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Abstract 

Background:  The prognosis and survival of lung adenocarcinoma (LUAD) patients are 
still not promising despite recent breakthroughs in treatment. Endoplasmic reticu-
lum stress (ERS) is a self-protective mechanism resulting from an imbalance in quality 
control of unfolded proteins when cells are stressed, which plays an active role in lung 
cancer development, but the relationship between ERS and the pathological charac-
teristics and clinical prognosis of LUAD patients remains unclear.

Methods:  LASSO and Cox regression were applied based on sequencing informa-
tion to construct the model, which was validated to be robust. The risk scores of the 
patients were calculated using the formula provided by the model, and the patients 
were divided into high and low-risk groups according to the median cut-off of risk 
scores. Cox regression analysis identifies independent prognostic factors for these 
patients, and enrichment analysis of prognosis-related genes was also performed. The 
relationship between risk scores and tumor mutation burden (TMB), cancer stem cell 
index, and drug sensitivity was explored.

Results:  We constructed a 13-gene prognostic model for LUAD patients. Patients in 
the high-risk group had worse overall survival, lower immune score and ESTIMATE 
score, higher TMB, higher cancer stem cell index, and higher sensitivity to conventional 
chemotherapeutic agents. In addition, we constructed a nomogram that predicts 
5-year survival in LUAD patients, which helps clinicians to foresee the prognosis from a 
new perspective.

Conclusions:  Our results highlight the association of ERS with LUAD and the potential 
use of ERS in guiding treatment.

Keywords:  Lung Adenocarcinoma, Endoplasmic Reticulum Stress, Gene Model, 
Prognosis, Therapy

Introduction
As one of the most prevalent types of malignant tumors, lung cancer has been ranked 
among the highest incidence and mortality rates in many parts of the world [1]. 
Approximately 85% of lung cancers are non-small cell lung cancers (NSCLC) [2]. As 
the most predominant subtype of NSCLC, lung adenocarcinoma (LUAD) accounts 
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for approximately 50% of the total lung cancers [3]. Despite numerous breakthroughs 
in treating lung cancer, the 5-year survival rate after lung cancer is determined to be 
10–20% in most nations [4]. Although targeted therapies have improved the prognosis of 
some patients, drug resistance inevitably occurs, so this group of patients has to choose 
other treatment modalities. Immunotherapy as a highly promising treatment has led to 
sustained remission and elongated survival in a certain proportion of patients, but 80% 
of progressive NSCLC patients do not have a response to the now confirmed immuno-
therapy with a single checkpoint inhibitor [5, 6]. Platinum-based chemotherapy stays the 
gold standard of treatment for advanced lung cancer patients [7].

Endoplasmic reticulum stress (ERS) is a state induced by increased synthesis of intra-
cellular proteins, accumulation of mal-folded proteins, changes in cytosolic calcium 
levels, or imbalances in endoplasmic reticulum (ER) redox homeostasis [8]. However, 
if the stress on the ER is chronic or severe and quality control of protein folding can-
not be met, ER activates its stress receptor, the unfolded protein response, which trig-
gers programmed cell death [9]. This might be the pathogenesis of many diseases [10, 
11], including type 2 diabetes, neurodegenerative diseases, and atherosclerosis. It was 
suggested that the ERS signaling pathway also plays an active part in cancer progres-
sion [12]. Serving as a self-protective mechanism, ERS is not only engaged in the prolif-
eration of cancer cells in hypoxic environments [13], it also enables lung cancer cells to 
acquire resistance to  chemotherapy, radiotherapy and targeted therapy [14]. Meanwhile, 
ERS as a double-edged sword is also closely related to drug-induced apoptosis of lung 
cancer cells [15-17].

A growing number of studies imply that ERS is tightly associated with  the develop-
ment of LUAD. However, the relationship between ERS and the pathological character-
istics and clinical prognosis of LUAD patients is still unknown and needs to be further 
explored. At this stage, research on the use of specific biomarkers to construct prognos-
tic models for lung cancer is emerging, and bioinformatics plays an important role dur-
ing the process. Within this context, we constructed a prognostic model of ERS-related 
genes, combining the risk scores in the model with clinical characteristics (age, sex, 
staging, etc.) to establish a nomogram, and found its performance in estimating patient 
survival was excellent. Finally, we investigated the relationship between risk score and 
immune cell infiltration, cancer stem cell index, and drug sensitivity in the expectation 
of guiding individualized treatment of LUAD patients.

Materials and methods
Acquisition and processing of data

LUAD patients’ RNA sequencing files and the corresponding clinicopathological pro-
files were downloaded from the TCGA database (https://​portal.​gdc.​cancer.​gov/) and the 
GSE72094 dataset in the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Patients 
with missing overall survival data were excluded. Ultimately, 902 LUAD patients were 
included in the downstream analysis (504 in TCGA and 398 in the GSE72094 dataset). 
Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) values 
were transformed into transcript volume per million (TPM) values in RNAseq tran-
scriptome data, and R package limma [18] and sva [19] were used to perform batch cor-
rection and normalization of RNA-seq obtained from the two platforms. ERS-related 
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genes were downloaded from the GeneCards database (https://​www.​genec​ards.​org), an 
integrated bioinformatics database that provides detailed information on all genes that 
are currently annotated and predictable in humans, and genes with relevance scores ≥ 10 
were selected for this study. 376 ERS-related genes were obtained and collected in Addi-
tional file 1: Table S1.

After excluding data with incomplete information, we randomized altogether 902 
patients in the TCGA database (n = 504) and the GSE72094 dataset of the GEO database 
(n = 398) as a TRAIN set (n = 542) and a TEST set (n = 360). TRAIN set was employed 
for model construction and the TEST set for validation. Expression data from all patients 
were used for nomogram construction, immune microenvironment analysis, and sub-
sequent correlation analysis. GSE31210 (n = 226) from the GEO database was used for 
external validation of the prognostic model. The clinicopathological characteristics of all 
patients were summarized in Table 1.

Development of a prognostic model with ERS‑related gene

The ERS-associated genes associated with overall survival were derived from a uni-
variate Cox regression analysis of the combined standardized data from both datasets. 
Afterward, R package "glmnet"[20] was used to perform LASSO regression analysis on 
the prognostic data, and the penalty function was optimized using cross-validation. 
Prognosis-related genes with p < 0.05 were eventually included in the multifactorial Cox 
regression analysis to develop a prognostic prediction model for LUAD patients consist-
ing of ERS-related genes. The formula is as follows:

where Coef i represents the coefficient of each prognostic gene and expressionvaluei 
means the relative expression level of each gene normalized by z-score. Subsequently, all 
those patients were split into two groups, high and low-risk, depending on the median 
risk score.

The risk score and independent prognostic analysis

The "survival" package in R was used to plot Kaplan–Meier survival curves, and Receiver 
Operating Characteristic (ROC) curves for each group were generated using the "tim-
eROC" package [21] to show the relationship between the sensitivity and specificity of 
the model. The "pheatmap" package  in R was utilized to display the risk score and sur-
vival status distribution for each patient, and the R package was also used to plot the 
prognostic gene expression heat maps.

Cox regression analyzed whether risk score and clinical characteristics were independ-
ent prognostic factors for patients with LUAD. The relationship between risk score mod-
els and the patient prognosis was validated in stratified analyses.

Construction and validation of nomogram

Using the "survival" [22] and "rms" [23] packages, a nomogram was constructed in terms 
of patients’ gender, age, pathological stage, and risk score for predicting the overall 

RiskScore =

n

i=1

Coef i ∗ expressionvaluei
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Table 1  Clinical characteristics of LUAD patients in each dataset

Clinical characteristics Total %

TCGA​ 504 100

 Survival status

  Alive 321 63.69

  Dead 183 36.31

 Age

  <  = 65 years old 238 47.22

  > 65 years old 256 50.79

Unknown 10 1.99

 Gender

  Male 234 46.43

  Female 270 53.57

 Stage

  I 270 53.57

  II 119 23.61

  III 81 16.07

  IV 26 5.16

  Unknown 8 1.59

GSE72094 398 100

 Survival status

  Alive 285 71.61

  Dead 113 28.39

 Age

  <  = 65 years old 118 29.65

  > 65 years old 280 70.35

 Gender

  Male 176 44.22

  Female 222 55.78

 Stage

  I 254 63.82

  II 67 16.83

  III 57 14.32

  IV 15 3.77

  Unknown 5 1.26

GSE31210 226 100

 Survival status

  Alive 191 84.51

  Dead 35 15.49

 Age

  <  = 65 years old 176 77.88

  > 65 years old 50 22.12

 Gender

  Male 105 46.46

  Female 121 53.54

 Stage

  IA 114 50.44

  IB 54 23.89

  II 58 25.67
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survival of LUAD patients over 1, 3, and 5 years. The "survminer"  and "timeROC" pack-
ages were utilized to plot ROC curves and calibration curves for checking the validity 
and reliability of the nomogram.

Protein–protein interaction (PPI) network

Using the STRING online platform (https://​STRING-​db.​org/), a PPI network was con-
structed for 13 ERS-related genes in the model. Medium confidence (0.04) was selected 
as the minimum required interaction score. The line color signifies the type of interac-
tive evidence. Active interaction sources come from all the options provided by the site, 
such as text mining, experiments, databases, co‑expression, neighborhood, gene fusion, 
and co‑occurrence.

Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
employed to annotate and functionally analyze prognosis-related genes using the "clus-
terprofiler" R package [24], with a filter of the adjusted p-value (q-value) < 0.05. GO 
enrichment analysis covers three aspects of biology: molecular function, cellular compo-
nent, and biological processes.

Gene set variation analysis (GSVA) is a non-parametric, unsupervised method for 
assessing transcriptomic and genomic enrichment [25]. GSVA translates genetic level 
changes into pathway-level by performing a composite score on the set of genes of inter-
est to determine the bio function of the specimen. In the study, pathway information was 
obtained from the Molecular Signatures Database (https://​www.​gsea-​msigdb.​org/​gsea/​
index.​jsp) (VERSION V7.0) and the GSVA algorithm was used to aggregate each gene 
set for scoring.

Tumor immune microenvironment analysis

Based on gene expression data, CIBERSORT can be used to assess the abundance of dif-
ferent cell types in mixed cell populations [26]. RNA-seq data from LUAD patients were 
analyzed using the CIBERSORT algorithm, and the relative proportions of 22 immune 
infiltrating cells were calculated. Spearman correlation analysis was used to explore the 
relationship between genes and immune cells.

The ESTIMATE algorithm calculates the stromal score, immune score, and ESTI-
MATE score of the tumor to reflect the purity of the tumor [27]. The “ggpubr” package  
was used to draw violin plots to graphically display the differences in each score.

Correlation analysis

The information on Tumor mutation burden (TMB) in the LUAD cohort was obtained 
from the TCGA database and analyzed with the "maftools" R package [28]. The number 
of somatic nonsynonymous point mutations is displayed in a waterfall plot for each indi-
vidual. Differences in TMB between high and low-risk groups were also compared and 
presented as a box plot. In addition, cancer stem cell index score calculation files were 
downloaded from the TCGA database, and the relationship between risk score and can-
cer stem cell index was evaluated.

https://STRING-db.org/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Pharmaceutical sensitivity analysis

Differences in the half-inhibitory concentrations (IC50) of antitumor drugs in high and 
low-risk groups of LUAD patients were assessed using the "pRophetic" R package [29], 
according to the largest database of pharmacogenomics and presented in box plots.

Statistical analysis

Statistical analysis in this study was performed using the R programming language 
(version 4.1.1). Genes associated with prognosis and independent prognostic factors 
were identified using Cox regression analysis. The Kaplan–Meier curve and log-ranch 
test were applied to analyze differences in survival. In all analyses, P values < 0.05 were 
deemed to be statistically significant.

Results
The overall design and flow chart of this study is shown in Fig. 1.

Prognostic model calculates risk scores to help with patient grouping

By integrating the expression of ERS-related genes with patients’ clinical data, we con-
ducted a univariate Cox regression analysis that yielded up to a sum of 96 ERS-associated 
genes significantly related to overall survival (Additional file 1: Table S2). Following that, 
LASSO regression analysis was performed in the TRAIN set, and the 21 genes (EIF2AK3, 
EIF2S1, DERL1, BCAP31, CAT, SLC6A4, G3BP1, HSPA4, ABL1, HSP90AA1, MBTPS2, 
PKP2, CKAP4, TXN, CASP9, VEGFA, CAV3, PRKCD, SERPINH1, DSP, SLC2A1) cor-
responding to the lambda.min values were selected and included in the multivariate 
Cox regression to construct a model including 13 ERS-related genes (Fig. 2A, B), with 
the hazard ratio (HR), p-value, and coefficient of the genes being shown in Fig. 2C. The 
risk score for LUAD patients can be computed with the following penalized function 

Fig. 1  Flowchart of this study
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equation: Risk Score = (−  0.6160 × EIF2AK3 expression) + (0.4526 × DERL1 expres-
sion) + (0.3404 × BCAP31 expression) + (0.3574 × G3BP1 expression) + (0.4355 × ABL1 
expression) + (0.3736 × HSP90AA1 expression) + (0.1466 × PKP2 expres-
sion) + (0.2215 × TXN expression) + (0.3049 × CASP9 expression) + (0.2499 × VEGFA 
expression) + (−  0.5668 × CAV3 expression) + (-0.3889 × PRKCD expres-
sion) + (0.3419 × SERPINH1 expression).

We separated the entire sample into high and low-risk groups depending on the 
median risk score and plotted Kaplan–Meier survival curves. The curves showed that 
the survival rate and survival time were much lower in the high-risk group than in the 
low-risk group among both TRAIN and TEST sets (Fig. 3A–C, p < 0.001). Time-depend-
ent ROC curves were applied to estimate the model (Fig.  3E–G), with area under the 
curve (AUC) values reaching 0.728 at 1, 3, and 5  years for the TRAIN set and 0.632, 
0.706, and 0.674 at 1, 3, and 5 years for the TEST set. In addition, the GSE31210 dataset 
was used as an external validation, and the survival curves and ROC curves plotted on 
its basis as shown in Fig. 3D, H also helped us to validate the good performance of the 
model for prognosis assessment.

Fig. 2  Construction of a prognostic model. A The prognostic model is constructed by selecting the variable 
with the smallest partial likelihood of deviance. B tenfold cross-validation for screening variables in LASSO 
analysis. C ERS-related Genes and their correlation coefficients in the prognostic model
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The trends in risk scores, the distribution of survival status, and the relationship 
between the 13 genes included in the model and the risk groups are presented in Fig. 4A, 
B The heat map suggests that high expression of DERL1, BCAP31, G3BP1, ABL1, 
HSP90AA1, PKP2, TXN, CASP9, VEGFA, and SERPINH1 was associated with high 
mortality in our high-risk group, while high expression of EIF2AK3, CAV3, and PRKCD 
was often found in the samples with low-risk scores.

The PPI networks of these 13 genes were mapped to give a better picture of the corre-
lation between the proteins encoded by these genes (Fig. 4C).

Risk score can be an independent prognostic factor for LUAD patients

We performed univariate and multivariate Cox analyses to explore independent prog-
nostic factors in patients with LUAD. Univariate Cox regression analysis revealed that 
risk scores (HR = 1.407. 95% confidence interval [CI] 1.337–1.481, p < 0.001) were sig-
nificantly related to the prognosis of patients. In addition, gender (HR= 0.736. 95% CI 
0.577–0.939, p < 0.05), and pathological stage (HR= 2.707. 95% CI 2.089-3.508, p < 0.001) 
were also observed as prognostic factors in patients with LUAD (Fig. 5A). After control-
ling for confounding variables, multivariate Cox regression analysis disclosed that the 
13-gene risk score (HR = 1.405, 95% CI 1.329-1.486, p < 0.001) remained an indicator of 
patient overall survival, and similarly, gender and pathological stage also remained prog-
nostic factors for these patients (Fig. 5B).

We further discussed the applicability of the risk score in the stratified analysis 
(Fig. 5C–H). Survival analysis suggested marked survival differences between the high 
and low-risk groups in terms of stratification characteristics including age, gender, and 
pathological stage. This also validated the robustness of the risk score’s ability to predict 
prognosis.

Nomogram accurately predict prognosis in LUAD patients

Based on all sample data obtained, we developed a nomogram including age, sex, 
stage, and risk score of the model to predict the survival time of patients (Fig. 6A). The 

Fig. 3  A combination of internal and external validation verifies the predictive performance of the model. 
Kaplan–Meier curve analysis showed the difference in overall survival between the high and low-risk groups 
in the TRAIN set (A), the TEST set (B), and overall patients (C). D GSE31210 was used as an external validation 
dataset. E–H AUC was obtained from the ROC curve to verify the predictive efficacy of the overall survival 
time at 1, 3, and 5 years
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nomogram showed that the distribution of different clinical indicators and risk score 
values contribute differently to the overall scoring process, with the total score broadly 
forecasting a patient’s survival over 1, 3, and 5 years. The ROC curve was used to test 
the nomogram, and the results showed that the AUC was 0.742, 0.756, and 0.735 for 1, 
3, and 5 years, respectively (Fig. 6B), which, combined with the calibration curve dem-
onstrated in Fig.  6C, indicated that the nomogram had excellent predictive power for 
prognosis.

Identification of specific signals associated with prognosis

We found 96 prognostically relevant ERS-related genes significantly enriched in many 
pathways through GO and KEGG enrichment analysis. For example, a large num-
ber of genes were enriched in response to ERS, topologically incorrect protein, cel-
lular response to chemical stress, etc. in the GO enrichment analysis (Fig.  7A). The 

Fig. 4  Risk scores distinguish high and low-risk groups. Relationships between risk scores, distribution 
of survival status, and expression profiles of 13 ERS-related genes in the TRAIN set (A) and TEST set (B). C 
PPI network of the 13 genes in the model. The minimum required interaction score was set to medium 
confidence 0.400 and the line color indicates the type of interaction evidence
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enrichment of KEGG (Fig.  7B) displayed that kay genes are primarily engaged in the 
pathways of response to oxidative stress, response to unfolded protein, and metal ion 
transport.

Next, we investigated the specific signaling pathways involved in the two risk groups 
using GSVA analysis and presented them in a heat map (Fig. 7C) and explored the poten-
tial molecular mechanisms affecting tumor progression. According to the GSVA results 
(Additional file 1: Table S3), the differences between the two groups focused on DNA 
REPLICATION, HOMOLOGOUS RECOMBINATION, CELL CYCLE, MISMATCH 
REPAIR, and PROTEASOME. These findings suggest that disturbances in the above-
mentioned signaling pathways may have an impact on the prognosis of LUAD patients.

Significant differences in immune cell infiltration between 2 groups

It was shown that ERS has a crucial role in immune cells within the tumor microenvi-
ronment of LUAD [30]. Therefore, we further investigated whether ERS-related genes 
affect immune cells. The CIBERSORT algorithm was utilized to unearth the correlations 
between immune cells and genes in the model and we plotted a heat map to show them 
(Fig. 8A).

We then analyzed the difference in the content of immune cells in high and low-risk 
groups. Figure  8B showed that the content of immune cells such as activated B cells, 

Fig. 5  Independent prognostic analysis and stratified analysis. Forest plot of univariate (A) and multivariate 
(B) Cox regression analysis based on the clinical information and risk score. Kaplan–Meier survival curves 
showed significant survival differences between the high and low-risk groups in a clinically stratified analysis 
including age (C–D), sex (E–F), and pathological stage (G–H)
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immature B cells, and immature dendritic cells was noticeably lower in the high-risk 
group, whereas, activated CD4 T cells, CD56dim natural killer cells, and type2 T helper 
cells were clearly higher.

The tumor microenvironment consists of stromal cells and infiltrating immune 
cells, reflecting the purity of the tumor. As the number of stromal cells and infiltrating 
immune cells increases, tumor purity decreases. The results of the ESTIMATE analysis 
displayed that immune scores and ESTIMATE scores were markedly lower in the high-
risk group (Fig. 8C). We further plotted the heat map (Fig. 8D) with the information on 
age, gender, etc. to better demonstrate the relationship between clinical phenotype, key 
genes involved in the model, and high and low-risk groups.

Greater TMB and higher CSC index in high‑risk group

Tumor mutation burden (TMB) is simply the total number of mutations carried by 
tumor cells, specifically the number of somatic mutations per megabyte of the genomic 
sequence being interrogated. Patients with high TMB have been reported to have higher 
clinical benefits after immunotherapy, and thus TMB can be considered a potential 

Fig. 6  Nomogram is a good tool for predicting prognosis. A A nomogram was developed including patient’s 
age, gender, stage, and risk score to predict survival at 1,3,5 year. ROC curves (B) and calibration curves (C) 
show that the nomogram has good predictive performance
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molecular diagnostic marker for tumor immune checkpoint inhibitors to guide patients 
receiving treatment [31].

Mutation frequencies for the high and low-risk groups were shown in the waterfall 
plot Fig. 9A, B, which showed that there is no difference in the names of the top mutated 
genes in the high and low-risk groups, but the number of mutations differs. We then 
performed a correlation analysis of TMB (Fig. 9C) and there was a significant difference 
in TMB between the two groups.

Cancer stem cells (CSCs) are a subpopulation of cells in tumors with the ability to 
self-renew, which are highly correlated with tumor development and play an impor-
tant role in other malignant phenotypes such as cancer metastasis and recurrence 
[32]. Maciej Wiznerowicz et  al. generated a cancer stem cell index (mRNAsi) derived 
from the mRNA expression of 512 LUAD patients using a one-class logistic regression 

Fig. 7  Enrichment analysis of prognostic genes. GO (A) and KEGG (B) pathway analysis of 96 prognostically 
relevant ERS-related genes. C GSVA analysis reveals differences between specific signaling pathways involved 
in the two risk groups
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machine-learning algorithm (OCLR) [33]. Spearman analysis reveals a positive corre-
lation between mRNAsi and risk score, with a correlation coefficient of 0.31, p < 0.001 
(Fig. 9D).

Predicted differences in drug treatment effects

Chemotherapy, as a classical lung cancer treatment, is widely used in the adjuvant and 
neoadjuvant treatment of NSCLC [34]. In this study, the "pRRophetic" R package was 
used to predict the IC50 of antitumor drugs for each tumor specimen and to further 
investigate the difference in sensitivity between the two groups. The lower the IC50 
value, the more sensitive the drug. From Fig. 10A–G we can see that the common chem-
otherapeutic agents (cisplatin, paclitaxel, gemcitabine, vinorelbine, docetaxel, doxo-
rubicin, etoposide) are all more sensitive in the high-risk group, while for the erlotinib 
(Fig. 10H), the sensitivity is significantly higher in the low-risk group, implying that the 
low-risk group may benefit more from EGFR-TKI therapy.

Discussion
The endoplasmic reticulum (ER) is an organelle that is essential to all eukaryotic cells 
and is involved in vital cellular activities. Factors such as hypoxia, hypoglycemia, 
high temperature, acidosis, calcium levels, redox environment, and energy levels can 
affect and interfere with the normal function of the ER, leading to ERS and affecting 
protein folding in the ER lumen [35]. There is growing evidence showing that ERS is 

Fig. 8  Landscape of immune cell infiltration. A Correlation heat map between immune cells and genes 
in the model. B Differences in immune cells between high and low-risk groups. C ESTIMATE algorithm was 
applied to predict the tumor purity and the presence of infiltrating immune/stromal cells in tumor tissues. D 
Heat map of correlations between clinical features, risk score, immune score groups, and genes in the model
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an important pathway for cancer cell survival. Due to some characteristics of can-
cer cells, there is an increased need for protein processing in the ER and the mutant 
proteins expressed by cancer cells do not fold properly, thereby activating the ERS. 
The high metabolism of the tumor mass leads to a deterioration of the growth envi-
ronment such as nutritional deficiencies, and these processes are also potent triggers 

Fig. 9  Oncogenic Mutation Landscape and cancer stem cell index. A–B Waterfall plot of the frequency of 
mutations in high and low-risk groups. C Statistically significant differences in TMB between high and low-risk 
groups. D Risk score is positively correlated with cancer stem cell index

Fig. 10  Drug sensitivity analysis. A–G The high-risk group is more sensitive to common chemotherapy drugs 
(cisplatin, paclitaxel, gemcitabine, vinorelbine, docetaxel, doxorubicin, etoposide). H The low-risk group has 
higher sensitivity to the EGFR-TKI erlotinib
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for the initiation of ERS, resulting in greater tumorigenicity, metastasis, and drug 
resistance in tumor cells [36]. Interestingly, however, there is sufficient evidence in 
the literature that the use of inducers to enhance ERS is an effective strategy to induce 
apoptosis in cancer cells [37-39].

For lung cancer, ERS can induce cellular autophagy in LUAD cells and promote 
the survival of drug-treated tumors, accelerating drug resistance, recurrence, and 
malignant development of tumors [40]. In turn, the antitumor activity of some other 
compounds is achieved through apoptosis mediated with ERS [41, 42], implying 
that precise modulation of ERS can lead to tumor elimination. Notably, the relation-
ship between ERS and LUAD is not very clear, in which the tumor immune micro-
environment may play an important role [43]. So, a thorough comprehension of the 
mechanisms and results in this field is essential to translate our knowledge into new 
therapeutic approaches.

In the present study, we applied LASSO regression to construct a 13-gene prog-
nostic model for LUAD patients. Among these genes, high expression of DERL1, 
BCAP31, G3BP1, ABL1, HSP90AA1, PKP2, TXN, CASP9, VEGFA, and SERPINH1 
was highly positively correlated with poorer prognosis. HSP90AA1 (Heat Shock Pro-
tein 90 Alpha Family Class A Member 1), as an important node in the PPI network, 
is a hot topic in the pathogenesis of malignant tumors. Studies have shown that the 
product of the HSP90AA1 protein, HSP90α, is known to function in the regulation of 
tumor invasion and migration [44]. In addition, high expression of HSP90AA1 in lung 
cancer cells is closely associated with lung cancer progression and treatment response 
[45]. VEGFA (Vascular Endothelial Growth Factor A) is an important regulator of 
tumor angiogenesis in many solid tumors [46]. Clinical advances in anti-VEGF angio-
genesis therapy have been successful and have been translated and utilized in lung 
cancer [47]. SERPINH1 (Serpin Family H Member 1), also known as HSP47, is an 
important stress-related protein on the endoplasmic reticulum [48], with higher 
expression in squamous carcinoma tissues than in normal human bronchial epithelial 
cells [49]. Similarly, PKP2 (Plakophilin 2) and DERL1 (Derlin 1) are overexpressed in 
lung cancer cells [50, 51], promote the development of lung cancer, and are associated 
with lung cancer prognosis [52]. Overexpression of ABL1 (ABL Proto-Oncogene 1) 
gene is associated with shorter survival in LUAD patients, and animal studies sug-
gest that its inhibitors are effective in treating metastatic NSCLC [53]. G3BP1 (G3BP 
Stress Granule Assembly Factor 1), BCAP31 (B Cell Receptor Associated Protein 31), 
CASP9 (Caspase 9), and TXN (Thioredoxin) are involved in multiple biological pro-
cesses in tumors by regulating signaling pathways [54], thereby promoting tumor cell 
proliferation and metastasis as well as regulating apoptosis [55]. All of them may be 
potential targets for tumor therapy [56] and provide new strategies for the treatment 
of LUAD [57].

For the remaining three genes with Coef less than 0 in the risk score, EIF2AK3 
(Eukaryotic Translation Initiation Factor 2 Alpha Kinase 3), which encodes a mem-
brane protein, silencing in cancer cells prevents ERS and induces apoptosis [58]. 
PRKCD (Protein Kinase C Delta) genes play a key role in growth inhibition, differen-
tiation, apoptosis, and tumor suppression [59, 60]. CAV3 (Caveolin 3) mainly encodes 
a protein of caveolin-3, which is mainly distributed in the membranes surrounding 
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myocytes, and its dysfunction is associated with many diseases, including cancer and 
diabetes [61, 62]. Notably, the interrelationship of some genes with LUAD has not 
received much attention from researchers previously. These genes were identified and 
given significance in our study and remain to be further investigated in the future.

In the tumor microenvironment, ERS can serve as a novel biological marker [63]. 
Tumor cells themselves are in a variety of metabolic abnormalities that disrupt the 
homeostasis of intracellular protein folding and thus induce ERS in cells. This simultane-
ously induces changes in the microenvironment, such as nutrient deficiency, hypoxia, 
and imbalance of redox reactions, triggering the occurrence of ERS within the infil-
trating immune cells and affecting tumor immunity. For example, ERS affects the mye-
loid cells in suppressing antitumor immune surveillance [30], and ERS in cancer cells 
influences the recruitment and function of immune cells, modulates T cell-mediated 
immune responses, and NK cell-mediated tumor recognition [63], but the exact mecha-
nisms are not clear. Our results showed that the content of multiple immune cells was 
significantly different in high and low-risk groups, which may be due to disparities in 
the tumor microenvironment. Moreover, there is also a strong correlation between the 
genes included in the model and multiple immune cells, which provides clues to under-
standing the mechanism of ERS involvement in tumor immunity in the LUAD microen-
vironment. In addition, the TMB of LUAD patients increases with increasing risk scores, 
and studies have shown that patients with high TMB possess higher survival rates after 
receiving immunotherapy [64]. This makes the application of our model to immunother-
apy possible, and its in-depth exploration will help guide the subsequent eradication of 
the tumor itself and improve the efficacy of immunotherapy.

CSCs are intimately tied to tumor heterogeneity, antitumor resistance, and metastasis 
of lung cancer. A significant negative correlation between CSCs and antitumor immu-
nity has been observed [65]. In our results, the cancer stemness index was higher in the 
high-risk group, but its immune score was lower. This implied the possible existence of 
genes or pathways that maintain the stemness of tumor cells and inhibit the function of 
immune cells, thus regulating tumor progression [66]. Importantly, we should be aware 
that future research on CSC-targeted tumor therapy should be strengthened to enrich 
the means of tumor treatment [67].

To provide more accurate treatment options for LUAD patients, we used the R pack-
age "pRRophetic" to predict the differences in IC50 values of common antitumor drugs 
between the two groups on the basis of drug sensitivity data. According to the results, 
chemotherapy, one of the most important treatment modalities for LUAD, continues 
to benefit patients in the high-risk group (all common chemotherapeutic agents have 
a lower IC50), while the low-risk group has more treatment options, including targeted 
therapies (lower IC50 of Erlotinib). Unfortunately, information on immune checkpoint 
inhibitors is missing here, and our approach was not successful in predicting the sensi-
tivity to immunotherapy in high and low-risk groups.

Of course, our study has some shortcomings. First, due to the limited data on LUAD 
patients in the public database, the sample size covered in this study was relatively insuf-
ficient, resulting in some results not representing the whole picture. Second, the dataset 
obtained from the public database lacks some important information, which limits us 
to more in-depth analysis. Furthermore, the 13 genes obtained in the prognosis-related 
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model also need to be validated externally at various levels (genes, proteins, in  vivo 
experiments) to explore and reveal their specific mechanisms.

In summary, we constructed an ERS-related prognostic model and performed drug 
sensitivity analysis. Our results provide important clues to study the role of ERS in 
LUAD and are expected to help clinicians understand the relationship between ERS and 
patient prognosis from a novel perspective. We also expect that it can guide more appro-
priate drug treatment options for patients in the future.
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