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Introduction
The construction of gene regulatory networks through the analysis of gene expres-
sion data is an important method to study gene regulatory relationships, thus aiding 
in the analysis of biological phenomena [1], for example, studying the etiology of dis-
eases, particularly in developing the target genes at the molecular level of bioinformat-
ics, to better influence the effect of drugs. Given that the gene regulatory networks are 
frequently constructed from gene expression data, several mathematical models have 
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been introduced and successfully applied in this field, thus providing important com-
putational biology tools for a systematic research on the regulation and patterns of gene 
transcription in living systems. Representative network models include Boolean network 
[2, 3], association network [4, 5], differential equation [6–8], and Bayesian network mod-
els [9–11]. The Boolean network simplifies the gene state accordingly, and uses Boolean 
functions instead of differentials and derivatives to describe the relationship between 
genes. The shortcoming of this model lies in its inaccuracy. Just by using fixed logic rules 
to describe and reflect the interaction between genes, it cannot accurately describe the 
real gene regulatory network topology, and it will inevitably cause many problems when 
discretizing genetic data. The modeling of association network is mainly realized by the 
degree of association between gene expression data. Mutual information, Pearson corre-
lation coefficient and other measures are usually used to calculate the similarity between 
genes. If the similarity between gene pairs is higher than a certain threshold, the gene 
pair is directly connected in the network. The advantage of this method is that the estab-
lishment of the model is simple and easy to operate, but there are many false positive 
edges in the constructed network. Differential equation models can well simulate com-
plex systems, including gene regulatory networks that describe complex regulatory rela-
tionships among genes. Although it reflects the internal law, since the establishment of 
the equation is based on the assumption of the independence of local laws, the deviation 
is a bit large when making medium and long-term forecasts, and the solution of the dif-
ferential equation is relatively difficult to obtain.

Recently, the Bayesian network models of gene regulatory networks have been exten-
sively developed owing to their ability to reconstruct directed acyclic graphs, which can 
describe both the regulatory relationship and the direction of regulation of genes. Fried-
man et al. have constructed a gene regulatory network containing 800 genes on the basis 
of the Bayesian network model [12]. However, an unavoidable time delay exists between 
the regulation of two genes. On the basis of this property, Murphy et al. have proposed 
a dynamic Bayesian network model to analyze temporal gene expression data [13]. Since 
real gene networks have cyclic regulatory pathways including feedback loops. When 
we have time series microarray data, the use of dynamic Bayesian networks (DBNs) is 
a promising alternative, since DBNs can treat time delay information and can construct 
cyclic networks. Kim et al. [14] through extensive work, have also improved the dynamic 
Bayesian network by combining linear or nonlinear models and corresponding biologi-
cal knowledge.

The structure and parameters of the traditional dynamic Bayesian network model 
cannot change over time; that is, the time series is required to be a stable distribution 
generated by a homogeneous Markov chain; thus, the traditional dynamic Bayesian 
network model is limited by the non-stationary nature of gene expression data. To 
address this issue, Lèbre et al. [15] have proposed a dynamic Bayesian network model 
based on a Bayesian regression model (BR-DBN), which incorporates a multi-change 
point process, thus allowing the network structure and parameters to vary over time. 
However, the shortcomings of BR-DBN have been exposed in modeling short time-
series data of genes. BR-DBN considers dividing data into different segments, and 
assumes that the regulatory networks in different segments are inconsistent. How-
ever, for short time series, even if the environment changes slightly, it is unrealistic for 



Page 3 of 17Zhang et al. BMC Bioinformatics          (2023) 24:264 	

the regulatory network to undergo significant changes. In fact, what changes is only 
the regulatory strength rather than the regulatory relationship. Such schemes thus 
lead to overfitting and exaggerated uncertainties for short time series. Subsequently, 
Dongdelinger et al. [16, 17] have proposed several variants of BR-DBN, on the basis 
of the assumption that the network structure in different segments is fixed, and only 
the parameters change. These models all include multi-change point process, but data 
from different segments must be assigned to different components and do not take 
into account the temporal information of the data points. To address these problems, 
the HMM-DBN [18], proposed by Grzegorczyk et al. is based on the assumption of a 
hidden Markov model dependency structure between time data points. HMM-DBN 
considers the time order of data points and also does not restrict the distribution of 
data points. Since the HMM-DBN parameters are node specific, the conditional prob-
abilities of parameters vary among segments. The notable advantage of HMM-DBN 
is the independence and conjugation of parameters, which can be inferred in a closed 
form on the basis of the likelihood. Therefore, the inference process has been reduced 
to sampling the network structure and the polymorphic point process from the poste-
rior distribution through the Markov chain Monte Carlo method.

Herein, to fully exploit the hidden prior information of data points on the basis 
of HMM-DBN, given the unstable nature of microarray gene expression data, birth 
action based on the Manhattan distance of data points has been first proposed 
to improve the rationality of the multi-change point process. Second, according to 
the sampling network structure of the Markov chain Monte Carlo method, a multi-
change point process has been proposed along with the correlations between gene 
nodes that are calculated in segments, and thus a particle filter is constructed. Push-
ing nodes to the high probability area causes the sampled particles to be close to the 
actual state, thereby improving the sampling efficiency, and ultimately the network 
reconstruction accuracy and the convergence of the model.

This article is divided into four parts. The first part describes the Bayesian regres-
sion model combined with the variable point process and the necessary parameter 
inference. The second part describes the network structure inference combined with 
particle filters. The third part describes the variable point process. The last section 
describes the experimental results.

The contributions of this article can be summarized as follows.

(1)	 The dynamic Bayesian network is combined with the multi-variable point process 
for the analysis of the non-stationarity of gene expression data, including the prior 
information, variance of the gene data, and Manhattan distance of the mean, for the 
target gene calculation. The change-point birth process increases the rationality of 
the multi-change point process.

(2)	 By combining the multi-variable point process, the Pearson correlation coefficient 
between genes has been calculated segmentally, thus forming a particle filter, which 
pushes the parent node set close to the true state to the high-probability region and 
increases the performance of the MCMC sampler.
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(3)	 Finally, through experiments using a yeast dataset and nine RAF pathway datasets, 
the effectiveness, convergence, and model stability of FC-DBN in reconstructing 
small-scale gene regulatory networks are verified.

Methods
The overall framework of gene regulatory network construction based on a dynamic 
Bayesian network structure prediction is shown in Fig. 1.

The overall framework of dynamic Bayesian network modeling based on struc-
ture prediction is mainly composed of five parts: (a) data preprocessing, (b) Bayes-
ian network parameter learning, (c) multi-change point process, (d) Bayesian network 
structure learning, and (e) model performance evaluation. Data preprocessing is not 
described in detail in this paper. “Piecewise Bayesian linear regression” section intro-
duces the parameter inference process of Bayesian network, “Network structure sam-
pling based on node correlation particle filtering” section  introduces the structure 
inference process of Bayesian network, and “Multi-change point process” section 
introduces the multi-variation point process. “Experiments and results” section pre-
sents the performance evaluation.

Fig. 1  Overall framework of dynamic Bayesian network modeling based on structure prediction: a Data 
are processed into the short time series data required by the model. b SNR hyperparameters, regression 
parameters, and variance parameters are updated through a Markov chain Monte Carlo sampling method. 
c The multi-change point process is updated by the Markov Chain Monte Carlo Sampling method. d A 
particle filter is constructed with a multivariate point process, and the network structure is resampled. e 
Network performance is assessed with standard F-score and AUPR measures, and an experimentally validated 
biological network
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Piecewise Bayesian linear regression

The FC-DBN proposed herein is based on piecewise Bayesian linear regression. Its regres-
sion equation is:

In each component k of FC-DBN, where g = 1, . . . ,N  , N  is the number of nodes; yg ,k is 
assigned to the observation vector of component k, the regression coefficient matrix of the 
wg ,k regression model, wg ,k is the set of parent nodes of node g in component k, XT

πg ,k
 is the 

observation matrix of the parent node set of node g in component k, εg ,k is the noise param-
eter of the regression model, which obeys a Gaussian distribution with a mean of 0 and a 
variance of σg . Then the regression model likelihood is:

For the fixed variable point vector Vg and the parent node set πg of the node, let the 
regression parameter wg ,k , the inverse signal-to-noise ratio hyperparameter δ−1

g  , and the 
inverse variance hyperparameter σ−2

g  obey conjugate Gaussian and Gamma distributions. 
The level-2 hyperparameter Aδ ,Bδ ,Aσ ,Bσ is fixed. Figure 2 shows the hierarchical struc-
ture of the non-homogeneous dynamic Bayesian network model. The MCMC sampling is 
according to Eq.  (6). Algorithm 1 generates samples from the posterior distribution, and 
Eq. (3–5) is used to update the hyperparameters.
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Fig. 2  Hierarchy of inhomogeneous dynamic Bayesian network models. The inverse signal-to-noise ratio 
hyperparameter and the inverse variance hyperparameter are assumed to obey the conjugate gamma 
distribution, and the regression parameter is assumed to obey the conjugate Gaussian distribution
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Network structure sampling based on node correlation particle filtering

The parent node set is ideally sampled close to the actual state. Using MCMC sam-
pling with the parent node set obeying a uniform distribution result in the multiple 
invalid sampling by the sampler. To overcome this shortcoming, we propose a method 
to push the parent node set with high similarity to the actual state to the high prob-
ability region, and the parent node set dissimilar to the actual state to the low prob-
ability region, by using observational information and a variable point process. And 
the resampling process of the particle filter combined with the multi-variation point 
process is shown in Fig. 3.
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Fig. 3  The particle filter is constructed by combining a multi-point process, calculating the Pearson 
correlation coefficient between nodes in components, and then resampling
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The particle is represented by 
(

πg ,Vg ,Xg ,k

)

 , g  is the node, πg is the parent node set, 
Vg is the variable point vector, and C is the auxiliary matrix. At initialization,πg = 0 , 
Vg = I  , Xg ,k = Xg . After one MCMC sampling, the particle state is transferred to the 
current particle state. According to Algorithm 3, π(i−1)

g  is transformed into π(i)
g  , and 

according to Algorithm 5, V (i−1)
g  is transformed into V (i)

g .
The candidate parent node set has been obtained by adding or removing parent nodes 

from the current parent node set. Therefore, we determine whether the parent node 
set is close to the actual state by constructing a filter matrix based on the correlation 
between the two nodes. When g ′ → g is the real state, the node correlation coefficient 
Rg ,g ′ between nodes g ′ and g is close to 1, and under the action of the filter matrix R , the 
candidate parent node set is expected to be pushed to the high probability region.

The Pearson’s correlation coefficient is used in statistics to measure the linear correla-
tion between two variables [19]. However, the non-stationarity of gene expression data 
makes analyzing the relationship between gene nodes by Pearson correlation coefficient 
invalid. We calculate the Pearson’s correlation coefficient between nodes by combining 
the multi-point process. Through the auxiliary matrix C, the Pearson correlation coef-
ficient of the longer data segment can have a greater effect on the gene node correlation 
than the shorter date segment. Finally, the particle filter matrix R is obtained.
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∣

∣Xg ,k

∣

∣

T

(i−1)

 , |Xg ,k | represents the data length of |Xg ,k | , k
(

k = 1, . . . ,Kg

)

 
is randomly selected with the probability of 

∣

∣Xg ,k

∣

∣

T  , k ′ = Vg ′,Xg ,k
 . PXg ,k ,Xg ′ ,k′

 is the Pearson’s 

correlation coefficient, and PXg ,k ,Xg ′ ,k′
=

cov
(

Xg ,k ,Xg ′ .k′

)

σXg ,k σXg ′ .k′
 . Two important properties in the 

process of building the filter matrix are as follows.
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matrices.
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to the high probability area.
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The fixed inverse SNR hyperparameter is δ−1
g  , the regression parameter id wg ,k , the 

inverse variance hyperparameter is σ−2
g  , and the variable point component vector is 

Vg . Let the network structure M = (π1, . . . ,πN ) ; then the probability distribution of 
the network structure is:

For each node g, the conditional probability of its parent node set πg is:

According to the Metropolis–Hastings sampling (M–H sampling) criterion, the 
probability that the candidate parent node sets π(◦)

g  is accepted is:

If the action is accepted, then: π(i)
g = π

(◦)
g  ; otherwise, π(i)

g = π
(i−1)
g .

Multi‑change point process

The above reasoning is based on the assumption of that the component vector Vg 
is fixed. This section describes the sampling process of the component vector Vg . 
The component vector changes are determined by the moves of birth, death, and 
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Fig. 4  Three move schemes for the multi-change process: birth move, death move, inclusion move, and 
exclusion move
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complementary inclusion of the transition point. Figure 4 is a schematic diagram of 
three actions.

We propose a birth move based on the Manhattan distance of data points, and assume 
that the mean and variance of observation vectors of different components will differ. 
According to this assumption, by calculating the Manhattan distance of the mean and vari-
ance within different components, the birth move will tend to move in the direction of the 
larger Manhattan distance

where bk , dk , and rk represent the acceptance rates of the birth move, death move, and 
inclusion and exclusion move actions, respectively, which can be obtained according to 
the method proposed by Grzegorczyk et al. The RJ-MCMC algorithm steps for updating 
the changepoint are shown in Algorithm 5.

The algorithm flow of the FC-DBN is shown in Algorithm 6.
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Experiments and results
Experimental settings

The experimental section is divided into three parts using a yeast dataset and nine 
datasets of the RAF pathway to evaluate the FC-DBN network reconstruction accu-
racy, model stability, and convergence of MCMC sampling. The yeast dataset con-
taining five gene nodes is a small network structure designed by Cantone et al. The 
authors measured the expression levels of these genes in vivo through real-time quan-
titative polymerase chain reaction over 37 time points. Cantone et al. have changed 
the carbon source from galactose to glucose during the experiment. The dataset con-
tains 16 measurements in galactose and 21 measurements in glucose; the observed 
value of g at each node was recorded. Owing to the error in washing while chang-
ing glycogen, the two first measurement values have been removed to obtain a 5 × 35 
dataset [4]. The RAF pathway data with 11 nodes has been provided by Grzegorczyk 
et al. [18]. The RAF pathway shows the regulatory interactions among the following 
n = 11 proteins: PIP3, PLCG, PIP2, PKC, PKA, JNK, P38, RAF, MEK, ERK, and AKT. 
There are 20 regulatory interactions (directed edges) in the RAF pathway. Figure  5 
shows the yeast network structure and the topology of the RAF pathway.

According to the posterior probability en,j ∈ (0, 1) of the existence of each edge, E(ξ) 
is defined as the set of all edges whose posterior probability exceeds a threshold ξ, 
where ξ ∈ [0, 1] . According to E(ξ) , the numbers of true positive TP[ξ ] , false positive 
FP[ξ ] , and false negative FN [ξ ] are determined. The network reconstruction ability of 
the model is evaluated with two evaluation metrics.

Equations  12–14 show the evaluation index expression. The precision-recall (PR) 
curve is obtained by connecting adjacent points through nonlinear interpolation. The 
area under the PR curve (AUC-PR) is a quantitative measure that can be obtained by 

Fig. 5  a The gold standard network of the yeast data. b The gold standard network of the RAF pathway data
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numerically integrating the PR curve [21]. The larger the AUC-PR and Fscore value, the 
stronger the network reconstruction ability of the model.

To assess convergence, we consider scatter plots of the edge scores of ten independ-
ent MCMC simulations on the same dataset. We assume that the current number of 
MCMC simulations is I , the burning rate is burn_in, and net(n, j)i = 1 indicates that 
edge n → j exists when the number of iterations is i ; otherwise, net(n, j)i = 0 . We 
perform Q independent replicates of MCMC sampling. Plots of a scatterplot with 
average_edge_scores(n,j) values as the vertical axis and edge_scores(n,j) values as the hori-
zontal axis are constructed.

Experimental results

Network reconstruction accuracy evaluation

A particle filter is constructed to improve the efficiency of the MCMC sampler. Table 1 
shows the experimental results of the ratio of acceptance times to sampling times for 
the MCMC sampling network structure. The MCMC sampler of FC-DBN performs sig-
nificantly better than HMM-DBN. The efficiency of HMM-DBN’s MCMC sampler is less 

(12)R[ξ ] = TP[ξ ]/(TP[ξ ]+ FN [ξ ])

(13)P[ξ] = TP[ξ]/(TP[ξ]+ FP[ξ])

(14)Fscore = (2× R[ξ]× P[ξ])/(R[ξ]+ P[ξ ])

(15)edge_scores
q

(n,j)
=

∑I
i=burn_in+1 net

(

n, j
)i

I − burn_in

(16)average_edge_scores(n,j) =

∑Q
q=1 edge_scores

q

(n,j)

Q

Table 1  Comparison of acceptance rates of HMM-DBN and FC-DBN samplers

DATA​ HMM-DBN FC-DBN

Accept times MCMC times Ratio (%) Accept times MCMC times Ratio (%)

YEAST

7617 23,893 31 18,243 25,115 72

data_1 21,065 54,263 39 42,579 54,952 77

data_2 23,911 53,135 45 42,324 55,136 76

data_3 22,310 53,058 42 40,971 55,092 74

data_4 24,228 54,223 44 42,072 54,685 76

RAF

data_5 21,144 54,716 38 42,056 54,785 76

data_6 24,638 54,719 45 43,004 54,766 78

data_7 22,518 54,226 41 39,359 54,976 71

data_8 21,666 55,056 39 43,062 55,425 77

data_9 22,452 54,937 40 40,260 55,513 72



Page 12 of 17Zhang et al. BMC Bioinformatics          (2023) 24:264 

than 40% on the yeast dataset and less than 50% even on the RAF pathway data. There-
fore, more than half the sampler’s performance is wasted. However, compared with that 
of HMM-DBN, the performance of FC-DBN’s MCMC sampler is greatly improved, since 
we constructed a particle filter to cause the particles to be sampled closer to the actual 
state. The improvement in the performance of the MCMC sampler enables higher net-
work reconstruction accuracy to be obtained with fewer MCMC samples.

We have used 50 independent MCMC samples to obtain 50 sets of AUC-PR and 
F-scores, with the mean as the final criterion. Figure 6a shows the AUC-PR of different 
models under yeast data, and Fig. 6b shows the F-score of different models under yeast 
data, where HOM-DBN is a dynamic Bayesian network model that does not include a 
multivariate point process. The network reconstruction accuracy of the dynamic Bayes-
ian network model (HMM-DBN, FC-DBN) combined with the multi-change point 
process performs significantly better than that of HOM-DBN. Owing to the improved 
performance of the MCMC sampler, the AUC-PR and F-score values of the FC-DBN 
network have improved by 3% and 5%, respectively, with respect to those of the HMM-
DBN. Figure  6c shows the yeast network reconstruction accuracy at different MCMC 
sampling times. Although the FC-DBN model does not converge at 1500 MCMC sam-
ples, the same average network reconstruction accuracy as that of HMM-DBN can be 
obtained with 50,000 MCMC samples. Figure 7a shows the comparison of AUC-PR val-
ues under three different models: SSC-DBN [20], HMM-DBN, and FC-DBN. Figure 7b 

Fig. 6  Comparison of network reconstruction capabilities of different models under different evaluation 
indicators: a evaluation of network reconstruction ability with the AUC-PR evaluation index. b Evaluation of 
network reconstruction ability with the F-score evaluation index. c Comparison of network reconstruction 
capability of HMM-DBN and FC-DBN under different MCMC sampling times

Fig. 7  AUC-PR and F-score evaluations of three different models on nine sets of RAF data: a evaluation of 
network reconstruction ability with the AUC-PR evaluation index. b Evaluation of network reconstruction 
ability with the F-score evaluation index
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shows the comparison of F-scores of the three models. Tables 2 and 3 give the specific 
values.

We have used 50 independent MCMC samples to obtain 50 sets of AUC-PR and 
F-scores, with the mean as the final criterion. Figure 6a shows the AUC-PR of different 
models under yeast data, and Fig. 6b shows the F-score of different models under yeast 
data, where HOM-DBN is a dynamic Bayesian network model that does not include a 
multivariate point process. The network reconstruction accuracy of the dynamic Bayes-
ian network model (HMM-DBN, FC-DBN) combined with the multi-change point 
process performs significantly better than that of HOM-DBN. Owing to the improved 
performance of the MCMC sampler, the AUC-PR and F-score values of the FC-DBN 
network have improved by 3% and 5%, respectively, with respect to those of the HMM-
DBN. Figure  6c shows the yeast network reconstruction accuracy at different MCMC 
sampling times. Although the FC-DBN model does not converge at 1500 MCMC sam-
ples, the same average network reconstruction accuracy as that of HMM-DBN can be 
obtained with 50,000 MCMC samples. Figure 7a shows the comparison of AUC-PR val-
ues under three different models: SSC-DBN [20], HMM-DBN, and FC-DBN. Figure 7b 
shows the comparison of F-scores of the three models. Tables 2 and 3 give the specific 
values.

From Figs. 6 and 7, we can find that in the RAF pathway data data5, data6 and data8, 
the network reconstruction accuracy of SSC-DBN compared with HMM-DBN does not 
have a more obvious improvement than that of YEAST data. After analyzing the main 
differences in data characteristics and models, there may be two reasons:

(1)	 RAF data has obvious segmentation characteristics. Compared with SSC-DBN, 
HMM-DBN, which performs data segmentation based on hidden Markov model 
To a certain extent, it makes up for the SSC-DBN with sequential coupling param-
eters.

(2)	 The coupling relationship between the segments of RAF data is not strong enough. 
When the data segmentation is not particularly in line with the actual situation, the 

Table 2  AUC-PR estimates of three models on nine sets of RAF data

Model RAF data

data1 data2 data3 data4 data5 data6 data7 data8 data9

SSC-DBN 0.586 0.556 0.583 0.615 0.644 0.700 0.613 0.613 0.602

HMM-DBN 0.674 0.704 0.622 0.665 0.797 0.747 0.722 0.605 0.577

FC-DBN 0.732 0.749 0.689 0.695 0.826 0.761 0.765 0.621 0.656

Table 3  F-score estimates of three models on nine sets of RAF data

Model RAF data

data1 data2 data3 data4 data5 data6 data7 data8 data9

SSC-DBN 0.540 0.526 0.563 0.605 0.614 0.670 0.603 0.573 0.553

HMM-DBN 0.607 0.667 0.651 0.628 0.781 0.722 0.670 0.615 0.574

FC-DBN 0.688 0.683 0.667 0.667 0.791 0.733 0.700 0.615 0.638
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coupling parameters cannot fully compensate for the segmentation The impact of 
the segment.

Model convergence evaluation

The simulation platform had the following specifications. ① Processor: Intel Core 
i5-9500, CPU 3.0 GHz. ② Installed memory (RAM): 8 GB. ③ Hard disk: 1 TB. ④ Soft-
ware: MATLAB R2018b. On the yeast data, we performed MCMC simulations at three 
different times. The MCMC simulation for each time consisted of ten independent 
MCMC simulations. The edge score and the average edge score have been calculated, 
and a scatter plot was drawn. Figures 8 and 9 show the MCMC simulation convergence 
of FC-DBN and HMM-DBN under different conditions. Under the same conditions, the 
closer edge score of scatter plot to y = x, results in better convergence effect.

Supplementary experiments were performed here and modified in the manuscript. 
The variance of each edge is obtained from 10 independent MCMC samples, and the 
variance of all edges is summed. We believe that the smaller the sum of the variances, 
the better the model convergence. Table 4 shows the comparison of the variance of edge 
scores between HMM-DBN and FC-DBN under different time losses. Obviously, FC-
DBN has a smaller variance than HMM-DBN edge scores. Concomitantly, with respect 
to the MCMC simulation time, the scatter plot of FC-DBN is closer to the y = x line 
than that of HMM-DBN. Therefore, the convergence of FC-DBN is better than that of 
HMM-DBN for the yeast data.

Table 5 shows the comparison of HMM-DBN and FC-DBN loss lower edge score vari-
ance with a time loss of 100 min. Obviously, the variance of FC-DBN is smaller than the 
edge score of HMM-DBN. Among them, under four sets of data (3, 4, 8, 9) FC-DBN has 
a significant improvement in convergence performance compared to HMM-DBN. The 

Fig. 8  Convergence effect of HMM-DBN and FC-DBN under different MCMC simulation time: a convergence 
effect of HMM-DBN under MCMC simulation for 1 min, 6 min, and 50 min. b Convergence effect of FC-DBN 
under MCMC simulation for 1 min, 6 min, and 50 min
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scattergram in Fig. 9b is closer to the y = x line than the scattergram in Fig. 9a. Although 
Fig. 10 shows the scatterplots under the other five sets of data, the convergence of FC-
DBN is not significantly better than that of HMM-DBN. But from the variance com-
parison of edge scores in Table 5, it can be seen that the convergence performance of 
FC-DBN is still slightly better than that of HMM-DBN.

Conclusion 
FC-DBN has been proposed owing to the low efficiency of MCMC samplers dur-
ing the DBN network reconstruction. The purpose of FC-DBN is to provide a sam-
pling space proximate to the real state space for the network structure sampling of 
DBN through the particle filter step, which must push TP edges and TN edges to 
high-probability regions and low-probability regions. Therefore, in the network 
structure sampling stage, the efficiency of the MCMC sampler is greatly improved. 

Fig. 9  Convergence scatter plot of HMM-DBN and FC-DBN at an MCMC simulation time of 100 min on four 
sets of RAF data: a convergence scatter plot of HMM-DBN for four groups of RAF data. b Convergence scatter 
plot of FC-DBN for four groups of RAF data

Table 4  Comparison of variance of marginal scores under different models and different time losses 
in yeast data

Model/time 1 min 6 min 50 min

HMM-DBN 4.7× 10
−3

9.1× 10
−3 7.1× 10

−4

FC-DBN 3.0× 10
−3

4.4× 10
−3

5.5× 10
−3

Table 5  Comparison of marginal score variance of different models under 9 sets of data in RAF 
pathway

Model/
data

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9

HMM-
DBN

4.3× 10
−2

6.4× 10
−2

3.8× 10
−2

4.6× 10
−2

4.8× 10
−2

3.6× 10
−2

6.3× 10
−2

3.3× 10
−2

2.9× 10
−2

FC-DBN 3.6× 10
−2

5.5× 10
−2

2.3× 10
−2

3.3× 10
−2

3.9× 10
−2

3.5× 10
−2

5.9× 10
−2

1.9× 10
−2

1.5× 10
−2
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Furthermore, combining the birth action of Manhattan distance makes the multi-
change point process more reasonable, thus establishing the basis for building parti-
cle filters.

In our experiments, we have first evaluated the FC-DBN and HMM-DBN MCMC 
samplers and found that FC-DBN resulted in a significantly higher sampler efficiency 
than HMM-DBN. Then, we have compared the accuracy of network reconstruction, 
for the yeast data, for the dynamic Bayesian network model (HOM-DBN) without the 
combination of the multi-point process, the dynamic Bayesian network model (HMM-
DBN) combined with the multi-point process, and the combination of the multi-point 
process and the dynamic Bayesian network model of particle filter (FC-DBN). Experi-
mental comparisons have indicated that HMM-DBN has better network reconstruc-
tion ability than HOM-DBN. With the improved MCMC sampler, FC-DBN can obtain 
the same network reconstruction accuracy as HMM-DBN with shorter sampling times, 
while improving the network reconstruction ability. Since FC-DBN adds a particle filter 
step, which inevitably increases the time loss, the result comparisons have been consid-
ered only for the same times in the convergence analysis with HMM-DBN. Through the 
experimental comparison of the yeast data and the nine sets of data of the RAF path-
way, we have found that FC-DBN has a better convergence than HMM-DBN. This con-
vergence owes to the sampling progress of MCMC that leads to the convergence of the 
multi-point process, and hence the particle filter can push the MCMC sampling space.

However, the model proposed in this paper also has some problems. First, especially 
in the face of a large multi-node network structure, the time overhead of the algorithm 
increases exponentially; second, in the face of some specific data sets, satisfactory results 
cannot be obtained.
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