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Abstract 

Motivation: Accurate identification of Drug-Target Interactions (DTIs) plays a cru-
cial role in many stages of drug development and drug repurposing. (i) Traditional 
methods do not consider the use of multi-source data and do not consider the com-
plex relationship between data sources. (ii) How to better mine the hidden features 
of drug and target space from high-dimensional data, and better solve the accuracy 
and robustness of the model.

Results: To solve the above problems, a novel prediction model named VGAEDTI 
is proposed in this paper. We constructed a heterogeneous network with multiple 
sources of information using multiple types of drug and target dataIn order to obtain 
deeper features of drugs and targets, we use two different autoencoders. One is vari-
ational graph autoencoder (VGAE) which is used to infer feature representations 
from drug and target spaces. The second is graph autoencoder (GAE) propagat-
ing labels between known DTIs. Experimental results on two public datasets show 
that the prediction accuracy of VGAEDTI is better than that of six DTIs prediction meth-
ods. These results indicate that model can predict new DTIs and provide an effective 
tool for accelerating drug development and repurposing.

Keywords: Drug-target interaction prediction, Variational inference, Graph 
autoencoder, Variational expected maximum algorithm, Drug repurposing

Introduction
The therapeutic effect of a drug on a disease from its action on a target protein and its 
effect on its expression [1]. Therefore, the accurate identification of DTIs is of signif-
icance for understanding the treatment of disease by drugs. Recent studies have esti-
mated the average cost of developing a new drug is around 40 million dollars, the cost of 
approving a drug for marketing is around 873 million dollars, and it usually takes more 
than a decade for a new drug to go from development to clinical use. Due to some side 
effects, less than 10% of new drugs have been approved for clinical medicine [2, 3]. In 
order to increase the number of drug approvals and reduce the cost of drug research 
and development, drug repurposing has attracted more and more attention from the 
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pharmaceutical industry, namely, the use of currently approved drugs to treat new dis-
eases [4]. For example, Gleevec, originally used to treat leukaemia, was redirected to 
treat gastrointestinal stromal tumours [5, 5], but the side effects of Gleevec in humans 
are substantial. Through making full use of drug, target and disease information, identi-
fying DTIs play a crucial role in drug discovery, reducing the time and cost required for 
drug development and repurposing.

Traditional calculation methods [6] mainly include ligand-based methods [7] and 
molecular docking-based methods [8, 9]. For ligand-based method, the prediction accu-
racy is often poor because few ligands are binding to known target proteins. For molecu-
lar docking-based methods, if the 3D structure of target proteins cannot be obtained, 
these methods will be limited to some extent. To address the limitations of traditional 
methods, researchers have proposed methods to predict DTIs using machine learning 
which are mainly divided into two categories: (1) feature-based methods [10, 11] and (2) 
graph-based methods [13, 14]. Feature-based methods transform DTIs prediction into a 
binary classification problem and use machine learning methods such as Support Vec-
tor Machine (SVM) as classifiers [15]. For example, autoencoder-based approaches pre-
dict DTIs by maintaining consistency in pharma chemical properties and functions. Sun 
et al. using autoencoder to predict DTIs in the space of drug and target [16]. Zhao et al. 
[17] predicted drug-disease association using graph representation learning through 
constructing a heterogeneous network. Graph-based methods describe complex inter-
actions between different entities, assuming that interconnected nodes tend to have 
more associations [18, 19]. In graph-based methods, the similarity between drugs and 
targets is calculated based on local or global topological information in heterogeneous 
graphs constructed by association information [20]. The multi-view network embedding 
of DTIs prediction based on consistency and complementary information preservation 
was constructed by Shang et al. [21]. Most of the methods currently in use, such as resid-
ual neural networks and multiscale autoencoders, learn the features of drugs and targets 
[22, 23], but they are shallow learning methods, which cannot fully extract the deep and 
complex associations between drugs and targets.

In recent years, heterogeneous networks of some deep learning algorithms have 
integrated information related to multiple drugs, diseases and targets for DTIs predic-
tion. Compared with homogeneous networks, heterogeneous networks cover multiple 
entities and complex interaction relationships between different types of entities [24]. 
For example, DTINet is a method that focuses on learning the low-dimensional vector 
representation of drugs and targets [18], which can accurately represent the topologi-
cal information of every node in the heterogeneous network. However, network-based 
methods focus on building various heterogeneous networks [25] but ignore the inher-
ent feature between different types of entities. It is difficult to extract the critical feature 
information between nodes.

In this paper, we propose a new prediction model named VGAEDTI in Fig.  1, 
which combines multi-source data in a collaborative training approach to extract 
features of drugs and targets. We use two algorithms for feature inference and label 
propagation. The label propagation process may not fully utilize the low-dimen-
sional representation learned from high-dimensional features, so under the varia-
tional inference algorithm of the Graph Markov Neural Network (GMNN) [26], the 
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algorithm of feature inference and label propagation is integrated. Specifically, the 
feature inference network in VGAEDTI is designed as VGAE [27] which learns rep-
resentations from the feature matrices of drugs and targets, respectively. In addition, 
the label propagation network in our model is GAE [28] that estimates the score of 
an unknown drug-target pair from known drug-target pair. These two autoencoders 
learn features and propagation labels alternately and are trained using a variational 
EM algorithm [29]. The framework minimizes the difference between the represen-
tations learned separately by the two autoencoders. In order to improve the perfor-
mance of DTIs prediction, we use the Random Forest module as a classifier [30], 
which take the feature information of the drugs and targets obtained above as input 
to predict DTIs.

The major contributions of this research are as follows:

1. The VGAEDTI model uses multi-source drug information and target similarity to 
build a heterogeneous network, learning their embeddings through known associa-
tion relationships and unknown associations.

2. The in-depth features of drugs and targets are learned through collaborative training 
with VGAE and GAE in VGAEDTI model.

Fig. 1 Framework of VGAEDTI. step1: the two drug and target similarity matrices obtained by similarity 
calculation were combined with the drug-disease, disease-target and drug-target association matrices to 
obtain a heterogeneous network; step2: this heterogeneous network is fed into two autoencoders to train 
alternately, followed by co-training, and finally the feature representation of drug and target is obtained; 
step3: these two features are fed into the random forest for classification
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Materials
The two datasets we use were downloaded from several public databases, DrugBank, 
UniProt and MalaCard. DrugBank contains information on the molecular structure of 
drugs, target proteins, etc. UniProt is a protein-related database with a large amount 
of protein information. MalaCard is a human disease database that collects informa-
tion on symptoms and related drug data. We download the chemical structure infor-
mation of drugs and the targets information of all chemical drugs from DrugBank. 
Protein sequence information was obtained from UniProt, and drug indications were 
obtained from the MalaCard database. These two datasets use involves 3508 targets, 
2015 drugs, 9702 diseases, and contains 207,540 known drug-disease association 
information and and 8947 known DTIs and some other types of data, these two data 
sets were summarized into Table 1.

Methods
Drug and target similarity calculation

The n drugs in the dataset are denoted by R ={r1 , r2 , r3 , ……, rn }, transforming SMILES 
structures of drug molecules into extended connectivity fingerprints (ECFPs) by using 
Rdkit tools, the vector of the specific structural representation of drug ri is denoted by 
Fr
i  in Fig. 2. Cosine similarity was used to calculate the similarity between drugs and 

drugs as follow,

where Fr
i  and Fr

j  in formula (1) represent the ECFPs of drug ri and drug rj , respectively. 
The more similar the drugs are to each other, the closer the value of Sr i, j  is to 1, and 
a drug similarity matrix Sr ∈ Rn×n is obtained. Similarly, drug side effects and protein 
domains were calculated and fused into the drug similarity matrix and protein similarity 
matrix, respectively.

The m targets in the dataset are denoted by p ={p1 , p2 , p3 , ……, pm},the similarity 
between target protein sequence pi and target protein sequence pj can be calculated 
by Smith-Waterman algorithm [31], and then normalized by the following,

(1)Sr
(
i, j
)
=

Fr
i · F

r
j∣∣∣∣Fr

i

∣∣∣∣∥∥Fr
i

∥∥ , sr
(
i, j
)
∈ [0, 1],

Table 1 The full data for both datasets are as follows

 Category Number

Drugs 2015

Target protein 3508

Disease 9702

Associated

Known drugs-diseases 207,540

Known drug-targets 8947

Drug side effects 732

Protein domain 2348
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where sw(i, j) in the formula (2) represents the protein similarity score calculated by 
Smith Waterman algorithm for two target protein sequences, max(swi) and min(swi) 
represent the highest and lowest scores between protein sequence i and other protein 
sequences, respectively, Then the target similarity matrix Sp ∈ pm×m is obtained by nor-
malization of Eq. (2).

Construction of heterogeneous networks of drugs, targets and diseases

In order to better extract the internal connections between drug and target nodes, and 
perform deep learning on the common topological information representation of drug 
and target nodes, a heterogeneous network Hpr containing drug, target and disease sub-
networks is constructed, which integrates the internal connections and target similarity 
matrix Sp and drug similarity matrixSr . Heterogeneous networks contain three kinds of 
nodes N ={Nr ∪ Np ∪ Nd } and four kinds of edges E ={Edr ∪ Err ∪ Epr ∪ Epp ∪ Edp }, 
If there is a known association between the drugs and the targets, there is a solid edge 
between them; If not, it is a dashed edge.

The adjacency matrix of a heterogeneous network of drugs, targets, and diseases is 
represented as follows,

(2)Sp
(
i, j
)
=

sw
(
i, j
)
−min (swi)

max (swi)−min (swi)
,

Fig. 2 Similarity calculation diagram of drug and protein. The similarity of protein sequences was calculated 
using smith waterman algorithm, and the similarity of their drug smiles was calculated using cosine similarity
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where Sr belongs to drug similarity matrix, Sp belongs to target similarity matrix, Apr 
belongs to drug target association matrix, Adr is the disease-drug association matrix and 
Adp is the disease-target matrix.

Integrate drug and targets spatial information based on VGAE and GAE

VGAE and GAE serve as feature extractors for drug space and targets space. These 
two autoencoders extract the potential feature information from the two Spaces 
through feature inference and label propagation, respectively. For a drug or target 
node, the association and similarity with it can be regarded as the feature attribute of 
the node, So take H p r as a drug and the characteristics of the target node matrix X . 
The input to the VGAE and GAE is X. Each layer of VGAE and GAE is a graph convo-
lutional layer. The formula for the first graph convolutional layer is as follows,

For example, for the targets space, Ã is an associational adjacency matrix with self-
cycle, Ã = Apr + Adp + I  , D̃ is the diagonal matrix of the associative adjacency matrix 
Apr + Adp , σ is the nonlinear activation function, Xp is the feature matrix of target the 
initial input, l  denotes the number of layers, and W (l) denotes the weight of the l  layer 
in the network, the same is true for the drug space.

The decoding process of VAE is as follows,

We use VGAE to extract the spatial information of the input target feature matrix 
Xp , and we can obtain the representation Zp by the reparameterization technique as 
follows,

where µ represents the mean of the VGAE, σ represents the standard deviation, and the 
random variable ∈∼ (0, 1) conforms to Gaussian sampling

For the targets space, the loss function of VGAE is the sum of reconstruction error 
LVG and KL divergence LKL as follows,

If the feature follows Gaussian distribution, the reconstruction error is the mean 
square error, when the feature follows Bernoulli distribution, the reconstruction error is 
cross-entropy loss as follows,

(3)Hpr =




Sp Apr Adp

AT
pr Sr Adr

AT
dp AT

dr 0



,

(4)M
(l)
encoder = σ

(
D̃− 1

2 ÃD̃− 1
2X (l−1)

p W (l)
)
.

M
(n)
decoder = σ

(
W

(l)
decoderM

(l)
encoder + b

(l)
decoder

)

(5)Zp = µ+ σ ∈,

(6)LpVGAE = LVG + LKL.



Page 7 of 17Zhang et al. BMC Bioinformatics          (2023) 24:278  

where Xp is the feature matrix of the input target space, LKL divergence loss can be cal-
culated by the following equation,

For the target space, the following equation is the reconstruction error LpGAE of the GAE 
as follow,

where Apr represents the input drug-target association matrix, A′

pr is the reconstructed 
drug-target matrix, and the same is true for the drug space.

We propose the VGAEDTI model, design a representation learning framework that inte-
grates the feature inference network and labels propagation network and use the integrated 
variational inference to train the variational EM algorithm. VGAEDTI alternates the fol-
lowing two steps until convergence occurs.

E-step (Feature inference): The VGAE is used for feature inference.
M-step (Label propagation): The GAE is used for label propagation.

Variational EM algorithm
Taking training spatial target information as an example, the variational EM algorithm is 
implemented by alternately minimizing the loss of the VGAE and GAE, after the variational 
EM algorithm alternately trains the two autoencoders until convergence as follows,

where Zp represents the output of VGAE, Zp
′

 represents the output of GAE, and the 
mean square error is used to achieve loss construction, the same is true for the drug 
space.

Collaborative training integrates information from drug space and target space

In this paper, the VGAE and GAE are co-trained, and the co-training loss is represented by 
learning from drug and target space respectively as follows,

In the above equation, Yp and Yr represent the protein and drug feature matrices 
obtained through training, where Xp and Xr is the initial input feature matrix, the mean 
square error is used to achieve loss construction.

The total optimized loss LTVGAE of the VGAE trained in target and drug space is as 
follows,

(7)LVG =





1
2

���Xp − X ′
p

���
2

F
if Xp ∈ Gaussian distribution

−
�
ij

Xp logX
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,

(8)LKL = −
∑
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1

2

(
1+ 2 log σij − µ2

ij − µσ 2
ij

)
.
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(10)LEM =
1

2

∥∥∥Zp − Z′
p

∥∥∥
2

F
,
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It indicates that α and β ∈ (0, 1) are weight parameters to balance the information 
obtained from drug and target Spaces. LpVGAE belongs to the loss of target space under 
the VGAE and LrVGAE belongs to the loss of drug space under the VGAE.

The total optimized loss LTGAE of the GAE trained in target and drug space is as 
follows,

Prediction of DTI by random forest module

In this paper, in order to get better score prediction and avoid the negative impact of 
feature dimension and the importance of feature information on the prediction of drugs 
and targets, a Random Forest classifier [32] is used. Random Forests are a composed 
integrated decision tree algorithm, it belongs to integrated Bagging methods of learning 
[33]. By adding a random (sample randomness and properties of randomness), it can 
come out a high dimension data, and there is no dimension reduction, without having to 
make feature selection, it can judge the critical degree of the feature, and the interaction 
between different features. For unbalanced data sets, it can balance the error, if a large 
part of the features is lost, the accuracy can still be maintained. This model has strong 
robustness and generalization ability, so it has been widely used in the field of bioinfor-
matics. In our learning, the learning steps of random forest are as follows,

where Yr represents the feature information in the drug space and Yp represents the 
feature information in the target space, these two features are input into the Random 
Forest.

1. The first step is to sample the data. The samples in the training set are sampled in the 
form of put back, and the data set is sampled for N  times to train N  Classification 
and Regression Tree (CART) decision trees.

2. Then, the Gini coefficient is used to calculate the optimal segmentation variable, and 
the decision tree is constructed by node attribute splitting.

3. Obtain N decision trees by repeating the previous steps N  times, and predict drug 
target association according to the decision tree results.

The Gini coefficient is as follows,

(12)LTVGAE = αLpVGAE + (1− α)LrVGAE + βLKL,

(13)LTGAE = αLpGAE + (1− α)LrGAE .

(14)Y =
[
Yp + Yr

]
,

(15)Giniindex(Y ,f ) =

V∑

V=1

∣∣YV
∣∣

|Y |
Gini

(
YV

)
,

(16)Gini
(
YV

)
= 1−

|Y |∑

i=1

U2
i ,
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where Y is the sample set, Ui is the proportion of the ith classification in Y, YV  is the 
sample set of Y with the V  value of f  , and f  is the feature attribute set. We take the low-
dimensional feature representations Yp and Yr obtained through autoencoder training as 
input. In the training stage, pairs of drugs and targets form the training set. Then put it 
into the Random Forest as input, and finally get the DTIs score matrix.

Experiment and discussion
Comparison with other methods

In order to evaluate the performance of our proposed VGAEDTI model for predicting 
DTIs. We use fivefold cross-validation. The dataset we use contained 1307 drugs, and 
the dataset was randomly divided into five groups of the same size, one of which was 
the test set in turn, and the remaining four groups were the training set. All the known 
drug target information were positive samples, and the remaining unknown drug tar-
get associations were negative samples, and the negative data contained all unknown or 
nonexistent DTI, it can be seen from Table 1 that imbalanced datasets were used. The 
VGAEDTI model was used for training. In order to better compare the superiority of 
our model, we also use Luo et al.’s dataset for testing and training, and our VGAEDTI 
model compares the following methods as follows,

GRMF: DTIs prediction using graph regularized matrix factorization [34].
DTINet: A network integration method for predicting DTIs and computing drug 

repurposing from heterogeneous information.
MolTrans: Transformer of molecular interactions for DTIs prediction [35].
NGDTP: Graph convolution autoencoder and Generative adversarial network 

approach for predicting DTIs [36].
DeepDTNet: Identify targets between known drugs by deep learning from heteroge-

neous networks [37].
AEFS: An autoencoder-based approach to predict DTIs by maintaining consistency in 

pharmacochemical properties and functions [16].
HNM: Drug repositioning by integrating target information through a heterogeneous 

network model [40]
The epochs of our VGAEDTI model are 500, the learning rate is 0.1, the weight decay 

rate is 1e−8 , the size of the hidden layer is 256, the initial weight of the drug and protein 
space is 0.5, and the Adam optimizer is used to optimize.

We adopted a fivefold cross-validation method for training, and the following are 
some evaluation indicators:

(17)Specificity =
TN

TN + FP
= 1− FPR,

(18)Sensitivity =
TP

TP + FN
= TPR = Recall,

(19)Accuracy =
TP + TN

TP + FN + TN + FP
,
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In the above formula, TN is the true negative; FN is a false negative; FP is a false nega-
tive, TP is truly positive, FPR is the false positive rate, and TPR is the true positive rate. 
TPR and FPR can draw receiver operating characteristic (ROC) curves, and the area 
under the ROC curve (AUROC) and the area under the accuracy-recall curve (AUPR) 
are important indicators to measure the performance and stability of binary classifica-
tion models.

Comparison of experimental results

In order to better demonstrate that our method can extract deep drug-target informa-
tion from high-dimensional feature information, In order to maintain the fairness of the 
experiment, we used the same data processing methods, and the input data were the 
same. The scores of the other models were derived from AEFS [16], we compared other 
six methods as follows,

Table 2 shows the comparison of AUROC and AUPR score between our VGAEDTI 
model and the other six methods. It can be seen intuitively that the performance of 
our model is superior to that of the other methods. On the first dataset, the VGAEDTI 
model had the best performance (AUROC = 0.9847, AUPR = 0.8247). Compared with 
the GRMF method, the AUROC of our method was 0.13 higher, and the AUPR was 0.61 
higher. The AUROC was 0.02 higher, and the AUPR was 0.5 higher than that of AEFS, 
Our method is 1% higher than the AUPR of HNM. In the second dataset, the perfor-
mance of the VGAEDTI model was better (AUROC = 0.9484, AUPR = 0.7302). Com-
pared with the MolTrans method, the AUROC of our method was 0.07 higher, and the 
AUPR was 0.42 higher. The AUROC of our method was 0.2 lower than that of NGDTP. 
The AUROC was slightly higher than that of AEFS, and the AUPR was 0.31 higher, The 
AUPR of our method is about 13% lower than that of HNM, which may be due to the 
integration of our method into the omics data, leading to the better AUPR effect than 
our method. Our model can perform so well in the above indicators; several methods 
are used in front of the shallow card model, which is not good for extracting the feature 
attributes in the network structure, and our model uses two since the encoder, interval 

(20)Precision =
TP

TP + FP
.

Table 2 AUROC and AUPR for the two datasets

Bold numbers indicate the highest scores

Method Dataset1 Dataset2

AUROC AUPR AUROC AUPR

GRMF 0.8580 0.5100 0.8680 0.5300

DTINet 0.8410 0.3610 0.8850 0.2650

MolTrans 0.8890 0.0260 0.8850 0.2600

NGDTP 0.8430 0.3150 0.9690 0.1760

DeepDTNet 0.9060 0.3720 0.9060 0.3720

HNM 0.8764 0.8108 0.8831 0.8627
AEFS 0.9760 0.5610 0.9440 0.7160

VGAEDTI 0.9840 0.8247 0.9485 0.7302
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training, better from drug and protein extraction to better comparison, the results of the 
six methods in this Table 2 are derived from Sun et al. [16].

In order to better evaluate the performance of the model, we decided to use the recall 
rate of the top k DTIs candidates (5%, 10%, 20%, 30%). The recall rate can reflect whether 
the model can reasonably predict the performance of DTIs. We still selected the aver-
age recall rate of these methods to compare the performance of these methods with our 
method, as shown in Fig. 3.

In the first data set, the average value of recall of our model before (5%, 10%, 20%) is 
better than that of the six methods, and in the first 30%, our method is slightly lower 
than AEFS. In the second dataset, our model outperformed all DTIs methods in the top 
(5%, 10%, 20%, 30%), reflecting our model’s strong performance in identifying drug-tar-
get associations.

Case study
Evaluating the performance of a model is mainly based on accuracy and practicality. We 
trained the VGAEDTI model using known DTIs datasets to predict the natural associa-
tion of drug-targets. We will predict the interaction between drug-target scores in the 
top 15 for recording. In order to verify the accuracy of the prediction score, we verified 
its authenticity by querying the source data set of Uniprot and DrugBank databases; the 
database contains a large number of drugs and targets of the associated information, so 
that supported by data authenticity.

Fig. 3 Average recall rates of 8 methods under two datasets
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In the Table 3, these target associations were confirmed in both Uniprot and DrugBank 
databases, at the same time, we found that drugs DB00007 (Leprolide) and DB00014 
(Goserelin) in the Table  3 have effects on prostate disease [38], and drug DB00007 is 
associated with target protein P30968 Gonadotropin-releasing hormone receptor). Drug 
DB00007 and target protein P22888 (Lutropin-choriogonadotropic hormone receptor) 
ranked high in the scores of our model results, so they have a unknown association. If 
this association can be predicted, it could have important implications for the discov-
ery of new treatments for diseases. In order to have a better visual understanding of the 
interaction between proteins and molecules, such as P30968 and DB00007, they are two 
interacting drug-target pairs. Pharmaceutical chemists need to understand the role of 
targets in the human body or pathogens in the process of disease, so as to design drugs 
that can regulate the physiological functions of targets, so as to achieve the purpose of 
treating diseases. A drug may have multiple potential targets in the body at the same 
time. When a drug acts on its target, it is called on-target, and it acts on other targets, it 
is called Off-Target. In general, a disease may be associated with multiple targets, and a 
target may be associated with multiple diseases. How to identify and select the key tar-
gets is very important for drug design. Our VGAEDTI model can screen a large number 
of unknown but related drug targets in advance, reduce the blind test of drug targets for 
researchers, save the cost of some unnecessary biological experiments, and shorten the 
time of drug development and promote the pace of drug research and development.

To further validate this novel interaction, we performed computational docking and 
utilized the docking program AutoDock to infer the possible binding modes of the 
new predicted DTI. Docking results showed that Gentamicin can dock the structure of 
2M0P. More specifically, Ibrutinib binds to 2MOP by forming hydrogen bonds with resi-
dues LEU-23, PBU-22, and ASN-305.We use pymol for molecular docking and hydrogen 
bond coloring, as shown in Fig. 4.

Ablation experiment

VGAEDTI model combines drugs space and target space information, so two spatial 
information are integrated to co-training improve the ability of its important feature 
information extraction. The pattern of co-training on performance evaluation of the 
VGAEDTI model has an important influence. Therefore, this paper set up a set of abla-
tion experiments on its effectiveness.

Table 3 Top 15 drug-target interaction pairs

Rank Drug ID Protein ID Evidence Rank Drug ID Protein ID Evidence

1 DB00007 P30968 UniProt, DrugBank 9 DB00996 P54687 Uniprot

2 DB00014 P22888 DrugBank 10 DB00999 P55017 Uniprot, DrugBank

3 DB00314 P9WJ63 Uniprot, DrugBank 11 DB01403 P08912 Uniprot, DrugBank

4 DB00718 P24024 Uniprot, DrugBank 12 DB04839 P07288 Uniprot, DrugBank

5 DB00774 P43166 Uniprot, DrugBank 13 DB06694 P25100 Uniprot, DrugBank

6 DB00798 P98164 Uniprot 14 DB08868 O95977 Uniprot, DrugBank

7 DB00834 P07288 Uniprot, DrugBank 15 DB11596 P0A827 Uniprot, DrugBank

8 DB00918 P28221 Uniprot, DrugBank



Page 13 of 17Zhang et al. BMC Bioinformatics          (2023) 24:278  

The AUROC and AUPR of the VGAEDTI model with and without co-training under 
two different datasets are shown in Fig. 5. Except for these two Settings, all other param-
eters are consistent to ensure the accuracy of the experiment. In dataset 1, the AUROC 
score was 0.98 with a co-training and 0.90 without co-training, while the AUPR was 
0.82 and 0.63, respectively. In dataset 2, the AUROC score for using co-training is 0.89, 
the AUPR score for not using co-training is 0.72, and the AUPR score is 0.94 and 0.73, 
respectively. The above two datasets show that the prediction performance of the model 
using co-training is higher than that of the model not using co-training. Therefore, the 
experimental results show that the VGAEDTI model can extract the feature information 
of drug space and target space to predict DTIs accurately, and co-training is essential.

In VGAEDTI, based on the embedding features of drug and target, we use random 
forest to calculate drug-target association scores. In order to confirm that random forest 
can obtain better score prediction, we performed the following ablation experiments as 
Fig. 6. We used several different classifiers, fully connected layer, SVM, KNN as well as 

Fig. 4 DTI pairs predicted by VGAEDTI

Fig. 5 AUROC and AUPR with and without co-training in two datasets
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random forest to compare the performance of the two datasets. In the first dataset, ran-
dom forest (AUPR = 0.98, AUROC = 0.93) and SVM (AUPR = 0.94,AUROC = 0.91) were 
used, and random forest performed better than other classifiers in this dataset. In the 
second dataset, The AUROC of random forest is 2% higher than that of SVM, but it is 
still superior to other classifiers. It can be seen that the importance of the Random For-
est classification module for this VGAEDTI model enhances the accuracy of the scoring 
results.

Weight parameter selection of drug space and target space

By integrating the feature information of drug space and target space trained alter-
nately by two autoencoders using a variational EM algorithm, the VGAEDTI model 
can get more accurate feature information so as to better predict its association. 
To select the suitable weight parameters of the two spaces to maintain the balance 
between them and ensure the contribution of different spatial feature information 
outputs to the prediction performance of the model, we use different datasets for 
testing.

Fig. 6 Comparison of the performance of different classifiers on two datasets

Fig. 7 AUROC and AUPR for different weights in drug and target Spaces in two datasets
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It can be seen from the above Fig.  7 that when our VGAEDTI model integrates 
spatial feature information of drugs and proteins, it can be seen in dataset 1 that 
when the weight is 0.5, AUROC is 0.98, and AUPR is 0.82. The prediction perfor-
mance of the model at this time is the best. In dataset 2, when the weight is 0.1, 
AUROC is 0.94, AUPR is 0.73, and the prediction performance for dataset 2 is the 
best. Experiments can show that different data sets contribute different weights to 
the feature information of integrated drug and target space, and some properties, 
such as the sparsity of data sets, affect the model’s training.

Conclusion
How to accurately identify DTIs is one of the most important steps in drug repurpos-
ing and new drug development. In this study, we propose a novel model VGAEDTI to 
predict DTIs. Firstly, the VGAEDTI model calculates the similarity of multi-source drug 
information, target information and disease information, and then constructs a het-
erogeneous network through the known association information and feature informa-
tion among them, so as to better extract more potentially complex relationships among 
drugs, targets and diseases. Then it is input to the VGAE and GAE for feature informa-
tion extraction. The VGAE deduces the feature representation from the drug and tar-
get space respectively, while the GAE propagates the label between the known drug and 
target associations, and uses the variational EM algorithm for alternating training until 
convergence. Also, the co-training starategy is used to capture the feature information of 
drug space and target space, which enhances the ability of VGAEDTI to capture efficient 
low-dimensional representations from high-dimensional features, thereby improving the 
robustness and accuracy of predicting the unknown DTIs. In this way, the obtained drug 
and target feature information is more accurate and comprehensive. In order to obtain 
better score prediction and avoid the negative effects of feature dimension and impor-
tance of feature information on predicting drugs and targets, we use random forest clas-
sifier, which can judge the importance of features and the interaction between different 
features. For imbalanced data sets, it can balance the error. If a large part of the features 
are lost, the accuracy can still be maintained, and the model has strong robustness and 
generalization ability. In order to evaluate the performance of the proposed VGAEDTI 
model for predicting DTIs. We use fivefold cross validation to compare the performance 
of six methods on two different datasets, all of which achieved better results in some 
aspects, and also proved that our model has strong generalization ability. In general, our 
model VGAEDTI can be used as an effective and accurate tool for predicting DTIs.

Future and prospects
Although VGAEDTI model has good performance at present, there are also some 
potential drawbacks in extracting information from heterogeneous networks, recently 
inspired by Zhao et al. [39], existing computational models can only use low-level bio-
logical information at the level of individual drugs, diseases and targets and their asso-
ciations. This also germinates new ideas for the next work, in the future work, not only 
multi-source information but also high-order meta-path information of heterogeneous 
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networks should be integrated to improve the prediction performance and generaliza-
tion performance of the model.
Acknowledgements
We thank Yuanyuan Zhang, Mengjie Wu, Zengqian Deng, Shudong Wang, and others for their efforts.

Author contributions
YF: performed the experiments, analyzed the data, and wrote the paper. YZ: provided ideas for the article and reviewed 
the manuscript. MW and ZD provided the source of the data. SW: discusses the feasibility of the article. All authors have 
approved the final version of the article.

Funding
This work was partially supported by the National Natural Science Foundation of China [Nos.61902430, 61873281].

Availability of data and materials
All instructions and codes for our experiments are available at https:// github. com/ FengY inFei/ VGAED TI.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 April 2023   Accepted: 16 June 2023

References
 1. Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol 

BioSyst. 2012;8(7):1970–8. https:// doi. org/ 10. 1039/ c2mb0 0002d.
 2. Whitebread S, Hamon J, Bojanic D, Urban L. Keynote review: in vitro safety pharmacology profiling: an essential tool 

for successful drug development—sciencedirect. Drug Discov Today. 2005;10(21):1421–33. https:// doi. org/ 10. 1016/ 
S1359- 6446(05) 03632-9.

 3. Masataka T, Masaaki K, Yosuke N, Susumu G, Yoshihiro Y. Drug target prediction using adverse event report systems: 
a pharmacogenomic approach. Bioinformatics. 2012. https:// doi. org/ 10. 1093/ bioin forma tics/ bts413.

 4. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug 
Discov. 2004;3(8):673–83. https:// doi. org/ 10. 1038/ nrd14 68.

 5. Frantz S. Drug discovery: playing dirty. Nature. 2005;437(7061):942–3. https:// doi. org/ 10. 1038/ 43794 2a.
 6. McLean SR, Gana-Weisz M, Hartzoulakis B, Frow R, Whelan J, Selwood D, Boshoff C. Imatinib binding and cKIT inhibi-

tion is abrogated by the cKIT kinase domain I missense mutation val654ala. Mol Cancer Ther. 2005;4(12):2008–15. 
https:// doi. org/ 10. 1158/ 1535- 7163. MCT- 05- 0070.

 7. Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharma-
cological data in an integrated framework. Bioinformatics. 2010;26(12):i246–54. https:// doi. org/ 10. 1093/ bioin forma 
tics/ btq176.

 8. Keiser MJ (2009) Relating protein pharmacology by ligand chemistry. (Doctoral dissertation, University of California, 
San Francisco). https:// doi. org/ 10. 1038/ nbt12 84.

 9. Honglin L, Zhenting G, Ling K, Hailei Z, Kun Y, Kunqian Y, et al. Tarfisdock: a web server for identifying drug targets 
with docking approach. Nucleic Acids Res. 2006;34:219–24. https:// doi. org/ 10. 1093/ nar/ gkl114.

 10. Fauman EB, Rai BK, Huang ES. Structure-based druggability assessment–identifying suitable targets for small mol-
ecule therapeutics. Curr Opin Chem Biol. 2011;15(4):463–8. https:// doi. org/ 10. 1016/j. cbpa. 2011. 05. 020.

 11. Mei JP, Kwoh CK, Yang P, Li XL, Zheng J. Drug–target interaction prediction by learning from local information and 
neighbors. Bioinformatics. 2012. https:// doi. org/ 10. 1093/ bioin forma tics/ bts670.

 12. Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug-target interactions using lasso with random forest based on 
evolutionary information and chemical structure. Genomics. 2018. https:// doi. org/ 10. 1016/j. ygeno. 2018. 12. 007.

 13. Peng J, Wang Y, Guan J, Li J, Han R, Hao J, et al. An end-to-end heterogeneous graph representation learning-based 
framework for drug–target interaction prediction. Brief Bioinform. 2021. https:// doi. org/ 10. 1093/ bib/ bbaa4 30.

 14. Ingoo L, Hojung N. Identification of drug-target interaction by a random walk with restart method on an interac-
tome network. BMC Bioinformatics. 2018;19(S8):208. https:// doi. org/ 10. 1186/ s12859- 018- 2199-x.

 15. Chang CC, Lin CJ. Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol. 2007. https:// doi. org/ 
10. 1145/ 19611 89. 19611 99.

 16. Sun C, Cao Y, Wei JM, Liu J. Autoencoder-based drug-target interaction prediction by preserving the consistency of 
chemical properties and functions of drugs. Bioinformatics. 2021. https:// doi. org/ 10. 1093/ bioin forma tics/ btab3 84.

 17. Bo-Wei Z, Lun H, Zhu-Hong Y, Lei W, Xiao-Rui S. Hingrl: predicting drug–disease associations with graph representa-
tion learning on heterogeneous information networks. Brief Bioinform. 2022. https:// doi. org/ 10. 1093/ bib/ bbab5 15.

https://github.com/FengYinFei/VGAEDTI
https://doi.org/10.1039/c2mb00002d
https://doi.org/10.1016/S1359-6446(05)03632-9
https://doi.org/10.1016/S1359-6446(05)03632-9
https://doi.org/10.1093/bioinformatics/bts413
https://doi.org/10.1038/nrd1468
https://doi.org/10.1038/437942a
https://doi.org/10.1158/1535-7163.MCT-05-0070
https://doi.org/10.1093/bioinformatics/btq176
https://doi.org/10.1093/bioinformatics/btq176
https://doi.org/10.1038/nbt1284
https://doi.org/10.1093/nar/gkl114
https://doi.org/10.1016/j.cbpa.2011.05.020
https://doi.org/10.1093/bioinformatics/bts670
https://doi.org/10.1016/j.ygeno.2018.12.007
https://doi.org/10.1093/bib/bbaa430
https://doi.org/10.1186/s12859-018-2199-x
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1093/bioinformatics/btab384
https://doi.org/10.1093/bib/bbab515


Page 17 of 17Zhang et al. BMC Bioinformatics          (2023) 24:278  

 18. Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, et al. A network integration approach for drug-target interaction 
prediction and computational drug repositioning from heterogeneous information. Res Comput Mol Biol. 2017. 
https:// doi. org/ 10. 1038/ s41467- 017- 00680-8.

 19. Yan XY, Zhang SW, He CR. Prediction of drug-target interaction by integrating diverse heterogeneous information 
source with multiple kernel learning and clustering methods. Comput Biol Chem. 2019. https:// doi. org/ 10. 1016/j. 
compb iolch em. 2018. 11. 028.

 20. Chen X, Liu MX, Yan GY. Drug–target interaction prediction by random walk on the heterogeneous network. Mol 
BioSyst. 2012;8(7):1970–8. https:// doi. org/ 10. 1039/ c2mb0 0002d.

 21. Shang Y, Ye X, Yasunori F, Yu L, Tetsuya S. Multiview network embedding for drug-target interactions prediction by 
consistent and complementary information preserving. Brief Bioinform. 2022. https:// doi. org/ 10. 1093/ bib/ bbac0 59.

 22. Yu S, Wang M, Pang S, Song L, Qiao S. Intelligent fault diagnosis and visual interpretability of rotating machinery 
based on residual neural network. Measurement. 2022. https:// doi. org/ 10. 1016/j. measu rement. 2022. 111228.

 23. Yu S, Wang M, Pang S, Song L, Zhai X, Zhao Y. TDMSAE: A transferable decoupling multi-scale autoencoder for 
mechanical fault diagnosis. Mech Syst Signal Process. 2023. https:// doi. org/ 10. 1016/j. ymssp. 2022. 109789.

 24. Liu Y, Wu M, Miao C, Zhao P, Li XL. Neighborhood regularized logistic matrix factorization for drug-target interaction 
prediction. PLoS Comput Biol. 2016;12(2):e1004760. https:// doi. org/ 10. 1371/ journ al. pcbi. 10047 60.

 25. Zhao X, Zhao X, Yin M. Heterogeneous graph attention network based on meta-paths for lncrna–disease associa-
tion prediction. Brief Bioinform. 2021. https:// doi. org/ 10. 1093/ bib/ bbab4 07.

 26. Niu M, Zou Q, Wang C. Gmnn2cd: identification of circrna–disease associations based on variational inference and 
graph markov neural networks. Bioinformatics. 2022. https:// doi. org/ 10. 1093/ bioin forma tics/ btac0 79.

 27. Kipf TN, Welling M (2016) Variational graph auto-encoders. https:// doi. org/ 10. 48550/ arXiv. 1611. 07308.
 28. Pan S, Hu R, Long G, Jing J, Zhang C (2018) Adversarially regularized graph autoencoder for graph embedding. 

https:// doi. org/ 10. 48550/ arXiv. 1802. 04407.
 29. Chang C, Oh J, Min E, Long Q (2019) Knowledge-Guided Biclustering via Sparse Variational EM Algorithm. 2019 

IEEE International Conference on Big Knowledge (ICBK) (vol. 2019, pp.25–32). 10th IEEE Int Conf Big Knowl (2019). 
https:// doi. org/ 10. 1109/ icbk. 2019. 00012.

 30. Chu Y, Chandra KA, Wang X, Wang W, Zhang Y, Shan X, et al. Dti-cdf: a cascade deep forest model towards the 
prediction of drug-target interactions based on hybrid features. Brief Bioinform. 2019. https:// doi. org/ 10. 1093/ bib/ 
bbz152.

 31. Pearson WR. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the smith-water-
man and fasta algorithms. Genomics. 1991;11(3):635–50. https:// doi. org/ 10. 1016/ 0888- 7543(91) 90071-L.

 32. Scornet E, Biau G. A random forest guided tour. Test Off J Spanish Soc Stat Oper Res. 2016. https:// doi. org/ 10. 48550/ 
arXiv. 1511. 05741.

 33. Breiman L. Bagging predictors. Mach Learn. 1996. https:// doi. org/ 10. 1023/A% 3A101 80543 14350.
 34. Zhang J, Xie M. NNDSVD-GRMF: a graph dual regularization matrix factorization method using non-negative initiali-

zation for predicting drug-target interactions. IEEE Access. 2022;10:91235–44. https:// doi. org/ 10. 1109/ ACCESS. 2022. 
31996 67.

 35. Huang K, Xiao C, Glass L, Sun J. Moltrans: molecular interaction transformer for drug target interaction prediction. 
Bioinformatics. 2020. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa8 80.

 36. Sun C, Xuan P, Zhang T, Ye Y. Graph convolutional autoencoder and generative adversarial network-based method 
for predicting drug-target interactions. IEEE/ACM Trans Comput Biol Bioinform. 2020. https:// doi. org/ 10. 1109/ tcbb. 
2020. 29990 84.

 37. Zeng X, Zhu S, Lu W, Liu Z, Huang J, Zhou Y, et al. Target identification among known drugs by deep learning from 
heterogeneous networks. Chem Sci. 2020. https:// doi. org/ 10. 1039/ c9sc0 4336e.

 38. Rajput A, Thakur A, Mukhopadhyay A, Kamboj S, Kumar M. Prediction of repurposed drugs for coronaviruses using 
artificial intelligence and machine learning. Comput Struct Biotechnol J. 2021. https:// doi. org/ 10. 1016/j. csbj. 2021. 05. 
037.

 39. Zhao BW, Wang L, Hu PW, et al. Fusing higher and lower-order biological information for drug repositioning via 
graph representation learning. IEEE Trans Emerg Topics Comput. 2023. https:// doi. org/ 10. 1109/ TETC. 2023. 32399 49.

 40. Wang W, Yang S, Zhang X, Li J. Drug repositioning by integrating target information through a heterogeneous 
network model. Bioinformatics. 2014;30(20):2923–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41467-017-00680-8
https://doi.org/10.1016/j.compbiolchem.2018.11.028
https://doi.org/10.1016/j.compbiolchem.2018.11.028
https://doi.org/10.1039/c2mb00002d
https://doi.org/10.1093/bib/bbac059
https://doi.org/10.1016/j.measurement.2022.111228
https://doi.org/10.1016/j.ymssp.2022.109789
https://doi.org/10.1371/journal.pcbi.1004760
https://doi.org/10.1093/bib/bbab407
https://doi.org/10.1093/bioinformatics/btac079
https://doi.org/10.48550/arXiv.1611.07308
https://doi.org/10.48550/arXiv.1802.04407
https://doi.org/10.1109/icbk.2019.00012
https://doi.org/10.1093/bib/bbz152
https://doi.org/10.1093/bib/bbz152
https://doi.org/10.1016/0888-7543(91)90071-L
https://doi.org/10.48550/arXiv.1511.05741
https://doi.org/10.48550/arXiv.1511.05741
https://doi.org/10.1023/A%3A1018054314350
https://doi.org/10.1109/ACCESS.2022.3199667
https://doi.org/10.1109/ACCESS.2022.3199667
https://doi.org/10.1093/bioinformatics/btaa880
https://doi.org/10.1109/tcbb.2020.2999084
https://doi.org/10.1109/tcbb.2020.2999084
https://doi.org/10.1039/c9sc04336e
https://doi.org/10.1016/j.csbj.2021.05.037
https://doi.org/10.1016/j.csbj.2021.05.037
https://doi.org/10.1109/TETC.2023.3239949

	VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
	Abstract 
	Motivation: 
	Results: 

	Introduction
	Materials
	Methods
	Drug and target similarity calculation
	Construction of heterogeneous networks of drugs, targets and diseases
	Integrate drug and targets spatial information based on VGAE and GAE

	Variational EM algorithm
	Collaborative training integrates information from drug space and target space
	Prediction of DTI by random forest module

	Experiment and discussion
	Comparison with other methods
	Comparison of experimental results

	Case study
	Ablation experiment
	Weight parameter selection of drug space and target space

	Conclusion
	Future and prospects
	Acknowledgements
	References


