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Background
A gene co-expression network is helpful for analyzing and predicting gene functions and 
regulations [1, 2]. A gene co-expression network is composed of nodes and edges, in 
which nodes represent genes and edges represent co-expressed gene pairs [3, 4]. In the 
past decade, high throughput technologies (such as single-cell RNA sequencing) have 
enabled biologists to measure gene expression levels under various conditions [5, 6]. To 
study the relationships between genes, some researchers employ dimension-reduction 
algorithms such as PCA, UMAP, and t-SNE [7–10] to visualize genes in 2D or 3D space. 
However, analyzing co-expression data that encompasses diverse conditions can be chal-
lenging, particularly when missing values are present [6, 11–40].

In our previous work [1], we developed a data processing scheme to construct a 
gene co-expression network for Anopheles gambiae. The experimental results demon-
strated that the proposed approach is effective in studying gene functions and patterns, 
even when dealing with different experimental technologies and many missing values. 
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Building upon this prior work, we developed an integrated tool–GeCoNet-Tool for gene 
co-expression network construction and analysis.

Implementation
GeCoNet-Tool is an open-source package that combines gene co-expression network 
construction and network analysis. This tool is an implementation and improvement 
of our previous work [1], which presented a scheme for studying gene expression data 
across a large number of conditions. GeCoNet-Tool is an executable file written in 
Python with a user-friendly graphical interface that facilitates configuration for different 
data types (as shown in Fig. 1). The process of using GeCoNet-Tool can be split into two 
independent parts: network construction and network analysis.

Data processing and network generation

To construct a gene co-expression network, the user needs to input a gene co-expression 
matrix (.csv format), in which rows represent N genes and columns represent M experi-
mental conditions. GeCoNet-Tool allows users to process the input data with different 
options, depending on the data type. For example, users can choose to remove zeros, 
re-scale expression values by log2, or normalize columns by z-score if the input data are 
obtained through RNA-seq [41]. Additionally, users can choose to save the processed 
data in table format.

GeCoNet-Tool calculates the Pearson Correlation Coefficient (PCC) between each 
pair of genes based on the processed data. The PCC matrix is saved as an upper trian-
gular matrix if the user chooses to save the PCC matrix [42, 43]. In our previous work 
[1], we observed that the number of experimental conditions could significantly affect 
the PCC between two genes. Therefore, GeCoNet-Tool determines the number of paired 
elements between every pair of genes, and the user can save this data as an additional 
upper triangular matrix.

Fig. 1 The GeCoNet_Tool user interface
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GeCoNet-Tool classifies the PCCs into different intervals based on the number of 
paired conditions of gene pairs. The user can specify the size of intervals (Bin size) in 
the GeCoNet-Tool interface. To select edges based on PCC value, the user also needs 
to input the cutoff value expressed as the chosen top percentage of all PCCs in a given 
interval (e.g., 0.005, 0.01, or 0.02), which is used to determine the sliding threshold by fit-
ting the following curve:

where α , η , � , and β are the four parameters that were fitted, and x is the number of 
paired elements. This equation provided a good trade-off between the accuracy of the 
fitting and the number of parameters to estimate [1]. Once the curve is fitted, the opti-
mal parameters will be updated to the input boxes α , η , � , and β.

In order to obtain optimized parameters, GeCoNet-Tool automates the optimization 
of the four parameters instead of manual optimization as in our previous work [1]. The 
coefficient of determination (R-squared) of the fitted curve is shown in the Running Sta-
tus box. The edges of the co-expression network are selected through the fitted curve 
based on the number of paired elements [1]. The user can construct networks with dif-
ferent edge densities by tuning the cutoff value.

We recommend using a cutoff value that can maintain the majority of the nodes con-
nected while minimizing the number of edges. In general, increasing the cutoff value, 
decreases the edge density, which can impact the connectivity of nodes in a network. It 
is therefore advisable to choose a cutoff value that maintains the majority of connected 
nodes. To achieve this, the package should be executed multiple times using different 
cutoff values. This allows the user to observe the number of nodes and edges in each 
resulting network and select the cut-off value that contains the majority of nodes, while 
minimizing the number of edges. This approach ensures that the network retains its 
integrity while avoiding an excessive number of edges, which can impact downstream 
analyses.

Finally, users can save the list of edges in the co-expression network, along with the 
fitted threshold curve, for further analysis. The edge list and threshold curve are saved in 
the same folder as the input data.

Network analysis

Once a network is constructed, various properties of the network can be analyzed 
through the second part of GeCoNet-Tool. GeCoNet-Tool allows users to produce the 
following network properties [44]:

• community: The community is defined as a subgraph that is highly connected inter-
nally and loosely connected to other subgraphs. GeCoNet-Tool allows users to detect 
communities through the Louvain and Leiden algorithms [45–47]. Users can cus-
tomize the settings for community analysis by editing the original code (network_
analysis.py), while the tool provides default settings for users who prefer to use them.

• core: The core of the network is obtained by repeatedly removing nodes with a 
degree less than k by starting with k = 1 and increasing k until no nodes are left in 

(1)f thres(x) = α −
1
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−

x
β
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the network. The core genes are those with a degree = k (i.e., those removed during 
the last iteration) [48].

• degree: GeCoNet-Tool calculates node degree if the network is unweighted and cal-
culates node strength if the network is weighted [44].

• eigenvector: GeCoNet-Tool calculates the eigenvector centrality, which is deter-
mined by the entry of the eigenvector corresponding to the largest eigenvalue of the 
adjacency matrix of the network [49].

• betweenness: GeCoNet-Tool calculates the betweenness centrality, determined by 
the number of shortest paths that pass through the node itself [50].

• closeness: GeCoNet-Tool calculates the betweenness centrality, which is based on 
the distances between nodes. Closeness centrality is the sum of the shortest path dis-
tance reciprocals of a node to all other nodes [51].

In the package, users can choose to analyze either the entire network or only the larg-
est connected component and use either unweighted or weighted edges. GeCoNet-Tool 
generates a table in the output that contains all the selected properties. In addition, the 
package creates figures of the node degree distribution, community distribution, and 
core distribution.

Results
The user can observe the running status of the GeCoNet-Tool through the Running Sta-
tus window. At the same time, network statistics (such as the number of nodes, edges, 
and core nodes will be shown in the Results window as soon as the network is generated 
or analyzed.

In the experiment, we provide the Anopheles gambiae gene expression data and gen-
erate a network with default settings (the data is publicly available through VectorBase 
(www. vecto rbase. org) at the following URL: https:// tinyu rl. com/ mr38a 7hj). Figure  2a 
shows the sliding threshold with a cutoff value of 0.005, and the R-squared is 0.908, 
which suggests that the curve fits the raw data well. In practical applications, we suggest 
using smaller bin sizes and testing various cutoff values to generate a network that con-
nects the majority of nodes while minimizing the number of edges.

In the second part, users can analyze the generated network and produce a table to 
store the properties of the network. In the Anopheles gambiae gene co-expression net-
work, there are 12660 nodes, 389991 edges, and 164 core nodes. GeCoNet-Tool employs 
the force-directed algorithm Fruchterman-Reingold layout to visualize the community 
distribution (Fig. 2b) and core nodes (Fig. 2c). However, the layout shown in the results 
window is deterministic. Interested users are recommended to use interactive network 
visualization algorithms in Gephi [53] to show the generated network and properties. 
GeCoNet-Tool also generates node degree distribution as shown in Fig. 2d.

Conclusion and future works
GeCoNet-Tool is a free and user-friendly research tool that offers a straightforward 
approach to network construction and analysis, without the need for coding exper-
tise. The package is composed of two parts: (1) network construction and (2) network 
analysis. In the first part, pairwise relationships between nodes are evaluated using 

http://www.vectorbase.org
https://tinyurl.com/mr38a7hj
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the PCC and the number of paired conditions. Users can choose from various expres-
sion data types and data processing options, such as removing zeros and log2-resca-
ling. In the second part, GeCoNet-Tool provides multiple tools for network analysis. 
For example, the community analysis will classify nodes into different communities to 
identify genes with similar biological functions.

In the GeCoNet-Tool, networks are currently constructed with the Pearson correla-
tion coefficient. However, future updates may be expanded to other methods to assess 
gene co-expression, e.g., signed distance correlation, Spearman correlation, and 
mutual information, as suggested by recent studies [54]. This approach would offer 
users more flexibility in constructing co-expression networks that are tailored to their 
specific research requirements.
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