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Abstract 

Capturing the conditional covariances or correlations among the elements of a 
multivariate response vector based on covariates is important to various fields includ-
ing neuroscience, epidemiology and biomedicine. We propose a new method called 
Covariance Regression with Random Forests (CovRegRF) to estimate the covariance 
matrix of a multivariate response given a set of covariates, using a random forest 
framework. Random forest trees are built with a splitting rule specially designed to 
maximize the difference between the sample covariance matrix estimates of the child 
nodes. We also propose a significance test for the partial effect of a subset of covariates. 
We evaluate the performance of the proposed method and significance test through a 
simulation study which shows that the proposed method provides accurate covariance 
matrix estimates and that the Type-1 error is well controlled. An application of the pro-
posed method to thyroid disease data is also presented. CovRegRF is implemented in 
a freely available R package on CRAN.

Keywords:  Covariance regression, Multivariate response, Random forests, Variable 
importance

Introduction
Most existing multivariate regression analyses focus on estimating the conditional 
mean of the response variable given its covariates. For example, in traditional regres-
sion analysis, the expectation of the response variables is related to linear combina-
tions of covariates. While estimating the conditional covariances or correlations 
among multiple responses based on covariates is also important, it is a less studied 
problem. For example, functional brain connectivity focuses on the exploration of the 
co-occurrence of brain activity in different brain regions, and this co-variability can 
be explained as a function of covariates [1]. As another example, human biomarkers 
such as glucose, cholesterol, iron, albumin, and so on, are important for biomedical 
research and the covariance of these biomarkers is influenced by age [2]. In micro-
biome studies, the changes in the co-occurrence patterns among taxa with respect 
to the covariates have been studied [3, 4]. In tasks of cognitive and physical perfor-
mance, a research question is whether the correlation between speed and accuracy is 
influenced by other covariates, such as sustained attention or age [5]. In neuroscience, 
the associations of functional criticality with intelligence can be affected by age [6]. In 
all these examples, the main goal could be just to estimate the conditional covariance 
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between multiple responses, e.g. for microbiome data, the goal is to estimate net-
work changes with respect to a set of covariates. Another interesting application of 
estimating covariance matrices based on covariates is to verify the homoscedasticity 
assumption in classical multivariate regression. In cases where testing the effect of 
covariates on the covariability of the response variables leads to the rejection of the 
null hypothesis, conditional estimates of the covariance matrix can be used to have 
valid inference, for example to build multivariate confidence or prediction regions.

In general terms, let Yn×q be a matrix of q response variables measured on n obser-
vations, where y⊤i  represents the ith row of Y . Similarly, let Xn×p be a matrix of p 
covariates available for all n observations, where x⊤i  represents the ith row of X . For 
an observation with covariates xi and responses yi , the goal is to estimate the con-
ditional covariance of the response variables Cov[yi|xi] � �xi , which is a measur-
able matrix function of covariates xi , and to analyze how this conditional covariance 
matrix varies with respect to the covariates. For this problem, [7] use a kernel esti-
mator to estimate the conditional covariance matrix for a single continuous covari-
ate. However, it is not clear how to extend this approach to situations with multiple 
covariates. [8] propose a linear covariance regression model

where the mean and covariance of the multivariate response is parameterized as func-
tions of covariates. This model can also be interpreted as a special random-effects model 
where Aq×(p+1) and Bq×(p+1) characterize the fixed and random parts of the model, 
respectively. The scalar γi can be interpreted as an individual-level variability in addi-
tion to the random error ǫi . The rows of B indicate how much this additional variability 
affects yi . The vector ǫi is of dimension q × 1 and is assumed to be normally distrib-
uted. In this framework, they assume that E[γi] = 0 , E[ǫi] = 0 , E[γiǫi] = 0 , Var[γi] = 1 , 
Var[ǫi] = � , leading to the following covariance matrix

[9] illustrate an application of this model with a four-dimensional health outcome. 
[10] propose a Bayesian nonparametric model for covariance regression within a high-
dimensional response context. Their approach relates the high-dimensional multivariate 
response set to a lower-dimensional subspace through covariate-dependent factor load-
ings obtained with a latent factor model. The conditional covariance matrix is a quadratic 
function of these factor loadings. The method is limited to data sets with smaller sample 
sizes. [11] proposes a parametric Bayesian model for high-dimensional responses. In this 
model, the conditional covariance matrices vary with continuous covariates. [12] pro-
pose another covariance regression model where the covariance matrix is linked to the 
linear combination of similarity matrices of covariates. [13] propose a covariance regres-
sion method called Covariate Assisted Principal Regression (CAPR). Unlike the other 
covariance regression methods described in this section, the CAPR aims to find a linear 
projection of the multivariate response data such that the covariates can best describe 
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the data variation in the projected space. The model assumes that in the eigendecompo-
sition of covariance matrices, all covariance matrices in the sample are diagonalized by 
the same orthogonal matrix which results in a restrictive covariance matrix form.

In this study, we propose a nonparametric covariance regression method for estimating 
the covariance matrix of a multivariate response given a set of covariates, using a random 
forest framework. The above-mentioned methods are very useful in modeling covariance 
matrix but compared to them the proposed method offers higher flexibility in estimating 
the covariance matrix given the set of covariates. For example, with the proposed method, 
we can estimate the conditional covariance matrix for a set of covariates including multi-
ple continuous and categorical variables, and the proposed method can be used to capture 
complex interaction patterns with the set of covariates. Moreover, the proposed method is 
nonparametric and needs less computational time compared to the parametric models, and 
can be applied to data sets with larger sample sizes.

Random forest [14] is an ensemble tree-based algorithm involving many decision trees, 
and can also be seen as an adaptive nearest neighbour predictor [15–21]. In the proposed 
random forest framework, we grow each tree with a splitting rule specially designed to 
maximize the difference in the sample covariance of Y between child nodes. For a new 
observation y∗ with covariates x∗ , the proposed random forest finds the set of nearest 
neighbour observations among the out-of-bag (OOB) observations that are not used in the 
tree growing process. This set of nearest neighbour observations is then used to estimate 
the conditional covariance matrix of y∗ given x∗ . In each tree built in the proposed random 
forest framework, the set of covariates is used to find subgroups of observations with simi-
lar conditional covariance matrices, assuming that they are related to conditional covari-
ance matrices. We propose a hypothesis test to evaluate the effect of a subset of covariates 
on the estimated covariance matrices while controlling for the others. We investigate two 
particular cases, the global effect of the covariates and the partial effect of a single covariate.

This paper is organized as follows. In Section Method, we give the details of the proposed 
method, significance test and variable importance measure. The simulation study results 
for accuracy evaluation, global and partial effects of covariates, and variable importance 
are presented in Section Simulations. We provide a real data example in Section Real data 
example, and conclude with some remarks in Section Concluding remarks.

Method
Let �xi be the true conditional covariance matrix of yi based on covariates xi , and 
�X be the collection of all conditional covariance matrices for n observations, 
�X = {�xi : i = 1, . . . , n} . Similarly, let �̂xi be the estimated conditional covariance matrix 
of yi based on covariates xi , and �̂X be the collection of all estimated conditional covariance 
matrices for n observations, �̂X = {�̂xi : i = 1, . . . , n} . In this section, we describe the pro-
posed method in detail.

Tree growing process and estimation of covariance matrices for new observations 

with random forests

We aim to train a random forest with the set of covariates X to find subgroups of obser-
vations with similar covariance matrices of Y , based on many unsupervised decision 
trees built with a specialized splitting criterion. The tree growing process follows the 
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CART approach [22]. The basic idea of the CART algorithm is to select the best split 
at each parent node among all possible splits, all evaluated with a selected splitting cri-
terion, to obtain the purest child nodes. The algorithm evaluates all possible splits to 
determine the split variable and split point. Instead of considering all possible splits at 
each parent node, the best split search in random forests is confined to a randomly cho-
sen subset of covariates that varies from node to node. The splitting process continues 
until all nodes are terminal.

Our goal is to obtain subgroups of observations with distinct covariance matrices. 
Hence, we propose a customized splitting rule that will seek to increase the difference in 
covariance matrices between two child nodes in the tree [17, 20, 21, 23]. We define �L as 
the sample covariance matrix estimate of the left node as follows:

where tL is the set of indices of the observations in the left node, nL is the left node size 
and ȲL = 1

nL

∑

i∈tL yi . The sample covariance matrix estimate of the right node, �R , is 
computed in the same way, where nR is the right node size. The proposed splitting crite-
rion is

where d(�L,�R) is the Euclidean distance between the upper triangular part of the two 
matrices and computed as follows:

 where Dq×q and Eq×q are symmetric matrices. The best split among all possible splits is 
the one that maximizes (1).

The final covariance matrices are estimated based on the random forest. For a new 
observation, we use the nearest neighbour observations to estimate the final covariance 
matrix. The idea of finding the nearest neighbour observations, a concept very similar 
to the ‘nearest neighbour forest weights’ [15, 16], was introduced in [17] and later used 
in [18–21]. [19] called this set of observations the Bag of Observations for Prediction 
(BOP).

For a new observation x∗ , we form the set of nearest neighbour observations with the 
out-of-bag (OOB) observations [24, 25]. We can define the BOPoob for a new observation 
as

where B is the number of trees and Ob(x
∗) is the set of OOB observations in the same 

terminal node as x∗ in the bth tree. Each tree is built with a selected random sub-sam-
ple instead of a bootstrap sample, i.e. in-bag observations ( Ib ), which has 63.2 percent 
distinct observations from the original sample. The remaining training observations, 
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namely Ob , are OOB observations for that tree and are not used to build the bth tree. 
BOPoob is slightly different than the nearest neighbour sets in the previous papers who 
use in-bag observations to form BOP. Since the OOB observations are not used in the 
tree building process, for the trees where they are OOB, they act as new observations. 
Therefore, OOB observations represent a new observation better than in-bag observa-
tions. Using OOB observations for neighbourhood construction is similar to the idea 
of honesty in the context of forests. An honest double-sample tree splits the training 
subsample into two parts: one part for tree growing and another part for estimating the 
desired response [26]. We use the nearest neighbour construction idea to estimate the 
covariance matrices for the new observations. Algorithm  1 describes how to estimate 
the covariance matrix with OOB observations for a new or training observation. After 
training the random forest with the specialized splitting criterion, for a new observa-
tion x∗ , we form BOPoob(x∗) and then we estimate the covariance matrix by computing 
the sample covariance matrix of the observations in BOPoob(x∗) . See the Supplementary 
figures 1 and 2 in the Additional file 1 for the results of the simulation study comparing 
different ways of estimating the final covariance matrix.

nodesize tuning

The number of observations in the nodes decreases as we progress down the tree dur-
ing the tree-building process. The nodesize parameter is the target average size for 
the terminal nodes. Lowering this parameter results in deeper trees, which means 
more splits until the terminal nodes. Tuning the nodesize parameter can potentially 
improve the prediction performance [16].

In typical supervised problems where the target is the observed true response, ran-
dom forests search for the optimal level of the nodesize parameter by using out-of-
bag (OOB) prediction errors computed using the true responses and OOB predictions. 
The nodesize value with the smallest OOB error is chosen. However, in our problem, 
the target is the conditional covariance matrix which is unknown. Therefore, we propose 
a heuristic method for tuning the nodesize parameter. For nodesize tuning, we use 
the OOB covariance matrix estimates, as described in Algorithm 1.

The general idea of the nodesize tuning method is to find the nodesize level where 
the average difference between OOB covariance matrix predictions at two consecutive 
nodesize levels is the smallest among the set of nodesize values. We first train sepa-
rate random forests for a set of nodesize values (see the Parameter settings section in 
simulation study). Then, we compute the OOB covariance matrix estimates as described 
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in Algorithm 1 for each random forest. Define MAD(D,E) = 2
q(q+1)

∑q
i=1

∑q
j=i |Dij − Eij| . 

Let �̂
s

xi
 be the estimated covariance matrix for observation i when nodesize= s . Let 

s(1) < . . . < s(M) be a set of increasing node sizes. For j = {1, . . .M − 1} , let

Then we select s(j) that corresponds to the value j for which MADj is the minimum 
among {MAD1, . . . ,MADM} . See the Additional file  2 for the results of a nodesize 
tuning experiment and the illustration of the process with an example.

When a node sample size nd is smaller than the number of responses q, the sample 
covariance matrix becomes highly variable. In fact, if nd − 1 < q , the estimate is singular 
and hence non-invertible. Therefore, the tuning set of nodesize levels should be larger 
than q. In fact, we need more than q distinct values, so we use sub-sampling instead of 
bootstrap resampling for each tree building step of the proposed method to guarantee 
distinctness, assuming the observations in the original sample are distinct.

Significance test

The proposed method uses covariates to find groups of observations with similar covari-
ance matrices with the assumption that the set of covariates is important to distinguish 
between these covariance matrices. However, some (or all) covariates might not be rel-
evant. In this paper, we propose a hypothesis test to evaluate the effect of a subset of 
covariates on the covariance matrix estimates, while controlling for the other covariates.

If a subset of covariates has an effect on the covariance matrix estimates obtained with 
the proposed method, then the conditional covariance matrix estimates given all covari-
ates should be significantly different from the conditional covariance matrix estimates 
given the controlling set of covariates. We propose a hypothesis test to evaluate the 
effect of a subset of covariates on the covariance matrix estimates for the null hypothesis

where �X is the conditional covariance matrix of Y given all X variables, and �Xc is the 
conditional covariance matrix of Y given only the set of controlling X variables. The 
proposed significance test is described in Algorithm 2. After computing the covariance 
matrix estimates for all covariates and control variables only, we compute the test statis-
tic with

where d(.,  .) is computed as (2). The test statistic specifies how much the covariance 
matrix estimates given all covariates differ from the estimates given only the controlling 
set of covariates. As T becomes larger, we have more evidence against H0.

We conduct a permutation test under the null hypothesis (3) by randomly permuting 
rows of X . Let R be the total number of permutations and Tr be the global test statistic 
(4) computed for the rth permuted X . We estimate the test p-value with
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and we reject the null hypothesis (3) at a pre-specified level α if the p-value is less than α.

In the significance test described above, we need to apply the proposed method 
many times: for the original data with (i) all covariates and (ii) the set of control 
covariates, and at each permutation for the permuted data with (iii) all covariates and 
(iv) the set of control covariates. The proposed method applies a nodesize tuning 
as described in the previous section. Since tuning the nodesize parameter can be 
computationally demanding, we tune the nodesize for the original data with all 
covariates and with the set of control covariates only and use those tuned values for 
their corresponding permutation steps.

The proposed significance test has two particular cases of interest. The first is to 
evaluate the global effect of the covariates on the conditional covariance estimates. If 
X has a global effect on the covariance matrix estimates obtained with the proposed 
method, then the conditional estimates �X should be significantly different from the 
unconditional covariance matrix estimate �root which is computed as the sample 
covariance matrix of Y . The null hypothesis (3) becomes

See the Supplementary Algorithm 1, Additional file 3 for the details of the global signifi-
cance test. The second case is to evaluate the effect of a single covariate when the other 
covariates are in the model. In that particular case, the null hypothesis (3) remains. The 
only difference between the global and partial significance tests is the number of forests 
we need to train. In the partial significance test, we need to train two random forests per 
sample, one for all covariates and one for the controlling variables, which makes a total 
2R+ 2 random forests. However, when we test for the global effect, we need to train 
only one random forest per sample (in total R+ 1 random forests) since we do not need 
to build a random forest for the root node.

(5)p = 1

R

R
∑

r=1

I(Tr > T ),

(6)H0 : �X = �root .
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Variable importance

For traditional regression tree problems, we can get the variable importance (VIMP) 
measures by computing the average change in prediction accuracy using the OOB 
samples. However, the covariance regression problem does not have an observed tar-
get. We can compute the VIMP measures by using the fit-the-fit approach which has 
been applied to enhance interpretability of the covariates on the response [21, 27–31]. 
In the univariate response case, we get the importance measures by fitting a regres-
sion forest to re-predict the predicted values. However, in covariance regression, 
we have a predicted covariance matrix for each observation and not a single value. 
Therefore, we use a multivariate splitting rule based on the Mahalanobis distance [32] 
to re-predict the predicted covariance matrices. We begin by applying the proposed 
method using the original covariates and responses and estimate the covariance 
matrices as described in Algorithm 1. Next, we train a random forest with the original 
covariates and the vector of upper-triangular estimated covariance matrix elements 
as a multivariate response. VIMP measures are obtained from this random forest. 
Covariates with higher VIMP measures indicate higher importance for the estimation 
of covariance matrices. The proposed VIMP computation is described in Supplemen-
tary Algorithm 2 in the Additional file 4.

Software

We have developed an R package called CovRegRF. We used the custom splitting 
feature of the randomForestSRC package [33] to implement our specially designed 
splitting criterion in the tree building process. The package is available on CRAN, 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​CovRe​gRF.

Simulations
In this section, we perform a simulation study to demonstrate the performance of the 
proposed method, validate the proposed significance test with two particular cases-
global and partial significance tests-and evaluate the variable importance estimations 
of the covariates.

Data generating process

We carry out a simulation study using four Data Generating Processes (DGPs). The 
details of the DGPs are given in the Additional file 5. The first two DGPs are variations 
of the first simulated data set used in [8]. Both DGPs include one covariate and two 
response variables. The covariate x is generated uniformly on [−1, 1] . In DGP1, the 
covariance matrix for the observation xi is �xi = � + Bxix

⊤
i B

⊤ where x⊤i = (1, xi)
⊤ . 

DGP2 is similar to DGP1, except that we add a quadratic term to the covariance 
matrix equation such as �xi = � + Bẋiẋ

⊤
i B

⊤ where ẋ⊤i = (1, (xi + x2i ))
⊤.

In DGP3, the vector of covariates includes seven independent variables generated 
from the standard normal distribution. For the covariance structure, we use an AR(1) 
structure with heterogeneous variances. The correlations are generated with all seven 
covariates according to a tree model with a depth of three and eight terminal nodes. 
The variances are functions of the generated correlations. In DGP4, the covariance 

https://CRAN.R-project.org/package=CovRegRF
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matrix has a compound symmetry structure with heterogeneous variances. Both 
variances and correlations are functions of covariates. The covariates are generated 
from the standard normal distribution. The correlations are generated with a logit 
model and the variances are functions of these generated correlations. The number 
of covariates and response variables varies depending on the simulation settings. For 
all DGPs, after generating �xi , yi is generated from a multivariate normal distribution 
N (0,�xi).

Simulation design

Accuracy evaluation

We perform a simulation study based on the four DGPs described above to evaluate 
the accuracy of the proposed method for estimating the covariance matrices. For DGP3 
and DGP4, we consider five response variables. For each DGP, we use several values of 
the training sample size ntrain = {50, 100, 200, 500, 1000} , which generates a total of 20 
settings (4 DGPs × 5 training sample sizes). We repeat each setting 100 times. In each 
run of the simulations, we generate an independent test set of new observations with 
ntest = 1000.

We evaluate the performance of the covariance matrix estimates using the mean abso-
lute errors (MAE) computed for both the estimated correlations and standard deviations 
separately. For the estimated correlations, we compute the MAE between the upper tri-
angular (off-diagonal) matrices of the true and estimated correlations over all observa-
tions as follows:

where CX and ĈX are the collection of all correlation matrices corresponding to �X and 
�̂X , respectively. The values ρijk and ρ̂ijk represent the correlations in row j and column k 
of Cxi and Ĉxi , respectively.

For the estimated standard deviations, we compute the normalized MAE between the 
true and estimated standard deviations over all observations as follows:

The values σ 2
ij and σ̂ 2

ij represent the jth diagonal element of �xi and �̂xi , respectively.
Smaller values of MAEcor and MAEsd indicate better performance. We compare our 

proposed method with the original Gaussian-based covariance regression model cov-
reg developed in [8] which was presented in the Introduction. This method is currently 
available in the covreg R package [34]. Moreover, as a simple benchmark method, we 
compute the sample covariance matrix without covariates, which is then used as the 
covariance matrix estimate for all new observations from the test set.

Variable importance

For the variable importance evaluation simulations, we use DGP3 and DGP4 in which 
we add five noise variables X to the covariates set. As above, we consider several 
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values for the training sample sizes ntrain = {50, 100, 200, 500, 1000} , for a total of 10 
scenarios studied. We examine whether the estimated VIMP measures tend to rank 
the important variables first. The variable with the highest VIMP measure has a rank 
of 1. For each scenario, we compute the average rank for the important variables 
group and for the noise variables group.

Evaluating the power of the global significance test

We studied four scenarios to evaluate the global effect of the covariates, two of which 
are under the null hypothesis (6) and the other two under the alternative hypothesis. 
We generate the data sets for these scenarios as follows: 

1	 H0 (case 1): we generate 5 Y with a constant population covariance matrix and 10 
X variables which are all independent following a standard normal distribution. In 
this case, the covariance of Y is independent of X and we are therefore under the null 
hypothesis.

2	 H0 (case 2): we first generate 7 X and 5 Y under DGP3. Then, we replace the X matrix 
with 10 independent X variables generated from a standard normal distribution. In 
this case, the covariance of Y varies with some of the X variables but those X vari-
ables are not available in the training set. Therefore, we are again under the null 
hypothesis.

3	 H1 (without noise): we generate 7 X and 5 Y under DGP3, and the covariates are 
available in the training set. In this case, the covariance of Y varies with all X vari-
ables.

4	 H1 (with noise): we generate 7 X and 5 Y under DGP3 and we add 3 independent X 
variables to the covariates’ training set. In this case, the covariance of Y varies with 
some of the X variables but not all.

Evaluating the power of the partial significance test

We can consider three scenarios to evaluate the effect of a single covariate, where one 
is under the null hypothesis (3) and the other two under the alternative hypothesis. 
We generate the data sets for these scenarios as follows: 

1	 H0 : We first generate 2 X and 5 Y with DGP4 and we add 1 independent X variable to 
the covariates’ training set. In this case, the covariance of Y varies only with the first 
two X variables. The control set of variables is {X1,X2} and we evaluate the effect of 
the X3 variable. Therefore, we are under the null hypothesis.

2	 H1(weakest) : We generate 3 X and 5 Y with DGP4. In this case, the covariance of Y 
varies with all X variables. The control set of variables is {X1,X2} and we evaluate the 
effect of X3 , which has the weakest effect on the covariance matrix.

3	 H1(strongest) : We generate 3 X and 5 Y with DGP4. In this case, the covariance of Y 
again varies with all X variables. But now the control set of variables is {X2,X3} and 
we evaluate the effect of X1 , which has the strongest effect on the covariance matrix.
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For both the global and partial significance test simulations, we use training sample sizes 
of ntrain = {50, 100, 200, 300, 500} . The number of permutations and the number of rep-
lications for each scenario are set to 500. We estimate the type-1 error as the propor-
tion of rejection in the scenarios simulated under H0 and the power as the proportion 
of rejection in the scenarios simulated under H1 . We estimate a p-value for each repli-
cation and we reject the null hypothesis if the p-value is less than the significance level 
α = 0.05 . Finally, we compute the proportion of rejection over 500 replications.

Parameter settings

For the simulations, we use the following parameters for the proposed method. 
We set the number of trees to 1000. Letting p be the number of covariates, then the 
number of covariates to randomly split at each node, mtry, is set to ⌈p/3⌉ . The 
number of random splits for splitting a covariate at each node, nsplit, is set 
to max{ntrain/50, 10} . We tune the nodesize parameter with the set of node-
size= {[sampsize × (2−1, 2−2, 2−3, . . .)] > q} where q is the number of responses and 
sampsize= 0.632ntrain . In each replication, covreg is run in four independent chains 
for 8000 iterations, with the first half taken as burn-in.

Results

Accuracy evaluation

Figures 1 and 2 present the accuracy results for 100 repetitions. For each method, we can 
see the change in MAEcor and MAEsd computed for 100 repetitions with an increasing 
training sample size. As demonstrated in Fig. 1, for DGP1 and DGP2 when ntrain = 50 , 
the proposed method and covreg both have a similar performance with respect to the 
correlation estimation, with a slight advantage for covreg. For DGP1, covreg per-
forms better for both the correlation and standard deviation compared to the proposed 
method as the sample size increases. This is expected since DGP1 is generated exactly 
under the covreg model. However, the proposed method still remains competitive. For 
DGP2, in which a quadratic term is added, the proposed method performs better for 
the correlation than covreg with increasing sample size. covreg shows better stand-
ard deviation estimation performance for smaller sample sizes, but after ntrain = 500 the 
proposed method performs slightly better. As demonstrated in Fig. 2, for DGP3, the pro-
posed method shows a significantly smaller MAEcor and MAEsd than covreg for all 
sample sizes. Moreover, for the smaller sample sizes, the proposed method has consider-
ably lower variance in MAE. For DGP4, both methods improve with increasing sample 
size, but the proposed method shows smaller or equal MAEs for both correlation and 
standard deviation estimations. For DGP3 and DGP4, these results are expected, since 
the proposed method can capture a nonlinear effect. Supplementary figures 5 and 6 in 
the Additional file 6 present the difference in MAE between the proposed method and 
covreg. Moreover, we evaluate the accuracy with Stein’s loss which is the Kullback–
Leibler divergence between the estimated and true covariance matrices. The conclusions 
remain the same. See Supplementary Figure 7, Additional file 6.

For the nodesize tuning, we compare the accuracy results for different levels of 
nodesize along with the proposed tuning method. Supplementary figures 3 and 4 in 
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the Additional file 2 present the MAE results for all DGPs which show that the tuning 
method works well.

Variable importance

Supplementary Figure 8 in the Additional file 4 presents the average ranks of the VIMP 
measures for both the important and noise sets of variables for DGP3 and DGP4. In all 
scenarios, the important variables have smaller average ranks than noise variables. As 
the sample size increases, the difference between the average ranks of important and 
noise variables increases, as expected.

Global significance test

The left plot in Fig. 3 presents the estimated type-1 error and power for different train-
ing sample sizes for the two H0 scenarios and two H1 scenarios, respectively. We expect 
the type-1 error to be close to the significance level ( α = 0.05 ) and we can see that it is 
well controlled in both cases studied. In both H1 scenarios, the power increases with the 
sample size. When the sample size is small, adding noise covariates slightly decreases the 
power, but this effect disappears as the sample size increases.

Fig. 1  Accuracy evaluation results for DGP1 and DGP2. Smaller values of MAE
cor and MAE

sd are better
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Partial significance test

The right plot in Fig.  3 presents the estimated type-1 error and power for different 
training sample sizes for the H0 scenario and two H1 scenarios, respectively. As can 
be seen from the H0 line, the type-1 error is close to the significance level ( α = 0.05 ). 
In both H1 scenarios, the power increases with the sample size as expected. How-
ever, the power is much smaller when one tests the weakest covariate compared to 
the strongest covariate.

Real data example
Thyroid hormone, the collective name for two hormones, is widely known for regulating 
several body processes, including growth and metabolism [35, 36]. The main hormones 
produced by the thyroid gland are triiodothyronine (T3) and thyroxine (T4). The syn-
thesis and secretion of these hormones are primarily regulated by thyroid stimulating 
hormone (TSH), which is produced by the pituitary gland. Primary hypothyroidism is 
a condition that occurs when the thyroid gland is underactive and the thyroid hormone 
produced is insufficient to meet the body’s requirements, which leads to an increase of 
TSH. Contrarily, when the thyroid gland produces levels of thyroid hormones that are 
too high, leading to decreased levels of TSH, the resulting condition is hyperthyroidism.

Fig. 2  Accuracy evaluation results for DGP3 and DGP4. Smaller values of MAE
cor and MAE

sd are better
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Serum levels of the thyroid hormones and TSH are used to evaluate subjects’ thy-
roid function status and to identify subjects with a thyroid dysfunction. Therefore, 
establishing reference intervals for these hormones is critical in the diagnosis of thy-
roid dysfunction. However, reference ranges are affected by age and sex [37–41]. Fur-
thermore, there is a relationship between TSH and thyroid hormone, and the effects 
of age and sex on this relationship have not been well described [27, 42]. Serum lev-
els of these hormones are also affected by the subject’s diagnosis, i.e. hormone levels 
would be within the reference ranges for normal subjects and out of range for sub-
jects with thyroid dysfunction. The conditional mean of these hormones based on the 
covariates is studied in the literature, but to our knowledge, no study has yet explic-
itly investigated the effect of covariates on the conditional covariance matrix of these 
hormones. Hence, our contribution is to study the effect of age, sex and diagnosis on 
the covariance matrix of the thyroid hormones and TSH.

In this study, we investigate the thyroid disease data set from the UCI machine 
learning repository [43]. This data set originally included 9172 subjects and 30 vari-
ables including age, sex, hormone levels and diagnosis. Following the exclusion crite-
ria applied in [42] and [40], we exclude pregnant women, subjects who have euthyroid 
sick syndrome (ESS), goitre, hypopituitarism or tumour, subjects who use antithy-
roid medication, thyroxine or lithium, who receive I131 treatment, or who have had 
thyroid surgery. The subjects have different diagnoses including hypothyroidism and 
hyperthyroidism, as well as normal subjects. Since the sample size of hyperthyroid-
ism subjects is small, we exclude them from the analysis. We also exclude the very 
young and very old subjects, since there are only a few subjects on the extremes. 
The remaining data set consists of 324 hypothyroidism and 2951 normal subjects 
( n = 3275 ) between 20 and 80 years of age (2021 females/1254 males). We want to 
estimate the covariance matrix of four thyroid-related hormones-TSH, T3, TT4 (total 
T4) and FTI (free thyroxine index/free T4)-based on covariates and investigate how 

Fig. 3  Significance test results. The left and right plots present the results for global and partial significance 
tests, respectively. The proportion of rejection corresponds to the type-1 error for H0 scenarios, and power for 
H1 scenarios. The dotted line represents the significance level of α = 0.05
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the relationship between these hormones varies with the covariates. We apply the 
proposed method with the covariates age, sex and diagnosis to estimate the covari-
ance matrix of the four hormones. We first perform the significance test with 500 per-
mutations to evaluate the global effect of the three covariates. The estimated p-value 
with (5) is 0 and we reject the null hypothesis (6), which indicates that the conditional 
covariance matrices vary significantly with the set of covariates. Next, we apply the 
proposed method and obtain the covariance matrix estimates. We analyze the cor-
relations between hormones as a function of covariates, and as shown in Fig. 4, age 
seems not to have much effect on the estimated correlations. We also compute the 
variable importance measures, and age (0.001) is found to be the least important vari-
able where diagnosis (1.000) is the most important variable, followed by sex (0.011). 
Therefore, we apply the significance test to evaluate the effect of age on covariance 
matrices while controlling for sex and diagnosis. Using 500 permutations, the esti-
mated p-value with (5) is 0.42 and we fail to reject the null hypothesis (3), indicating 
that we have insufficient evidence to prove that age has an effect on the estimated 
covariance matrices while sex and diagnosis are in the model. Although the mean lev-
els of TSH and thyroid hormones differ with age [37–39, 41], the correlation between 
these hormones may not be affected by aging. Similarly, we apply the significance 
test for diagnosis and sex while controlling for the remaining two covariates, and the 
estimated p-values for both tests are 0, which indicates that both diagnosis and sex, 
taken individually, have an effect on the covariance matrix of the four hormones. We 
compare the estimated correlations using the proposed method to the sample correla-
tions computed using the whole sample, which are represented with the black dashed 
lines in Fig. 4. For example, the sample correlation between TSH and T3 over all sam-
ples is −0.28 which is not close to the estimated correlation of either hypothyroidism 
or normal subjects. Furthermore, the estimated variances of the four hormones as 
a function of age, sex and diagnosis are presented in Supplementary Figure 9 of the 
Additional file 7. We can see that the variances also differ with covariates. For a mean 
regression analysis for any of these hormones, assuming a constant variance could 
yield misleading results.

The findings of this analysis suggest that there may be sex and diagnosis specific differ-
ences in the regulation of thyroid function, which could have important implications for 
the diagnosis and treatment of thyroid disorders in men and women. Clinicians can use 
this information to better understand the relationship between TSH and thyroid hormones 
in their patients, and to tailor their diagnostic and treatment approaches accordingly. It is 
known that the mean levels of TSH and thyroid hormones are different for hypothyroid-
ism subjects compared to normal subjects. However, in Fig. 4, we also observe that there is 
a difference in correlation between hypothyroidism and normal subject classes. Moreover, 
we see that there is a difference between genders for hypothyroidism subjects for TSH and 
thyroid hormone correlations, Cor(TSH, T3), Cor(TSH, TT4), Cor(TSH, FTI).

Concluding remarks
In this study, we propose a nonparametric covariance regression method, using a ran-
dom forest framework, for estimating the covariance matrix of a multivariate response 
given a set of covariates. Random forest trees are built with a new splitting rule designed 
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to maximize the distance between the sample covariance matrix estimates of the child 
nodes. For a new observation, the random forest provides the set of nearest neighbour 
out-of-bag (OOB) observations which is used to estimate the conditional covariance 
matrix for that observation. We perform a simulation study to test the performance of 
the proposed method and compare it to the original Gaussian-based covariance regres-
sion model covreg. The average computational times of both methods for the simula-
tions are presented in Supplementary Table 1 of the Additional file 8. We can see from 
the table that the proposed method is significantly faster than covreg. For the real 
data analysis, the computational time was 200.14 s. It should also be noted that covreg 
accounts for the uncertainty quantification in estimation of parameters which inevita-
bly results in higher computational times compared to non-Bayesian methods. Further-
more, we propose a significance test to evaluate the effect of a subset of covariates while 
the other covariates are in the model. We investigate two particular cases: the global 
effect of covariates and the effect of a single covariate. We also propose a way to com-
pute variable importance measures.

In this paper, we use the Euclidean distance between the upper triangular part of 
the two covariance matrices as splitting criterion. This is to avoid double counting the 
off-diagonal elements since covariance matrices are symmetric. However, several 
alternative splitting criteria are possible using other measures for computing distance 
between covariance matrices. We can use alternative distance metrics such as Frobe-
nius norm, log-Euclidean, Kullback-Leibler divergence, Fisher Information metric, 
Bhattacharyya distance [44–46]. Another possibility is to use test statistics as splitting 
criteria. There is a large literature on testing the equality of covariance matrices. Here 

Fig. 4  Estimated correlations between the four hormones as a function of age, sex and diagnosis. Dashed 
lines represent the sample correlations computed using the whole sample
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are a few examples [47–51] and an R package [52] that implements them. Finally, we 
could use a weighted Euclidean distance between covariance matrices as 
d(D,E) =

√

∑q
i=1

∑q
j=i wij(Dij − Eij)2 . This allows to finely control the weight we 

wish to give to each element of the matrix. This way, the splitting criterion could be 
based only on the the variance terms or on the covariance terms, for example. 
Another possibility is that for the final covariance matrix estimation for a new obser-
vation, we can use sparse or robust covariance matrix estimations [53, 54] using the 
nearest neighbour observations. Similarly, it is theoretically possible to use the sparse 
or robust covariance matrix estimations instead of the sample covariance matrix for 
the tree building process. However, the computational time could be a limiting factor. 
The proposed method can be applied to larger X dimensions. The computational time 
increases linearly with mtry which is the number of covariates to randomly split at 
each node. It can also be adapted to larger Y dimensions, but the computational time 
could be a limitation for very large Y dimensions. Computing the sample covariance 
matrix has a time complexity O(nq2) for q response variables and we compute covari-
ance matrix for each node split in each tree of the forest which necessitates many 
covariance matrix computations.

In [21], we proposed a method, Random Forest with Canonical Correlation Analysis 
(RFCCA), which estimates the conditional canonical correlation between two multivari-
ate data sets given the subject-related covariates. This method conditionally estimates a 
single parameter, the canonical correlation, that summarizes the strength of the depend-
ency between two sets of variables. In this paper, we conditionally estimate the whole 
covariance matrix for one set of variables. Both methods use a splitting criterion that 
aims at maximizing the heterogeneity of the target parameter to build a forest of trees to 
obtain a set of local observations that is used to compute the final estimate. Hence, the 
general methodology in both papers is similar but the goals are different.
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