidates.

To identify such spurious candidates, we apply the agglomerative clustering routine 
AGNES (agglomerative nested clustering)  [32] to the remaining BB candidates. This 
clustering routine builds a hierarchy, i.e., a tree, of clusters by greedily merging data 
points, candidate BBs in this case, in a bottom-up fashion. To decide which clusters to 
combine, a similarity measure needs to be specified. Here, this is the maximum pairwise 

va

ve vf

vb vc vdg1

p
′
1

p ′
3

p ′
2 p

′
4

g3

g2

p′′
3

p
′′
4

g2

Fig. 7  Spurious “shifted ” breakpoint bulge (BB) candidate. In addition to the correct BB candidate B between 
va and vb , a second spurious candidate B′ between va and vd exists for breakpoint (g1, g2)2,1 . This second 
candidate is caused by an inconsistency bulge close to the end of gene g2 between vc and vd



Page 12 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

distance between the related position predictions at the bulge ends of two candidates. In 
the previous example, this would be the distances between p′3 and p′′3 , as well as p′4 and 
p′′4 . Clusters are not joined if the candidates have different genomes annotated on their 
branches. When no more clusters can be merged, the created tree is cut at ρ . This yields 
single-point clusters for unambiguous candidates and multi-point clusters if shifted 
bulges and thus ambiguities for the same breakpoint event exist. To remove the spurious 
candidates in the multi-point clusters, only the cluster with the shortest bulge branches 
is selected, e.g., bulge B in the above example.

Gene inversion breakpoints

Inversions are rearrangements that invert a continuous part of the chromosome. As a 
consequence, a sequence of genes, which was located on the affected segment on one 
strand, will be located on the opposite strand afterward. On the sequence level, this 
means that the corresponding encoding sequence s = s1s2 . . . sn is replaced by its reverse 
complement s = sCn s

C
n−1 . . . s

C
1  on the original strand, while s is replaced by s on the 

opposite strand (both in 5’ to 3’ direction). Here, xC of a nucleotide x is its complemen-
tary nucleotide, e.g., AC = T  and CC = G . To follow along, we make use of a second toy 
example, which is shown in Fig. 8. Here, gene g2 = TAAC , which is located on the posi-
tive strand (reading direction left to right) in r1 has undergone an inversion in r2 . Con-
sequently, g2 = GTTA is located on the positive strand in r2 , while g2 is encoded on the 
negative strand (reading direction right to left).

To identify such segments in the de-Bruijn graph, the graph introduced in the “Dislo-
cation breakpoints in the de-Bruijn graph” section must be modified to also include the 
(k + 1)-mers of the negative strands. To this end, every edge (v, v′, r, p) in the previous 

p : 1 2 3 4 5 6 7 8

g1 g2

r
+
1 : A A A C T A A C

r
−
1 : T T T G A T T G

5’ 3’

3’ 5’

(a) p : 1 2 3 4 5 6 7 8

g1 g2

r
+
2 : A A A C G T T A

r
−
2 : T T T G C A A T

5’ 3’

3’ 5’

p1 = 4 +

p2 = 4 +

g1

p3
=

5 + p
5 =

7

−

p4 = 5
+

p6
= 6

p7 = 6 −
p8 = 7 +

g2

(b)

p2 = 4 +

p1 = 4 +

g1

p4
=

5 + p ′
6 =

7

−

p3 = 5
+

p
′
5
= 6

p′8 = 6 −

p′7 = 7 +

g2

(c)

Fig. 8  “Broken” bulges caused by a gene inversion. a While gene g1 is encoded on the plus strand in both 
genomes r1 and r2 , gene g2 is located on opposite strands, i.e., on the plus strand in r1 and minus strand in r2 . 
The reverse complement g2 is located on the respective other strand. Note the opposing reading directions 
of both strands indicated by the arrows. In the two-stranded de-Bruijn graph ( k = 2 ), this results in one bulge 
b for g2 and one bulge c for g2 . Note that due to the redundancy introduced by adding (k + 1)-mers of both 
strands, there is an additional pair of bulges with negative-strand (k + 1)-mer matches on the left bulge 
flanks in the graph. These bulges are ignored because they do not yield any further information



Page 13 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

graph is replaced by a new edge (v, v′, r, p,+) . In addition, the edge (v, v′, r, p− k ,−) , 
representing the corresponding sequence segment on the complementary strand, is 
included. Note that consecutive (k + 1)-mers on the negative strand have decreasing 
position annotations. This is due to opposing reading directions of both strands and the 
convention that genome positions are specified with respect to the positive strand.

In this two-stranded de-Bruijn graph, gene inversions are expressed by 2-color paths, 
which are formed by (k + 1)-mer matches of opposite strands. In the above toy exam-
ple, r1 ’s (k + 1)-mers (TA,AA, r1, 7,+) and (AA,AC , r1, 8,+) of g2 , which are located on 
the positive strand, match with r2 ’s (k + 1)-mers (TA,AA, r2, 6,−) and (AA,AC , r2, 5,−) , 
respectively, which are located on the negative strand. For the reverse complement 
g2 = GTTA , by symmetry, r1 ’s (k + 1)-mers (GT ,TT , r1, 6,−) and (TT ,TA, r1, 5,−) 
match with r2 ’s (k + 1)-mers (GT ,TT , r1, 7,+) and (TT ,TA, r1, 8,+) , respectively. As 
a result, two “broken” bulges (Fig.  8b, c) arise in the graph. In these bulges, positions 
pred (p6, k − 1) = 5 to succ (p′6, 1) = 8 confine the sequence segment of g2 in r1 on the 
positive strand, while positions succ (p5, 1) = 8 to pred (p′5, k − 1) = 5 confine this seg-
ment in r2 on the negative strand, both in reading direction 5’ to 3’ (i.e., left to right on 
the plus and right to left on the minus strand). We call these segments inverted sequence 
blocks (IBs).

Therefore, to identify IBs, the graph is searched for pairs of broken bulges, creating a 
set of candidates. In contrast to the toy example, the gene content is generally not per-
fectly conserved. The IBs are hence not necessarily of the same size. To account for this, 
a small relative deviation of

is permitted, where �(p, p′) is the distance from p to p′ . For similar reasons as in Step 5 
of the previous section, δ = 10% was found to be a good choice.

The thus obtained sequence segments are subsequently examined for homology using 
a global sequence alignment. Candidates with alignment scores a, so that

are accepted as IBs, where amin and amax are the minimum and maximum possible align-
ment scores, respectively.

Determination of the (k + 1)‑mer size

The probably most important parameter that must be set at the beginning of the pro-
posed approach is the (k + 1)-mer size of the de-Bruijn graph. Generally, an approximate 
exponential growth of the runtimes can be expected for decreasing values of k. Depend-
ing on the considered mitogenomes, this may cause extremely long runtimes from a 
certain point on. However, this is not necessarily a loss, since a smaller value of k does 
not inevitably improve the accuracy of the results. On the contrary, from a certain point 
on, the result quality will be impaired. This is because lowering the (k + 1)-mer size also 
increases the number of random matches between unrelated sequence segments. Thus 
a compromise between a too-large value, concealing many sequence similarities among 

|�(p6, p
′
6)−�(p′5, p5)|

min{�(p6, p
′
6),�(p′5, p5)}

≤ δ

a− amin

amax − amin
≥ ã



Page 14 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

the genomes, and a too-small value, cluttering the graph with many random matches 
must be found.

It is often difficult to decide which value best satisfies these requirements for a given 
set of input genomes. Therefore, while this value can be specified manually as a runtime 
parameter, we also provide an automatic computation routine, which is employed if no 
parameter is passed to the program.

To this end, we determine the (k + 1)-mer size as the minimum value so that the 
(k + 1)-mer repeat rate for each sequence in the de-Bruijn graph is at most 0.15. Here, 
this rate is defined as 1− (number of unique (k + 1)-mers/ number of all (k + 1)-mers) . 
Manual experimentation with many different mitochondrial sequences suggested that 
this is generally a good choice to both keep the required runtimes at bay and produce 
good-quality predictions. An evaluation of experiments with several selected mitog-
enomes can be found in Additional file 1: Section Impacts of the (k + 1)-mer size on the 
runtime and result accuracy.

Data sets

Simulated data sets

Simulated data sets were constructed from a simple model of sequence evolution along 
a rooted tree. For each experiment, ten direct child sequences were generated from 
this parental sequence by introducing nucleotide substitutions using the HYK model of 
nucleotide substitution implemented in the simulation package Seq-gen [33]. The transi-
tion/transversion rate was set to 3.0, and an equal substitution rate rsub was applied to all 
children. This way, the ratio of base pairs shared between every pair of child sequences 
s1 and s2 of length |s1| and |s2| is approximately 1− 2rsub/min{|s1|, |s2|} . By using substi-
tution rates of rsub ∈ {1, 3, 5, 7.5} , four child sets C1,C3,C5 , and ,C7.5 were evolved, cov-
ering low, intermediate, and high levels of sequence similarity, respectively. We used a 
metazoan mitogenome of typical composition (i.e., encoding for 13 proteins, 22 tRNAs, 
and 2 rRNAs) as a parental sequence at the root to simulate data that closely resembles 
mitogenomes.

Dislocation breakpoints were modeled by moving different randomly selected genes 
in the gene order of the parental sequence to other locations. One set R1 , one set R3 , one 
set R5 , and one set R10 , each composed of ten gene orders, were created by changing the 
location of one gene, three genes, five genes, and ten genes each, respectively. To this 
end, first, a gene and, subsequently, a new location was selected randomly, taking care 
to restrict dislocations to regions outside the bounds of other gene encoding segments. 
This process was repeated once, three times, five times, and ten times to create one gene 
order in set R1 , R3 , R5 , and R10 , respectively, starting over for the next gene order until all 
ten gene orders were generated for the respective set. Table 1 shows the resulting num-
ber of breakpoints between the gene orders in the sets. Note that this number is twice 
that of the breakpoint distance [19, 20] commonly used in rearrangement studies. Each 
set Rnra , nra ∈ {1, 3, 5, 10} was applied once to each set Crsub , rsub ∈ {1, 3, 5, 7.5} . Given two 
sets Rnra and Crsub , the ten rearranged gene orders of Rnra were randomly allocated to 
the ten sequences in Crsub , modifying the sequences accordingly by moving the affected 
encoding subsequences to their new locations, thus creating 16 sets for the synthetic dis-
location experiments, composed of ten sequences each.



Page 15 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

In order to produce a test set for identifying gene inversions, seven subsets C ′
rsub

 , 
each consisting of three randomly selected sequences of the original set Crsub , were 
used. In each such subset, two inversions of randomly selected tRNA genes were 
introduced to one sequence, two inversions of randomly selected proteins to another 
sequence, while one sequence was left unaltered, creating a total of eight inversion 
blocks (IB) per subset.

Real genome data sets

We consider three real genome data sets for gene dislocation experiments and one real 
genome data set for gene inversion experiments. Each data set is composed of complete 
mitogenomes contained in RefSeq89. The RefSeq database [34] is the most compre-
hensive and up-to-date resource for curated, non-redundant mitochondrial genomes 
along with their annotation.

Implementation

The proposed approach is released as a free open-source software package called 
DeBBI. DeBBI is implemented in Apache Spark [35] using its Java API. Spark is 
a large-scale data processing analytics engine, which provides implicit (data) parallelism 
for multi-processor systems or computing clusters. This facilitates that large parts of the 
graph can simultaneously be examined for breakpoint bulges. Moreover, efficient group, 
sort, and other operations can be achieved.

Results
We introduce here a new de-Bruijn graph based method to identify gene breakpoints 
in mitochondrial genomes with substantial sequence divergence. To our knowledge, 
DeBBI is the first dedicated tool for this task. In the following, we compare DeBBI with 
progressiveMauve  [30], a widely used state-of-the-art tool for multiple genome 
alignment that considers rearrangement events. While designed to derive alignments, 
it can also be used for the detection of gene breakpoints by identifying alignment blocks 
that are consecutive in one genome, but not in another. Both progressiveMauve and 
DeBBI require only nucleotide sequences as input, thus affording a fair comparison.

Table 1  Number of breakpoints contained in each of the sets Rnra , nra ∈ {1, 3, 5, 10}

Shown is the number of genes that have been dislocated in each of the ten gene orders in the respective set (col. 2), the 
total number of breakpoints between all 45 pairwise combinations of the ten gene orders in this set (col. 3), the mean 
number of breakpoints that one gene order has with any of the other nine gene orders in this set (col. 4), and the mean 
number of breakpoints between one pair of gene orders in this set (col. 5)

Set Gene dislocations 
per gene order

Total number of 
breakpoints

Mean number of 
breakpoints per gene 
order

Mean number of 
breakpoints per pair of 
gene orders

R1 1 518 52 12

R3 3 1350 135 30

R5 5 1762 176 39

R10 10 2658 266 59



Page 16 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

Benchmarking procedure and parameter settings

In all conducted experiments, progressiveMauve’s runtime parameters were set 
as suggested by  [30]. For DeBBI, the (k + 1)-mer size was computed automatically, 
as described in the “Determination of the (k + 1)-mer size” section. This resulted 
in a value of k = 10 for all but one experiment, where a value of k = 12 was deter-
mined. For the alignments in the dislocation breakpoint routine, we use an E-value 
threshold of 10−5 and require a minimum number of nmatch = 20 perfectly matching 
nucleotides. For the relative alignment score ã of the inversion breakpoint routine, we 
use a value of 0.8. From manual experimentations, these parameters have been found 
to generally produce good-quality predictions. By using them as default settings, we 
hope to relieve a user from the cumbersome empirical work of choosing suitable 
parameter settings. However, advanced users may provide other values.

If gene annotations for the considered genomes are available, the breakpoint loca-
tions can in principle be computed from the positions of two genes that are consecu-
tive in one of the genomes but not in another one. However, existing annotations of 
real mitochondrial sequences have limited accuracy of annotated gene ends, may con-
tain overlapping genes, and in some cases, annotations may be inaccurate as far as 
the identity of the genes is concerned. It is thus not possible to determine the precise 
breakpoint locations from this data by automated means. For large-scale evaluations 
of the result accuracy, we, therefore, use simulated data where precise gene annota-
tions are known so that the precise expected breakpoint locations can be computed. 
To showcase DeBBI ’s applicability to real-life data, selected real genome sequences, 
where the result quality is assessed manually, are considered thereafter.

Simulated data

Note that, in order to facilitate the computation of the precise breakpoint locations in 
the simulated data sets, only nucleotide substitutions are considered in the simulated 
sequences. The position of the gene boundaries is thus not altered before the gene 
blocks are rearranged/inverted in the sequences. Contrarily, if insertions and dele-
tions had been incorporated additionally, these events might have affected the gene 
boundaries and consequently the breakpoint locations themselves.

Gene dislocations

Figure 9 shows the empirical distribution functions (EDFs) of distances of breakpoints 
identified by DeBBI and progressiveMauve to the exactly computed breakpoints 
of the synthetic dislocation experiments, normalized to the total number of exactly 
computed breakpoints per experiment. That is, for each curve, the value at a specified 
distance describes the rate of breakpoints found with positional error up to this dis-
tance. For the DeBBI predictions, the curves are very similar in all of the four plots, 
indicating that DeBBI is robust with respect to variations in the number of break-
points. Up to and including rsub = 5 , DeBBI identified nearly all breakpoints within 
a maximum distance of 50 nt . Even for the highest substitution rate of 7.5, more than 
90% of the exactly computed breakpoints were detected within a distance of at most 
70 nt.



Page 17 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

In general, progressiveMauve ’s curves assume lower values than the corre-
sponding EDF of DeBBI for all distances. progressiveMauve tries to find collinear 
blocks between the input sequences. Manual inspection showed that its attempt to 
keep these blocks as large as possible often results in either aligning sequence seg-
ments even though these contain a breakpoint or not identifying the collinear blocks 
flanking a breakpoint because the blocks are too small. This effect is particularly 
prevalent for breakpoints between tRNA genes. Mitochondrial tRNAs are about 70 nt 
long and make up almost 60% of the genes in the mitogenomes used in the experi-
ments (typical composition). This explains the plateau-like shape and abrupt increase 
in the identified breakpoint rate at increments of approximately 70 nt.

Gene inversions

Table 2 summarizes the number of correctly identified IBs found by progressive-
Mauve and DeBBI. IB predictions are considered correct if they share at least 75% of 
their positions with the corresponding true IB. As shown in the table, DeBBI correctly 

Fig. 9  Empirical distribution functions (EDFs) of the synthetic dislocation experiments. The four plots 
summarize the result quality for the experiments with one, three, five, and ten gene dislocations per genome 
and different substitution rates rsub . The best rate of correctly identified breakpoints, i.e., the end of the EDFs is 
marked by a circle or triangle for DeBBI and progressiveMauve, respectively

Table 2  Number of correctly identified inversion blocks by DeBBI and progressiveMauve in 
the synthetic data sets

rsub 1 3 5 7.5

progressiveMauve 5 5 6 6

DeBBI 8 8 7 6



Page 18 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

identified at least as many IBs as progressiveMauve in each experiment. Up to and 
including rsub = 3 , DeBBI even detected all eight IBs correctly.

Case studies on real genome sequences

For the computation of putative breakpoint locations for the real genome data sets, 
we employ the gene predictions generated by MITOS2   [28]. Using these annotations 
instead of the annotations in the RefSeq database serves to reduce misannotations and 
naming inconsistencies. For the same reason, only protein-coding genes, tRNAs, and 
rRNAs are considered; non-coding regions such as replication origins are disregarded.

To also visually assess the quality of the predicted breakpoint locations in the context 
of the MITOS2 gene annotations, a plot referred to as breakpoint plot was designed, 
showing which areas of the genomes are involved in a predicted breakpoint with respect 
to the gene annotations. Figure  10 illustrates how to interpret this plot with a simple 
example.

To estimate the degree of sequence similarity for the considered mitogenomes, we 
determined the pairwise (k + 1)-mer match rates and inversion match rates for the dis-
location and inversion experiments, respectively. The match rates are defined as the 
number of distinct (k + 1)-mer matches between two genomes divided by the total num-
ber of (k + 1)-mers of the shorter of both genomes. It should be noted, however, that 
this is only a rough measure, as different genes may be conserved to a varying degree, 
while these rates are evaluated for the complete genome as a whole. The inversion match 
rates consider only the (k + 1)-mer matches of opposing strands. As a reference, we also 
determined these rates for the simulated sequences. They are shown in Additional file 1: 
Table S1.

Gene dislocations

Each of the three gene dislocation studies was performed using two mitogenomes. The 
species of the different experiments were selected to cover the three major bilaterian 
groups Vertebrata, Spiralia, and Arthropoda, represented by two Sillago, two Decapodi-
formes, and two Nematocera species, respectively (cf. Table 3). Additional file 1: Figure 
S9 shows the taxonomic tree for the considered species.

The first experiment concerns closely related bony fish, Sillago aeolus and Sillago 
sinica. The two mitogenomes differ only by the exchanged position of two consecu-
tive tRNA genes (cf. Additional file  1: Section  Gene orders of dislocation case study 1 
and Additional file 1: Figure S11). This results in six putative breakpoints (cf. Table 3). 
DeBBI successfully identified all of them with deviations of less than 50 nt , as can be 
seen in Fig.  11, which shows the EDFs of the DeBBI and progressiveMauve pre-
dictions with respect to the putative breakpoint locations computed with MITOS2. The 
corresponding breakpoint plot is shown in Additional file 1: Figure S16.

The two Decapodiformes of the second case study feature an exceptionally high num-
ber of 52 putative breakpoints (cf. Table 3), of which DeBBI detects the great majority 
with dmax ≤ 200 (cf. Fig. 11). Moreover, both genomes contain an unusually high num-
ber (for metazoan mitogenomes) of comparably long non-coding regions (cf. Fig.  12). 
Such long non-coding segments were described previously for Cephalopoda and Deca-
podiformes [36], containing identical sequence elements with possible transcription 



Page 19 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

Fi
g.

 1
0 

Ex
am

pl
e 

br
ea

kp
oi

nt
 p

lo
t f

or
 tw

o 
ge

no
m

es
 r 1

 a
nd

 r 2
 . S

eq
ue

nc
e 

se
gm

en
ts

 e
nc

od
in

g 
fo

r t
he

 s
am

e 
ge

ne
 a

re
 g

iv
en

 th
e 

sa
m

e 
co

lo
r a

nd
 a

nn
ot

at
ed

 w
ith

 th
e 

sa
m

e 
ge

ne
 n

am
e 
g
1
,g

2
,g

3
,g

4
 , o

r 
g
5 . 

Th
e 

re
d 

in
te

rv
al

s 
on

 th
e 

to
p 

an
d 

bo
tt

om
 o

f t
he

 fi
gu

re
 s

ho
w

 th
e 

pr
ed

ic
te

d 
lo

ca
tio

ns
 fo

r a
 b

re
ak

po
in

t. 
Bl

ac
k 

lin
es

 c
on

ne
ct

 th
es

e 
lo

ca
tio

ns
 to

 th
e 

id
en

tifi
ed

 re
la

te
d 

si
te

 in
 th

e 
ot

he
r g

en
om

e.
 F

or
 

be
tt

er
 re

ad
ab

ili
ty

, t
he

se
 li

ne
s 

ar
e 

so
lid

 fo
r t

he
 s

ta
rt

 a
nd

 d
as

he
d 

fo
r t

he
 e

nd
 o

f a
 b

re
ak

po
in

t. 
Fo

r e
xa

m
pl

e,
 th

e 
fir

st
 re

d 
in

te
rv

al
 fr

om
 p

os
iti

on
s 

ei
gh

t t
o 

te
n 

on
 th

e 
to

p 
le

ft
 c

or
re

sp
on

ds
 to

 b
re

ak
po

in
t 

(g
1
,g

2
) 1
,2

 . T
he

 c
on

ne
ct

in
g 

lin
es

 e
nd

 a
t p

os
iti

on
s 

8 
an

d 
30

 in
 th

e 
bo

tt
om

 g
en

om
e.

 Id
ea

lly
, t

he
se

 li
ne

s 
sh

ou
ld

 c
oi

nc
id

e 
w

ith
 th

e 
co

rr
es

po
nd

in
g 

bo
un

da
ry

 o
f t

he
 c

ol
or

ed
 g

en
e 

bl
oc

ks
 fo

r g
1 a

nd
 g
2
 . 

H
er

e,
 th

is
 is

 o
nl

y 
tr

ue
 fo

r t
he

 g
2
 b

ou
nd

ar
y.

 T
hu

s, 
th

er
e 

is
 a

 d
is

ta
nc

e 
of

 o
ne

 o
f t

he
 p

re
di

ct
ed

 to
 th

e 
pu

ta
tiv

e 
br

ea
kp

oi
nt

 lo
ca

tio
n.

 T
he

re
 a

re
 n

o 
de

vi
at

io
ns

 fo
r b

re
ak

po
in

ts
 (g

2
,g

3
) 1
,2
,(
g
4
,g

5
) 1
,2
,  a

nd
 

(g
2
,g

5
) 2
,1
 . C

on
ne

ct
in

g 
lin

es
 th

at
 a

re
 n

ot
 p

ar
al

le
l t

o 
an

y 
of

 th
e 

co
lo

re
d 

ar
ea

s 
in

di
ca

te
 th

at
 th

e 
co

rr
es

po
nd

in
g 

pr
ed

ic
te

d 
lo

ca
tio

ns
 c

an
no

t b
e 

al
lo

ca
te

d 
to

 a
ny

 o
f t

he
 p

ut
at

iv
e 

br
ea

kp
oi

nt
s. 

Th
is

 is
 th

e 
ca

se
 fo

r t
he

 d
as

he
d 

lin
e 

m
ar

ke
d 

by
 a

n 
as

te
ris

k.
 T

he
 c

or
re

sp
on

di
ng

 p
re

di
ct

io
n 

is
 in

co
rr

ec
t s

in
ce

 th
er

e 
is

 n
o 

br
ea

kp
oi

nt
 b

et
w

ee
n 

ge
ne

s 
g
3 a

nd
 g
4



Page 20 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

and/or replication functions. DeBBI indeed identified highly similar sequence segments 
in three non-coding regions of the here-considered genomes. In the corresponding 
breakpoint plot of Fig. 12, this leads to two anti-parallel lines, marked by asterisks, which 
connect these regions (annotated by encircled numbers one to three). Note that this is 
different from the anti-parallel line of the example scenario shown in Fig. 10, which con-
nects two different gene encoding regions g4 and g5 , thus causing an incorrect break-
point prediction, as opposed to non-coding segments in this case, which do not cause 
erroneous predictions. The four resulting additional breakpoint regions are annotated by 
the Greek letters α,β , γ1 , and γ2 , where γ1 and γ2 correspond to the same sequence seg-
ment in the bottom sequence, once associated with region one and once associated with 
region two in the top sequence.

In contrast to all other experiments, which used a value of k = 10 , the automatic 
computation routine determined a value k = 12 for the third experiment (cf. Section  
“Determination of the (k + 1)-mer size”). There is an overall good agreement between 
the DeBBI predictions and the putative breakpoint locations (cf. Figs. 11, 13). Manual 
inspection showed that the undetected breakpoints were missed due to high levels of 
sequence dissimilarity (much worse than the average (k + 1)-mer match rate suggests) 

Table 3  Real genome gene dislocation case studies

Shown are the accession IDs, the lowest common ancestor (lca), the (k + 1)-mer match rates, and the number of putative 
breakpoints for each of the experiments

Accession IDs lca Match rate Putative 
breakpoints

NC_030373 NC_025935 Sillago 0.26 6

NC_007894 NC_009690 Decapodiformes 0.12 52

NC_016202 NC_16173 Nematocera 0.18 40

Fig. 11  Empirical distribution functions (EDFs) of the real genome dislocation experiments. Putative 
breakpoints are computed from gene annotations generated by MITOS2. The best rate of correctly 
identified breakpoints, i.e., the end of the EDFs, is marked by a circle or triangle for DeBBI and 
progressiveMauve, respectively. The additional breakpoints found within the non-coding regions 
are not taken into account as they cannot be associated with any of the putative breakpoints, which only 
consider breaks between gene-encoding regions



Page 21 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

Fi
g.

 1
2 

Br
ea

kp
oi

nt
 p

lo
t o

f t
he

 D
ec

ap
od

ifo
rm

e 
da

ta
 s

et
 (s

ec
on

d 
ca

se
 s

tu
dy

)



Page 22 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

Fi
g.

 1
3 

Br
ea

kp
oi

nt
 p

lo
t o

f t
he

 N
em

at
oc

er
a 

da
ta

 s
et

 (t
hi

rd
 c

as
e 

st
ud

y)



Page 23 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

in at least one of the two genes involved. In seven of these genes, none of the (k + 1)

-mers matched between both species, even for k = 10 . Again, DeBBI identified a 
homolog sequence segment between two non-coding regions, which are highlighted 
by encircled numbers one and two in the corresponding breakpoint plot of Fig.  13. 
The resulting additional breakpoint region is the one that exceeds the bounds of the 
linear genome representation (split red interval at the beginning and end of the bot-
tom sequence of the figure).
progressiveMauve identifies no rearrangements in the first case study. This is 

because it outputs a sequence of consecutive alignment blocks (see Additional file 1: 
Figure S15) so that all breakpoints are missed. Consequently, the corresponding EDF 
in Fig. 11 collapses to a single point at the origin (green triangle). In case studies 2 and 
3, progressiveMauve detects a considerably smaller number of breakpoints than 
DeBBI (cf. Fig. 11). Long unaligned sequence segments cause the missed rearrange-
ments for case study 2, and a mixture of long unaligned and erroneously aligned seg-
ments causes them in case study 3 (see Additional file 1: Figs. S15, S17, and S18). The 
incorrect alignments manifest in anti-parallel lines between the corresponding gene 
encoding regions in the breakpoint plot of Additional file 1: Figure S18. In contrast 
to the anti-parallel lines in the DeBBI breakpoint plots, which associate non-coding 
sequence segments to one another, these alignments cause two incorrect breakpoints.

In all three case studies progressiveMauve particularly misses breakpoints involv-
ing at least one tRNA gene, as was the case for the simulated data sets. A possible expla-
nation could be that rearranged mitochondrial tRNAs, which are frequently also poorly 
conserved [23–25], would correspond to extremely short alignment blocks, which makes 
it very challenging to distinguish these blocks from random alignments.

Gene inversions

The gene inversion case study was performed on three Clupeocephala mitogenomes 
(see Additional file 1: Figure S10 for the corresponding taxonomic tree). Each of the 
three species has the same gene order, but some genes are located on opposite strands 
(cf. Table 4). DeBBI missed one of the four inversion blocks (IBs). This was caused 
by the poor conservation of gene content of this block, as the corresponding inver-
sion match rate of only 0.2% indicates. In addition to this IB, progressiveMauve 
missed two further inversion blocks.

Table 4  Real genome gene inversion case studies

Shown are the accession IDs, the lowest common ancestor (lca), the genes residing on opposing strands, the 
inversion match rate of these genes, and whether the corresponding IBs have been identified by DeBBI and/or 
progressiveMauve

Accession IDs lca Genes on 
opposing 
strands

 Inversion 
match rate (%)

Identified 
by DeBBI

Identified by 
progressiveMauve

NC_022713 NC_23799 Clupeocephala tRNA-P 4.3 �

NC_23799 NC_031827 Cyprinidae nad6 3.1 � �

NC_022713 NC_031827 Clupeocephala tRNA-P 21.0 �

nad6 0.2



Page 24 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

Additional experiments

We also evaluated the breakpoint predictions for the above real genome data sets using 
two other sequence aligner Gecko and CHROMEISTER. Both tools produced predic-
tions of poorer quality than progressiveMauve and DeBBI in all cases. The findings 
are compiled in Additional file 1: Section Evaluation with Gecko  and CHROMEISTER .

Running times

All experiments were run on a desktop computer with an AMD Ryzen™ 7 1700 proces-
sor with 3 GHz, using two hardware threads.

Simulated data

Figure 14 summarizes DeBBI ’s time requirements for the dislocation experiments on 
the synthetic data set. The given times encompass the parsing from input fasta files, the 
construction of the de-Bruijn graphs for the positive strands, and all seven steps outlined 
in the “Methods” section to compute the breakpoint locations between the 10 input 
sequences per dislocation experiment.

We find that running times depend both on the level of sequence inconsistencies, as 
controlled by rsub , and on the number of putative breakpoints nra , i.e., the discrepancy 
in the gene orders. A large number of putative breakpoints results in a larger number 
of bulge candidates that need to be analyzed so that the runtimes are longer for larger 
values of nra.

Such monotonic behavior cannot be observed for the level of sequence dissimilari-
ties. Moderate substitution rates of rsub = 3 (i.e., the peaks of the curves) require most 
resources. This can be explained as follows. At low substitution rates, the de-Bruijn 
graph is hardly cluttered since the gene encoding regions are well-conserved, i.e., con-
tain only few sequence dissimilarities. As a consequence, there is only a small number 
of BB candidates originating from random matches of unrelated sequence segments. 
Hence fewer candidates must be analyzed, which is reflected in shorter running times. 
On the other hand, while there is a lot more noise in the de-Bruijn graph for large sub-
stitution rates, which results in a larger number of initially present (mostly noisy) BB 
candidatesd, most of these candidates are discarded at an early stage (end of Step 4) due 
to insufficient alignment quality. This prevents a massive increase in runtime. Moreo-
ver, the noise also causes an increasing number of actually correct BBs to suffer from 

Fig. 14  DeBBI runtimes with two threads for the synthetic gene dislocation experiments with one, three, 
five, and ten rearrangements nra per genome and different substitution rates rsub



Page 25 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

insufficient alignment quality so that these are also sorted out prematurely, hence leav-
ing fewer breakpoint bulges for the more costly analysis after Step 4, as compared to 
lower substitution rates.

The running times for detecting inversions in the synthetic data sets are summarized 
in Fig. 15. The time measurement includes the parsing from input fasta files, the con-
struction of the de-Bruijn graphs of both positive and negative strands, and all steps for 
the computation of gene inversion breakpoints as described in the “Methods” section. 
Again we observe a general trend towards shorter running times for larger substitution 
rates. A similar argument as for the above dislocation experiments can explain this.

By comparing the above runtimes with the times required for a single hardware thread, 
a mean speed-up of approximately 1.45 and an efficiency of 0.73 was measured for the 
dislocation experiments, while a mean speed-up of approximately 1.56 and an efficiency 
of 0.78 was measured for the gene inversion experiments.

Case studies

The running times for the case studies, involving both dislocation and inversion experi-
ments, are shown in Table 5. The measured times reflect the dependency on the number 
of putative breakpoints and the level of sequence inconsistency observed in the synthetic 
data sets.

Discussion
This contribution describes a new method for the detection of breakpoint locations in 
the nucleotide sequences of complete mitochondrial genomes. It constructs a position-
annotated de-Bruijn graph of the input sequences, which is then scanned for particular 

Fig. 15  DeBBI runtimes with two threads for the synthetic gene inversion experiments with different 
substitution rates rsub

Table 5  Time requirements of DeBBI with two threads for the real genome experiments

Accession IDs Time (s)

Dislocation experiment

   NC_030373 NC_025935 40.2

   NC_007894 NC_009690 98

   NC_016202 NC_16173 66

Inversion experiment

   NC_022713 NC_23799 NC_031827 17.4



Page 26 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

bulge structures that may be associated with gene rearrangement events. Gene disloca-
tions and gene inversions can be analyzed independently. The method is implemented in 
the software package DeBBI.

In-depth experiments on a comprehensive collection of simulated mitochondrial 
sequences demonstrate DeBBI ’s ability to identify breakpoints in species with highly, 
moderately, and slightly rearranged gene orders while also allowing for substantial 
sequence divergence. Case studies on species of different taxonomic groups further 
showcase DeBBI ’s applicability to real-life mitochondrial sequences. The standard mul-
tiple-sequence alignment tool progressiveMauve is used for a comparative analysis 
in the main manuscript. Further experimental evaluations with two additional alignment 
tools, CHROMEISTER and Gecko, are provided in the supplementary material (Addi-
tional file 1: Section Evaluation with Gecko and CHROMEISTER).

On both artificial and real data sets, progressiveMauve fails to discover many of 
the breakpoints identified with DeBBI by either creating a large alignment block that 
contains them or not aligning the corresponding sequence segments at all. An even 
smaller percentage of breakpoints is found by CHROMEISTER and Gecko in the cor-
responding experiments. With all three tools, in particular breakpoints involving at least 
one tRNA gene are often missed. This problem seems to be inherent to the identifica-
tion of collinear sequence blocks, which are used to compute the breakpoint locations 
in these cases. In constrast, DeBBI directly locates the breaks between genes so that this 
issue does not occur. Since the genomics positions of mitochondrial tRNAs are rear-
ranged much more frequently than the longer rRNA and protein-coding genes [37, 38], 
this is a significant advantage of DeBBI to locate gene breaks in mitogenomes.

Future work

As the target application scenario, we focus on mitochondrial genomes where heavily 
rearranged gene orders are common and rearranged genes are often poorly conserved, 
hoping to gain insights into the underlying rearrangement mechanisms. The algorithmic 
idea behind the proposed approach is, however, not limited to a use on mitogenomes, 
but could also be applied to nuclear genomes. To optimize the result quality in such a 
case, the default settings for the runtime parameters might need to be appropriately 
adapted. This could be an interesting aspect to be explored in future studies.

The breakpoint locations identified by DeBBI could in principle also be used to cre-
ate collinear blocks between the input sequences. However, if not all breakpoints are 
discovered, these blocks generally cannot be unambiguously generated, as outlined in 
Additional file 1: Section Computing collinear blocks. Nevertheless, creating a most con-
sistent set of collinear blocks from a subset of the breakpoint predictions is possible (cf. 
Additional file 1: Section Computing collinear blocks). Attempting to employ the loca-
tion of the remaining breakpoints to identify additional blocks is future work.

Conclusion
DeBBI is a new tool to compute the location of gene dislocation and inversion break-
points. It requires only nucleotide sequences as input and can be run in parallel. The 
core element of the underlying approach is a position-annotated de-Bruijn graph, which 
is searched for particular structures, called breakpoint bulges, using a novel heuristic 



Page 27 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

algorithm. DeBBI produces good results for both synthetic and real-life mitochondrial 
sequences. By locating gene breakpoints directly rather than deducing them from align-
ment blocks, DeBBI often also discovers rearrangements between short, poorly con-
served tRNA genes, which are frequently missed by alignment-based approaches.

We emphasize that genome alignment tools are not designed for the task of break-
point detection. The difference in performance thus highlights the need for break-
point detectors that can operate efficiently on divergent nucleotide sequences. While 
DeBBI efficiently detects correct breakpoint locations, the accuracy of breakpoint loca-
tions appears to be limited to several dozen nucleotides. If more accurate locations are 
required, the predictions of DeBBI could be used as input of accurate but slow align-
ment-based methods such as [18].

Abbreviations
SV	� Structural variant
MSB	� Maximal synteny block
BB	� Breakpoint bulge
IB	� Inverted sequence blocks

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05371-4.

Additional file 1. Section Evaluation with Gecko and CHROMEISTER.

Acknowledgements
Not applicable.

Author contributions
LF, MM, PS, and MB conceived the idea. MM, PS, and MB supervised the study and edited the manuscript. LF imple-
mented the software, performed the computational analysis and drafted the manuscript. All authors collaborated on 
the design of the algorithms and the overall workflow, the interpretation of results, and the writing of the manuscript. All 
authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The research reported on in this manuscript was funded 
by the Open Access Publishing Fund of Leipzig University supported by the German Research Foundation within the 
program Open Access Publication Funding. We further wish to thank the German Research Foundation for funding 
Project 21210538.

Availability of data and materials
DeBBI has been released as free and open-source software under the MIT/X Consortium License. The latest source code 
is available at https://​git.​infor​matik.​uni-​leipz​ig.​de/​lfied​ler/​debbi-​tool-​for-​gene-​break​point-​ident​ifica​tion.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 March 2023   Accepted: 30 May 2023

References
	1.	 Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-

end and split-read analysis. Bioinformatics. 2012;28(18):333–9.

https://doi.org/10.1186/s12859-023-05371-4
https://git.informatik.uni-leipzig.de/lfiedler/debbi-tool-for-gene-breakpoint-identification


Page 28 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 

	2.	 Jiang Y, Wang Y, Brudno M. Prism: pair-read informed split-read mapping for base-pair level detection of insertion, 
deletion and structural variants. Bioinformatics. 2012;28(20):2576–83.

	3.	 Hart SN, Sarangi V, Moore R, Baheti S, Bhavsar JD, Couch FJ, Kocher J-PA. Softsearch: integration of multiple sequence 
features to identify breakpoints of structural variations. PLoS One. 2013;8(12):83356.

	4.	 Lin K, Smit S, Bonnema G, Sanchez-Perez G, de Ridder D. Making the difference: integrating structural variation 
detection tools. Brief Bioinform. 2015;16(5):852–64.

	5.	 Marschall T, Hajirasouliha I, Schönhuth A. Mate-clever: Mendelian-inheritance-aware discovery and genotyping of 
midsize and long indels. Bioinformatics. 2013;29(24):3143–50.

	6.	 Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored de 
Bruijn graphs. Nat Genet. 2012;44(2):226–32.

	7.	 Rahman A, Hallgrímsdóttir I, Eisen M, Pachter L. Association mapping from sequencing reads using k-mers. Elife. 
2018;7:32920.

	8.	 Standage DS, Brown CT, Hormozdiari F. Kevlar: a mapping-free framework for accurate discovery of de novo vari-
ants. Iscience. 2019;18:28–36.

	9.	 Shimmura K, Kato Y, Kawahara Y. Bivartect: accurate and memory-saving breakpoint detection by direct read com-
parison. Bioinformatics. 2020;36(9):2725–30.

	10.	 Cameron DL, Schröder J, Penington JS, Do H, Molania R, Dobrovic A, Speed TP, Papenfuss AT. GRIDSS: sensi-
tive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 
2017;27(12):2050–60.

	11.	 Lemaitre C, Ciortuz L, Peterlongo P. Mapping-free and assembly-free discovery of inversion breakpoints from raw 
NGS reads. In: International conference on algorithms for computational biology. Springer; 2014. p. 119–130.

	12.	 Priyadarshana W, Sofronov G. Multiple break-points detection in array CGH data via the cross-entropy method. IEEE/
ACM Trans Comput Biol Bioinform. 2014;12(2):487–98.

	13.	 Smolka M, Paulin LF, Grochowski CM, Mahmoud M, Behera S, Gandhi M, Hong K, Pehlivan D, Scholz SW, Carvalho 
CMB, Proukakis C, Sedlazeck FJ. Comprehensive structural variant detection: from mosaic to population-level. Tech-
nical report, bioRxiv 2022.

	14.	 Shale C, Cameron DL, Baber J, Wong M, Cowley MJ, Papenfuss AT, Cuppen E, Priestley P. Unscrambling cancer 
genomes via integrated analysis of structural variation and copy number. Cell Genomics. 2022;2(4):100112.

	15.	 Cortés-Ciriano I, Gulhan DC, Lee JJ-K, Melloni GEM, Park PJ. Computational analysis of cancer genome sequencing 
data. Nat Rev Genet. 2022;23(5):298–314.

	16.	 ...Ursu O, Neal JT, Shea E, Thakore PI, Jerby-Arnon L, Nguyen L, Dionne D, Diaz C, Bauman J, Mosaad MM, Fagre C, 
Lo A, McSharry M, Giacomelli AO, Ly SH, Rozenblatt-Rosen O, Hahn WC, Aguirre AJ, Berger AH, Regev A, Boehm JS. 
Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat Biotechnol. 2022;40(6):896–905.

	17.	 Merkle FT, Ghosh S, Genovese G, Handsaker RE, Kashin S, Meyer D, Karczewski KJ, O’Dushlaine C, Pato C, Pato M, 
MacArthur DG, McCarroll SA, Eggan K. Whole-genome analysis of human embryonic stem cells enables rational line 
selection based on genetic variation. Cell Stem Cell. 2022;29(3):472–4867.

	18.	 Al Arab M, Bernt M, Höner zu, Siederdissen C, Tout K, Stadler PF. Partially local three-way alignments and the 
sequence signatures of mitochondrial genome rearrangements. Algorithms Mol Biol. 2017;12(1):22.

	19.	 Sankoff D, Blanchette M. Multiple genome rearrangement and breakpoint phylogeny. J Comput Biol. 
1998;5(3):555–70.

	20.	 Blanchette M, Kunisawa T, Sankoff D. Gene order breakpoint evidence in animal mitochondrial phylogeny. J Mol 
Evol. 1999;49:193–203.

	21.	 Lin Y, Nurk S, Pevzner PA. What is the difference between the breakpoint graph and the de Bruijn graph? BMC 
Genomics. 2014;15(6):6.

	22.	 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 
2008;18(5):821–9.

	23.	 Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann 
K, et al. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol. 
2013;69(2):352–64.

	24.	 Shao R, Dowton M, Murrell A, Barker SC. Rates of gene rearrangement and nucleotide substitution are correlated in 
the mitochondrial genomes of insects. Mol Biol Evol. 2003;20(10):1612–9.

	25.	 Xu W, Jameson D, Tang B, Higgs PG. The relationship between the rate of molecular evolution and the rate of 
genome rearrangement in animal mitochondrial genomes. J Mol Evol. 2006;63(3):375–92.

	26.	 Boore JL. The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of 
deuterostome animals. In: Comparative genomics: empirical and analytical approaches to gene order dynamics, 
map alignment and the evolution of gene families, 2000. p. 133–147.

	27.	 Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ. Two novel gene orders and the role of light-strand replica-
tion in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol. 1997;14(1):91–104.

	28.	 Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. MITOS: improved 
de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69(2):313–9.

	29.	 Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rear-
rangements. Genome Res. 2004;14(7):1394–403.

	30.	 Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrange-
ment. PLoS One. 2010;5(6):11147.

	31.	 Torreno O, Trelles O. Breaking the computational barriers of pairwise genome comparison. BMC Bioinform. 
2015;16(1):250.

	32.	 Rokach L, Maimon O. Clustering methods. Boston: Springer; 2005. p. 321–52.
	33.	 Rambaut A, Grass NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along 

phylogenetic trees. Bioinformatics. 1997;13(3):235–8.
	34.	 ...O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei 

D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb 



Page 29 of 29Fiedler et al. BMC Bioinformatics          (2023) 24:235 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy 
MR, O’Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, 
Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy 
TD, Pruitt KD. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional 
annotation. Nucleic Acids Res. 2016;44(D1):733–45.

	35.	 Veith ADS, de Assuncao MD. Apache spark. Cham: Springer; 2019. p. 77–81.
	36.	 Boore JL. The complete sequence of the mitochondrial genome of Nautilus macromphalus (Mollusca: Cephalop-

oda). BMC Genomics. 2006;7(1):182.
	37.	 Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of metazoa as exemplified by comparison of 

congeneric species. Heredity. 2008;101(4):301–20.
	38.	 Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF. Improved systematic TRNA gene 

annotation allows new insights into the evolution of mitochondrial TRNA structures and into the mechanisms of 
mitochondrial genome rearrangements. Nucleic Acids Res. 2012;40(7):2833–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Detecting gene breakpoints in noisy genome sequences using position-annotated colored de-Bruijn graphs
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	Dislocation breakpoints
	Dislocation breakpoints in the de-Bruijn graph
	Identification of dislocation breakpoints in noisy sequences

	Gene inversion breakpoints
	Determination of the (k + 1)-mer size
	Data sets
	Simulated data sets
	Real genome data sets

	Implementation

	Results
	Benchmarking procedure and parameter settings
	Simulated data
	Gene dislocations
	Gene inversions

	Case studies on real genome sequences
	Gene dislocations
	Gene inversions
	Additional experiments

	Running times
	Simulated data
	Case studies


	Discussion
	Future work

	Conclusion
	Anchor 32
	Acknowledgements
	References


