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Abstract 

Background: N6-methyladenosine (m6A) and 5-methylcytosine (m5C) are the main 
RNA methylation modifications involved in the oncogenesis of cancer. However, it 
remains obscure whether m6A/m5C-related long non-coding RNAs (lncRNAs) affect 
the development and progression of low grade gliomas (LGG).

Methods: We summarized 926 LGG tumor samples with RNA-seq data and clinical 
information from The Cancer Genome Atlas and Chinese Glioma Genome Atlas. 105 
normal brain samples with RNA-seq data from the Genotype Tissue Expression project 
were collected for control. We obtained a molecular classification cluster from the 
expression pattern of sreened lncRNAs. The least absolute shrinkage and selection 
operator Cox regression was employed to construct a m6A/m5C-related lncRNAs prog-
nostic signature of LGG. In vitro experiments were employed to validate the biological 
functions of lncRNAs in our risk model.

Results: The expression pattern of 14 sreened highly correlated lncRNAs could cluster 
samples into two groups, in which various clinicopathological features and the tumor 
immune microenvironment were significantly distinct. The survival time of cluster 1 
was significantly reduced compared with cluster 2. This prognostic signature is based 
on 8 m6A/m5C-related lncRNAs (GDNF-AS1, HOXA-AS3, LINC00346, LINC00664, 
LINC00665, MIR155HG, NEAT1, RHPN1-AS1). Patients in the high-risk group harbored 
shorter survival times. Immunity microenvironment analysis showed B cells, CD4 + T 
cells, macrophages, and myeloid-derived DC cells were significantly increased in the 
high-risk group. Patients in high-risk group had the worse overall survival time regard-
less of followed TMZ therapy or radiotherapy. All observed results from the TCGA-LGG 
cohort could be validated in CGGA cohort. Afterwards, LINC00664 was found to pro-
mote cell viability, invasion and migration ability of glioma cells in vitro.

Conclusion: Our study elucidated a prognostic prediction model of LGG by 8 m6A/
m5C methylated lncRNAs and a critical lncRNA regulation function involved in LGG 
progression. High-risk patients have shorter survival times and a pro-tumor immune 
microenvironment.
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Introduction
Glioma is the most lethal primary intracranial neoplasm, with a reported overall sur-
vival of approximately 14–16  months [1]. The incidence rate of glioma is surmised at 
3–4 per 100,000 population worldwide and continues to rise as human life expectancy 
prolongs [2]. In the case of a new diagnosis, the standard treatment consists of surgery 
followed by concurrent radiotherapy and temozolomide therapy with additional adju-
vant temozolomide treatment. More than half of low grade gliomas(LGG) could pro-
gressively evolve into high grade gliomas. Despite recent advances in the treatment of 
glioma, overall survival remains poor and thus requires new treatment strategies [3]. 
The update of the WHO classification suggests that the role of molecular phenotyping 
is of enormous importance for the diagnosis and treatment of glioma [4]. Therefore, the 
development of molecular phenotyping prognostic risk models provides guidance for 
screening and discrimination of high-risk patients and might contribute to improving 
clinical outcomes.

RNA modifications have emerged as pivotal post-transcriptional regulators of gene 
expression programs, boasting over 170 different types of modifications [5]. N6-meth-
yladenosine (m6A) is the most prevalent chemical epigenetic modification in mRNA 
post-transcriptional modifications, which is a dynamic and reversible methylation modi-
fication at the adenosine N6 position, comprising recognition, methylation, and demeth-
ylation [6]. Dynamic m6A modifications are involved in the formation and maintenance 
of cancer stem cells thereby manipulating cancer progression and treatment resistance 
[7]. The m6A demethylase ALKBH5 promotes the proliferation and invasion of glio-
blastoma stem cells by maintaining the expression level of FOXM1 [8]. 5-Methylcyto-
sine (m5C) is a wide-ranging mRNA modification that acts on the untranslated regions 
(UTRs) of mRNA transcripts to exert regulatory effects including RNA export, ribo-
some assembly, and translation [9]. Loss of m5C methyltransferase NSUN5 in gliomas 
correlated with long-term survival of glioma patients [10]. Epigenetic RNA methylation 
modifications are inextricably linked to tumor proliferation and invasion.

Long non-coding RNAs (lncRNAs) are multifunctional RNAs with structures similar 
to mRNAs, including poly-A tails and promoter structures, that regulate gene expres-
sion through either the editing of RNA, splicing of pre-mRNA, association with chro-
matin modifiers, or the abrogation of miRNA-induced repression [11]. A variety of 
lncRNAs have been studied for their engagement in glioma initiation and progression, 
including H19, Malat1, CRNDE, XIST, HOTAIR, and SOX2OT [12]. m6A is not only the 
most prevalent modification in mRNAs but also found in long non-coding RNAs [13]. 
The m6A reader YTHDF2 plays a crucial role in maintaining the stemness of glioma 
stem cells by stabilizing RNA expression in glioma stem cells [14]. LncRNA NKILA is 
regulated by the m5c methyltransferase NSUN2 to increase m5C levels, which promotes 
NKILA interaction with YBX1 for regulating the progression of cholangiocarcinoma 
[15]. Therefore, m6A and m5C methylated lncRNAs are robustly correlated with tumor 
development.

However, the exploration of the biological functions of m6A/m5C-related lncRNAs in 
low-grade gliomas remains scarce due to the limitations of our understanding of lncR-
NAs. In this article, we will focus on the biological significance of m6A and m5C modi-
fications of lncRNAs in low-grade gliomas. By analyzing 926 glioma samples, we found 
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that the expression of m6A/m5C-related lncRNAs signatures correlated significantly 
with glioma survival and immunity.

Methods
Data collection and processing

Access the TCGA (The Cancer Genome Atlas) and CGGA (Chinese Glioma Genome 
Atlas) data platforms to download and arrange the transcriptome profiles of LGG 
(https:// portal. gdc. cancer. gov and http:// www. cgga. org. cn/). The corresponding clinical 
information of glioma patients was also downloaded to match the RNA-seq data. Collate 
the data by ‘Annoprobe’ R package and filter the lncRNA expression data profile from 
it. The RNA-Seq data of 105 brain normal control tissues from the Genotype Tissue 
Expression (GTEx) Project were downloaded and collated from the UCSC XENA data-
base (TCGA TARGET GTEx combined cohort, https:// xenab rowser. net/). LGG somatic 
mutation data in TCGA were analyzed and visualized using the R package ‘maftools’[16].

mRNAs–lncRNAs co‑expression network and differential expression level of m6A/

m5C‑related lncRNAs

Based on the previous report studies [5, 17], a list of 39 m6A/m5C-related genes was 
yielded (Additional file  2: Table  S1). Then, the finding of m6A/m5C genes correlated 
lncRNAs in TCGA and CGGA cohorts separately by spearman correlation analysis 
with a setting like absolute value of correlation coefficient > 0.5 and p value < 0.001. The 
univariate cox regression analysis was used to obtain m6A/m5C-related lncRNA har-
boring prognostic value from TCGA and CGGA datasets. Subsequently, the intersec-
tion of m6A/m5C methylation-related lncRNAs in TCGA and CGGA cohorts to obtain 
highly correlated lncRNAs. Then we generate gene co-expression network maps using 
Cytoscape software (Version: v3.9.0) to analyze the results of m6A/m5C spearman cor-
relation analysis [18]. The results of differential analysis of m6A/m5C-related lncRNA 
gene expression between the expression data of GTEx normal brain samples and LGG 
expression data in TCGA were presented in a heatmap.

Consensus clustering glioma cases by m6A/m5C‑related lncRNAs

The expression data of correlated lncRNAs were analyzed using the R package “Consen-
susClusterPlus”, in which optimal clusterNum was set to 2, resulting in 2 clusters [19]. 
Subsequently, the distribution of the 2 clusters was visually displayed using the Principal 
Component Analysis (PCA) method.

Survival analysis

Survival analysis for the 2 categorical variables was performed by K–M curve analysis 
for comparison, with statistical differences defined as < 0.05. In another way, patients’ 
survival differences were analyzed by survival status in a 2-category distribution.

Immune landscapes assessment

ESTIMATE algorithm, Timer algorithm, and Cibersort algorithm were used to evaluate 
immune scores and immune cell infiltration in 2 classified sample species [20, 21]. Fre-
quently detected 29 immune checkpoint expression data were extracted from LGG gene 

https://portal.gdc.cancer.gov
http://www.cgga.org.cn/
https://xenabrowser.net/
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expression profiles for differential expression comparison across clusters or risk groups 
[22].

Functional enrichment analysis

In order to explore differentially expressed genes (DEGs) of different clusters or risk 
groups, the R package “limma” based on the TCGA dataset was used with the criteria 
of | log2(FC)|> 1, p < 0.05, and FDR < 0.05 [23]. Gene enrichment analysis (GSEA) was 
performed to fathom the differentially functional enrichment pathways of samples in 
distinct clusters. DEGs in the different risk group were opted as candidates for Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
sis based on the R package ‘clusterProfiler’ and ‘enrichplot’ for visualization [24, 25].

Tumor‑associated somatic mutations and copy number variations analysis

Tumor-associated somatic mutations analysis of 2-classified samples was performed uti-
lizing the ‘maftools’ package. Copy number variation (CNV) evaluations were conducted 
across clusters or risk groups [26].

Prognostic signature constructed by m6A/m5C‑related lncRNAs

The matched clinical data were first collated. And then the 14 relevant lncRNAs 
screened were set as independent variables using least absolute shrinkage and selec-
tion operator (LASSO) regression analysis, where the method was set as Cox survival 
analysis to reduce the variables to fabricate a prognostic model. The respective risk 
score in each tumor sample was calculated by combining correlation coefficients and 
gene expression level of obtained m6A/m5C-related lncRNAs with such formula (Risk 
score = n

i=1Coefi ∗ Expi , where Coefi means the correlation coefficients, Expi is the 
FPKM value of each m6A/m5C-related lncRNAs).

The predictive value and accuracy assessment of the risk model

Receiver operating characteristic (ROC) curve analysis, calibration curve, and time-
ROC analysis was used to assess the predictive power and precision of the models [27]. 
Univariate and multivariate Cox regression analyses were used to assess the value of risk 
models for clinical application.

2.10 In vitro validation assays

Cell transfection and siRNA plasmids

The human glioma cell lines U87 and U251 were purchased from ATCC (Manassas, VA). 
Cells were maintained in DMEM (Gibco, USA) supplemented with 10% fetal bovine 
serum (Gibco, USA) and 1% penicillin plus streptomycin (Gibco, USA) and incubated in 
a humidified incubator (37 °C, 5%  CO2).

The sequences of siRNA were designed based on the NCBI Reference Sequence: 
NR_037194.1 using the siRNA Wizard software 3.1 (InvivoGen). Sequences of siRNAs 
were as follows. LINC00664 siRNA #1 GGT GAT GAC AGA ATT GTA ACA. siRNA #2 
GTG ACT GTT CTA TTC ATC ATA. siRNA #3 GTT CAA ATG GGA CAT ATC TTA. Si-NC 
GAG GCG AAT CGA ATT AGA TAT. LINC00664 siRNAs were transfected by using Lipo-
fectamine 2000 (Invitrogen, USA) according to the manufacturer’s instructions.
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Quantitative real‑time PCR

Total RNA from U87 and U251 cells was extracted using a Trizol kit (Servicebio, China) 
and assessed for purity and concentration. The RNA was reverse transcribed into com-
plementary DNA (cDNA). Quantitative RT-PCR was performed on a PCR machine 
(ABI Q1, CA, USA) with SYBR Green Master Mix (Yeasen, shanghai, China). Primers 
were adopted as follows: LINC00664, forward, 5′-TGC CTG TTC TCA GGG AAG AT-3′, 
reverse, 5′-CAG GCA GAG GAC TCA CAT CA-3′. GAPDH, forward, 5′-AAT GGG CAG 
CCG TTA GGA AA-3′, reverse, 5′-GCG CCC AAT ACG ACC AAA TC-3′.

CCK8 assay to determine cell proliferation

Firstly, glioma cells were evenly inoculated in 96-well cell plates. After glioma cells 
were attached to the wall, small interfering RNA to silence LINC00664 was trans-
fected except for the control group. Subsequently, the cells were incubated with CCK8 
reagent for 2 h at 22 h, 46 h, and 70 h after the transfection. Finally, the cell prolifera-
tion was determined by measuring the absorbance at 450  nm under the microplate 
reader (BD Biosciences, USA).

Trans‑well assay to verify the migration ability of glioma cells

The culture apparatus used in the transfer well experiments was a transfer well migra-
tion champer (8um size; Corning, USA). After Si-LINC00664 for 24 h, an equal num-
ber of each group of cells 5*10^4 were seeded in the upper chamber and DMEM 
medium with 30% serum concentration was placed in the lower chamber as an 
attractant. After 24 h of incubation, the upper chamber was fixed, stained, and photo-
graphed under a microscope (OLYMPUS BX53).

Wound healing assay to assess migration capacity

Glioma cells transfected with GFP were uniformly grown in a 6-well plate and left to 
form a dense cell layer at the bottom. Then, vertical scribing with a 200 ul microinjec-
tion tip to form a scratch. After taking pictures under the microscope, the cells were 
cultured with DMEM serum-free medium for 24  h and then photographed again. 
Finally, the distance from the edge of the scratch to the growing edge of the cells was 
measured to assess the migration capacity of the cells under different conditions.

Statistical analysis

All statistical analysis was performed on R Studio (version 4.1.1) and GraphPad Prism 
(version 9.0). Student’s t-test was performed for two-group comparisons. For com-
parisons among more than two groups, the Wilcoxon test and one-way ANOVA were 
utilised respectively for non-parametric and parametric data. p ≤ 0.05 was considered 
statistically significant.

Results
Analysis of m6A/m5C highly correlated lncRNAs

The flow chart of this study was present in Additional file 1: Figure S1. By Spearman 
analysis, adjusting the correlation coefficient to 0.5, we found 190 correlated lncRNAs 
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with potential prognostic value in the TCGA cohort and 95 correlated lncRNAs in 
the CGGA cohort (Additional file 1: Figure S2A). The TCGA and CGGA m6A/m5C-
related lncRNA data sets were intersected to obtain 14 highly correlated lncRNAs 
that are representative of the majority of cases (Additional file 1: Additional file 1: Fig-
ure S2A, Additional file 2: Table S2). Then, we incorporated the intersecting lncRNAs 
and related m6A/m5C genes to produce co-expression network maps by Cytoscape 
software (Fig. 1A). By joining the normal sample data in the GTEx database, we found 
that these 14 highly correlated lncRNAs were differentially expressed in healthy indi-
viduals and LGG cases (Fig. 1B).

Identification of two clusters of LGG cases by consensus clustering and survival analysis

The LGG cases in the TCGA cohort were classified into two clusters by cluster-
ing analysis with the best K = 2 consensus matrix (Fig.  1C). The PCA computation 
method was performed to display the characteristics of the two clusters from the 
TCGA cohort (Fig. 1D) or CGGA cohort (Additional file 1: Figure S2B), which were 
found to be visually distinguishable between these samples. Subsequently, we per-
formed survival analysis on the two clusters of cases and found that the survival time 
of cluster 1 was significantly reduced compared with cluster 2, both in the TCGA 
(Fig. 1E) and in the CGGA cohort (Additional file 1: Figure S2C).
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Analysis of oncological differences between the two clusters of LGG cases

Through heat map visualization, we showed the differences in expression levels of 14 
highly relevant lncRNAs and the clinicopathological features between the two clus-
tered samples (Fig.  2A). Interestingly, we found that cases in cluster 1 had fewer IDH 
mutations, 1p19q co-deletions, and MGMT promoter methylation both in the TCGA 
(Fig. 2A, Additional file 2: Table S3) and in the CGGA cohort (Additional file 1: Figure 
S2D, Additional file  2: Table  S5). In addition, it was found that the ESTIMATE score, 
immune score, and stromal score of cluster 1 were higher compared with cluster 2 
(Fig. 2A). Then, the clusters were then analyzed for differences in immune checkpoint 
expression levels, where we found that immune checkpoints, including CD276, CD40, 
IDO1, CTLA4, LAG3, PDCD1, TNFSF14 and et  al., were significantly upregulated in 
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cluster 1 (Fig. 2B). Furthermore, the two clusters were remarkably different in immune 
infiltrating B cells, CD4 + T cells, and macrophages by immune cell infiltration analysis 
with Cibersort and Timer methods (Fig. 2C, D and Additional file 1: Figure S2E, F). By 
GSEA enrichment analysis, it was found that cluster 1 was highly enriched in immune 
related pathway, like Antigen processing and presentation, Cytokine–cytokine recep-
tor interaction, Th17 cell differentiation, Toll—like receptor signaling pathway, while 
cluster 2 was enriched in Glutamatergic synapse, GABAergic synapse, Synaptic vesicle 
cycle, Nicotine addiction (Fig. 2E). Mutation landscape analysis showed that the highly 
mutated genes both in clusters 1 and 2 were mainly IDH1, TP53, and ATRX, while clus-
ter 1 had a higher mutated EGFR and PTEN gene compared with cluster 2 in the TCGA 
cohort (Fig. 2F).

Constructing and evaluating the risk model by m6A/m5C‑related lncRNAs

Firstly, LASSO regression analysis was performed to reduce the variables for risk model 
construction with 14 lncRNAs narrowed down to 8 lncRNAs (Fig. 3A–C). These 8 lncR-
NAs were combined to build our risk model: GDNF-AS1, HOXA-AS3, LINC00346, 
LINC00664, LINC00665, MIR155HG, NEAT1, RHPN1-AS1. Subsequently, we grouped 
patients according to risk scores and found a significantly lower probability of survival 
among patients in the high-risk group from the TCGA cohort (Fig. 3D, Additional file 2: 
Table S4) and CGGA cohort (Fig. 3G, Additional file 2: Table S5). Next, a K–M curve 
was applied to analyze the survival differences between the different risk groups, veri-
fying that patients in the high-risk group had shorter survival times (Fig. 3E, H). Fur-
thermore, we used time-ROC curve analysis to confirm that our model had promising 
predictive power in survival prediction for both the TCGA (AUC at 1/3/5 years respec-
tively: 0.86, 0.84 and 0.77, Fig. 3F) and CGGA cohorts (AUC at 1/3/5 years respectively: 
0.73, 0.76 and 0.76, Fig. 3I). The risk scores were in agreement with previous clustering 
analyses and provided good discriminatory functions in terms of tumor molecular char-
acteristics, such as fewer IDH1 mutations, 1p19q co-deletion, and MGMT methylation 
in the high-risk group (Fig. 3J, Additional file 1: Figure S4A).

The value of risk models compared with other clinical factors in applications

Univariate Cox regression analysis revealed that our risk score was as favorable a prog-
nosis judgment as other commonly used clinical prognostic indicators such as grade, 
IDH status, 1p19q co-deletion, and MGMT promoter methylation (Fig.  4A, B). Then, 
through multivariate COX regression analysis, we verified that the risk scores took a bet-
ter prognostic predictive power compared with molecular characteristics in different 
cohorts (Fig. 4C, D). Using ROC curves to analyze the degree of predictive accuracy, we 
observed that the risk scores possessed the greatest AUC values among the various clini-
cally relevant prognostic factors in the TCGA cohort as well as CGGA cohorts (Fig. 4E, 
F). Visualization of our multivariate COX model through Nomogram to visually depict 
that our risk score model have a greater weight in the evaluation system (Fig. 4G, Addi-
tional file 1: Figure S3A). Moreover, to validate the accuracy of the prediction model in 
forecasting the prognosis of LGG patients in TCGA dataset, we conducted an analysis 
of time-dependent ROC curves. The AUCs at 1, 3 and 5 years were 0.86, 0.86, and 0.81, 
respectively (Fig. 4H, I). These findings were further supported by the results obtained 
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from the CGGA cohort (Additional file 1: Figure S3B, S3C). Hence, exhibits the potential 
to accurately predict the prognosis of LGG patients across various time intervals.

Risk model distinguishes immune landscapes and oncological characteristics of different 

risk groups

The Sankey diagram showed the correspondence between our subgroups, and the risk 
scores for prognostic prediction yielded similar results to the consensus clustering anal-
ysis (Fig.  5A). Then, analyzing the expression levels of immune checkpoints, CD276, 
CD274, CTLA4, ICOS, ICOSLG, TNFSF14, and PDCD1 were observed to be elevated 
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in the high-risk group (Fig. 5B). In addition, the stromal score, immune score, and ESTI-
MATE score were all higher in the high-risk group as measured by ESTIMATE immune 
rating (Fig. 5C, Additional file 1: Figure S4B). With immune infiltration cell analysis, we 
found that B cells, CD4 + T cells, macrophages, and myeloid-derived DC cells were sig-
nificantly increased among the high-risk group (Fig. 5D, E, Additional file 1: Figure S4C, 
D). Via a further correlation analysis, we verified that neutrophils, myeloid DC cells, and 
M2 macrophages were all positively correlated with risk scores (Fig. 5F, Additional file 1: 
Figure S4E). Combining the tumor TMB analysis, we found that patients with high TMB 
had shorter survival times (Fig.  5G). Additionally, risk scores remained well discrimi-
nating among patients in TMB loading groups, suggesting that patients with high-risk 
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scores had shorter survival times regardless of whether they were classified in the high 
or low TMB group (Fig. 5H). Considering that tumor behavior is highly associated with 
mutations in genetic background, it was found by CNV analysis that the high-risk group 
possessed more CNVs, and a higher G-score (Fig. 5I).
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In addition, the expression level of each screened lncRNA as our risk model could be 
an individual indicator to predict the prognosis of LGG patients (Additional file 1: Fig-
ure S5A). Mutation landscape analysis from different risk groups showed that low-risk 
group had a relatively higher mutation rate in IDH1(low-risk group vs. high-risk group: 
93% vs. 60%), while high- risk group had a higher mutated EGFR, NF1 and PTEN gene 
compared with low-risk group (Additional file 1: Figure S5B). GO analysis revealed that 
cell functions enriched by heterogeneous genes between the high-risk group and its 
counterpart were as follows: regionalization, skeletal system development, pattern speci-
fication process, collagen fibril organization, anterior/posterior pattern specification 
(Additional file 1: Figure S5C, Additional file 2: Table S6). KEGG analysis unveiled that 
the signal pathways enriched by diverse genes between the high-risk group and its coun-
terpart were: complement and coagulation cascades, ECM-receptor interaction, phago-
some, focal adhesion and hematopoietic cell lineage (Additional file 1: Figure S5D).

Predictive value of risk scores in clinical treatment subgroups

The routine treatment of glioma includes TMZ therapy and radiotherapy. In both the 
TMZ-treated and non-TMZ-treated subgroups, high-risk patients had shorter survival 
times in the TCGA cohort (Fig. 6A). Similarly, the same findings could be obtained in 
the CGGA group, and the survival differences between high- and low-risk patients were 
more pronounced (Fig. 6B). Patients in the high-risk group had shorter survival times 
than those in the low-risk group when grouped according to the presence or absence of 
radiotherapy both in TCGA and CGGA cohorts (Fig. 6C, D).

In vitro validation of biological functions of risk model lncRNAs

LINC00664 was sorted from risk model lncRNAs to validate its biological function in 
two different glioma cell lines, U87 and U251. Firstly, we downregulated the expression 
level of LINC00664 in U87 and U251 cell lines by small interfering RNA and confirmed 
that it could promote the proliferation of glioma cells with the CCK8 proliferation assay 
(Fig. 7A, B). The relative cell proliferation levels were reduced after LINC00664 silencing 
in different time points (Fig. 7A, B). Compared with the negative control, at the 72 h, the 
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lncRNA knock-down mostly reduced the cell proliferation to 62.10 ± 4.70% for si#1 and 
50.21 ± 8.02% for si#2 in U87 cells, while the reduced rate was 75.01 ± 5.23% and for si#1 
and 59.89 ± 8.73% for si#2 in U251 cells. Trans-well assay demonstrated that the down-
regulation of LINC00664 could significantly reduce the invasion ability both of U87 cells 
(Number of migrated cells: NC for 256.67 ± 19.09 vs. si#1 for 125.00 ± 9.85 and si#2 for 
103.00 ± 14.00) and U251 cells (Number of migrated cells: NC for 236.67 ± 15.18 vs. si#1 
for 136.00 ± 10.54 and si#2 for 90.00 ± 12.12) (Fig. 7C). Moreover, wound healing assay 
revealed that LINC00664 knock-down reduced the migration ability of U87 cells (migra-
tion area %: NC for 46.00 ± 8.54 vs. si#1 for 85.67 ± 6.11 and si#2 for 81.67 ± 7.09) and 
U251 cells (migration area %: NC for 41.00 ± 7.21 vs. si#1 for 80.33 ± 6.11 and si#2 for 
83.00 ± 7.81) (Fig. 7D).

Discussion
Ambulatory RNA methylation modifications, such as m6A and m5C, are involved 
in tumor proliferation, invasion, and immunological regulation [28]. As research pro-
gresses, there is growing evidence that lncRNAs in tumors could undergo RNA methyla-
tion and exert regulatory effects on tumors [29, 30]. A number of studies have shown that 
m6A and m5C methylated lncRNAs could be used as predictors of tumor survival [31, 
32]. In our study, we investigated the two most common types of m6A/m5C methylated 
lncRNAs in LGG and constructed a predictive model for prognostic and immune char-
acteristics. We identified that patients in the high-risk group had a shorter survival time 
and presented with a pro-tumor immune microenvironment including higher expres-
sion levels of immune checkpoints and suppressive immune cell infiltration. Assessment 
of m6A/m5C methylation-associated lncRNAs in LGG patients based on our risk model 
could provide innovative approaches to cluster therapy for glioma patients, while also 
providing a strategy for regulating the immune microenvironment in LGG.

LGG is primary brain tumors that usually occur in younger patients and have a 
higher long-term survival rate compared to high-grade gliomas. Therefore, a good 
prognostic prediction model helps us to predict and profile the survival status and 
tumor characteristics of patients, potentially facilitating the progress of LGG therapy 
and thus prolonging the survival time and quality of patients. Previously reported 
single-gene prediction methods no longer meet current needs, as single-gene models 
fail to characterize tumors adequately [33]. Zhang et  al. reported a prognostic risk 
model for LGG based on six immune-related genes that could predict survival and 
immune cell infiltration [34]. Zheng et al. [35] identified three clusters of m6A RNA 
methylation regulators by consensus clustering to predict the prognosis of low-grade 
gliomas. Along with the improved understanding of functional tumor modifications 
and epi-transcriptomics, there is a need for a wider range of models to help us real-
ize the relationship between LGG prognosis and functional modifications [36]. We 
constructed predictive models by in-depth profiling of the two most common classes 
of functional lncRNAs with m6A/m5C methylation functional modifications to reveal 
the impact of methylation lncRNA profiles in low-grade gliomas on the prognosis.
lncRNAs are a class of functional RNA molecules that regulate the expression of pro-
tein-coding genes by recruiting or sequestrating gene regulatory proteins and micro-
RNAs [37]. It was reported that LINC00689 regulated glioma cell growth, invasion, 
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and glycolysis by competitively binding miR-338-3p to regulate the expression of the 
PKM2 gene [38]. Tang et al. reported that lncRNA TPTEP1 mediated MAPK signal-
ing pathway through binding miR-106a-5p to regulate glioma stemness and radiother-
apy resistance [39]. Therefore, lncRNAs are involved in the regulation of glioma from 
the perspective of tumor stemness maintenance, proliferation, invasion, treatment 
resistance, etc. In our in  vitro validation, we demonstrated that one of the lncRNA 
LINC00664 participated in regulating the proliferation and invasion of glioma. Wang 
et  al. reported that LINC00664 promoted the invasion, and proliferation of human 
oral squamous cell carcinoma via the miR-411-5p/KLF9 pathway, which was similar 
to our findings.

Consistent with previous research findings, the other 7 lncRNAs that we have identi-
fied in our risk model, have all been reported to play significant biological roles in glio-
mas, particularly HOXA-AS3, LINC00665, MIR155HG, and NEAT1. HOXA-AS3 was 
reported up-regulated in glioma tissue and positively related with poor prognosis in 
glioma patients. Knockdown of HOXA-AS3 inhibited the proliferation, invasion, and 
migration of GBM cells in  vitro [40, 41]. LINC00665 exhibits increased expression in 
human glioma cell lines and tissues. Decreasing LINC00665 levels in glioma cells has 
been found to impede proliferation, invasion, and migration. LINC00665 acts as a 
ceRNA by modulating AGTR1 expression through sponging miR-34a-5p [42]. Addi-
tionally, overexpression of TAF15 stabilizes LINC00665, leading to reduced STAU1-
mediated mRNA degradation of both MTF1 and YY2, thereby restricting GTSE1 
transcription and ultimately disrupting glioma’s malignant progression [43]. MIR155HG 
has been found to be positively associated with tumor grade and represents an inde-
pendent adverse prognostic factor in glioma patients. It exhibits its pro-oncogenic 
activity by generating miR-155-5p/-3p [44]. MIR155HG has also been implicated in pro-
moting malignant phenotypes that enhance glioma immune evasion [45]. NEAT1 was 
also found up-regulation in glioma. NEAT1 promotes glioma development by upregu-
lating SOX2 expression through the suppression of miR-132 [46]. Furthermore, NEAT1 
acts as an oncogenic factor regulated by the EGFR pathway, functioning as a scaffold to 
recruit the chromatin modification enzyme EZH2 [47]. NEAT1 overexpression also pro-
motes glioma progression through the stabilization of PGK1 [48].

The immune microenvironment of glioma differs significantly from other tumors 
outside the central nervous system. The most common immune cells in gliomas are 
not T cells, but macrophages, which can account for more than 20% of the tumor 
components [49]. Therefore, macrophages are essential contributors to the regulation 
of the immune microenvironment in glioma and potentially convert tumor-infiltrat-
ing T cells from active to ineffective by modulating immune checkpoints [50]. In the 
present study, we found a higher level of upregulated immune checkpoint expression 
and M2 macrophage infiltration in our high-risk group, suggesting that our model 
allows for the initial screening of such patients to conduct macrophage-related immu-
notherapy. Catalina reported that myeloid-derived suppressor cells mediate immuno-
suppression by transferring PD-L1 into B cells, thereby promoting the development 
of a tumor-suppressive microenvironment [51]. The increase in both myeloid-derived 
cells and B cells found in our study implied that our model would be capable of identi-
fying glioma patients with such characteristics.



Page 16 of 18Li et al. BMC Bioinformatics          (2023) 24:274 

The following aspects of our study still need further improvement: 1. Lack of exter-
nal real-world cohort validation; 2. Our study validated only a single lncRNA biological 
function in the risk model, and more comprehensive and in-depth validation is needed; 
3. The predictive value of m6A/m5C methylated lncRNAs for clinical applications needs 
further evaluation.

Conclusion
In this study, we constructed a prognostic prediction model of LGG by 8 m6A/m5C 
methylated lncRNAs and identified a critical lncRNA regulation function involved 
in LGG progression. High-risk patients have shorter survival times and a pro-tumor 
immune microenvironment.
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