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Abstract 

Background: Protein–protein interactions play a crucial role in almost all cellular 
processes. Identifying interacting proteins reveals insight into living organisms and 
yields novel drug targets for disease treatment. Here, we present a publicly available, 
automated pipeline to predict genome-wide protein–protein interactions and produce 
high-quality multimeric structural models.

Results: Application of our method to the Human and Yeast genomes yield protein–
protein interaction networks similar in quality to common experimental methods. We 
identified and modeled Human proteins likely to interact with the papain-like protease 
of SARS-CoV2’s non-structural protein 3. We also produced models of SARS-CoV2’s 
spike protein (S) interacting with myelin-oligodendrocyte glycoprotein receptor and 
dipeptidyl peptidase-4.

Conclusions: The presented method is capable of confidently identifying interactions 
while providing high-quality multimeric structural models for experimental validation. 
The interactome modeling pipeline is available at usegalaxy.org and usegalaxy.eu.
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Background
Obtaining a complete map of interacting proteins is crucial to decipher the inner work-
ings of living organisms. Among many other roles, proteins act in dynamic collaboration 
to fulfill biological functions by catalyzing chemical processes. Commonly, interactions 
are elucidated through a variety of experimental methods [33, 47] which are capable of 
evaluating an ever-larger number of putative protein pairs. Unfortunately, the overlap 
between these methods is often limited which either indicates a high false positive rate 
or a low coverage. Often 40–90% of the detected interactions do not overlap between 
different methods [30, 39]. Also, high throughput methods do not provide structural 
insights into the formed protein–protein complex. More reliable methods such as 
crystallography and NMR spectroscopy do yield structural information but are labor 
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intensive and as such only applicable to a limited number of proteins. In a recent study 
we demonstrated that the gap between low and high throughput methods can be bridged 
by identifying distantly related protein–protein homologues with similar protein–pro-
tein interfaces [10]. Application of the SPRING method [11] to Escherichia coli com-
petitively identified protein–protein interactions while producing accurate multimeric 
protein structure models of which 39 by now have been confirmed in high-resolution 
experiments. Other studies applied our method to the minimal synthetic genome syn3.0 
[44] and the mouse genome [20]. In the present study we describe how we implemented 
our pipeline on Galaxy [1], a web-based computational workbench used by many sci-
entists across the world to analyze large data sets. This allows scientists to reproduce, 
share and embed the resulting interactome networks within their own analysis pipe-
lines. Given a set of query sequences and a list of known protein structures, the pipe-
line employs SPRING with HHsearch [35], and TMalign [46] to detect and structurally 
model protein–protein interactions. We validate the pipeline’s performance by compar-
ing the resulting Human and Yeast protein networks with experimental findings. Similar 
to the results for Escherichia coli, the method competitively resolves Human and Yeast 
protein–protein interaction networks. As novel targets, we identified Human proteins 
likely to bind the papain-like protease of SARS-CoV2’s non-structural protein 3 (Nsp3). 
We also obtained models for SARS-CoV2’s spike protein (S) in complex formation with 
myelin-oligodendrocyte glycoprotein (MOG) and dipeptidyl peptidase-4 (DPP4). Some 
of the detected interactions have already been experimentally confirmed in recent lit-
erature, others provide novel insights into the pathology of SARS-CoV2. Notably, the 
interaction with DPP4 has been suggested to cause a higher mortality rate of diabetics 
contracting SARS-CoV2 [37] while the MOG receptor is associated with the MOG anti-
body disease which relapses in SARS-CoV2 patients [41].

Results
Performance validation with human and yeast interactomes

The pipeline’s performance is validated on 20,610 raw protein coding gene sequences 
from the Human Reference Genome (UP000005640) of the UniProt database. This 
process evaluates ~ 212 million possible pairs to identify the set of interacting protein–
protein pairs. Each interaction is ranked by the  Zcom score and Matthew’s correlation 
coefficient (MCC) is determined with regard to a negative data set of non-interacting 
protein pairs produced by the SPRING MCC tool and positive data sets derived from 
each experimental method. The negative data set has been sampled to contain proteins 
from different subcellular regions. Figure  1 displays the cross-validation performance 
results in comparison to ten experimental methods available in the BioGRID database. 
Note that we applied SPRING on the raw protein coding sequences without separat-
ing the individual proteins using the CDS record provided by GenBank [4]. In total the 
20,610 protein coding genes encode for about 75,776 individual proteins.

We repeated the same experiment using the Yeast genome (UP000002311) to identify 
protein–protein interaction networks. In total 6045 protein coding genes were parsed 
through the pipeline evaluating ~ 18 million possible protein–protein interactions using 
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the public Galaxy instance at https:// usega laxy. org. The results are shown in the right 
panel of Fig. 1.

A more detailed analysis regarding the prediction performance of the presented pipe-
line versus experimental methods has been recently published for the Escherichia coli 
genome [10]. The pipeline predicted several protein complex structures which were later 
experimentally verified by crystallography.

For all three genomes, our pipeline was able to implicitly identify individual protein 
sequences and achieve an overall performance which is comparable if not better than 
existing experimental methods.

SARS‑CoV2 protease (Nsp3) and ubiquitin

We next applied the Galaxy pipeline to the genome of SARS-CoV2 which causes a novel 
severe acute respiratory syndrome and has been declared a pandemic [27]. The SARS-
CoV2 genome contains 13–15 open reading frames with ~ 30 thousand nucleotides, 
including 11 protein-coding genes. Our pipeline identified Human substrates for the 
papain-like protease of SARS-CoV2 which is part of the non-structural protein 3 (Nsp3) 
(see Fig. 2).

Table 1 shows a list of the highest ranking fifteen substrates with matching multim-
eric templates and model quality attributes i.e. SM-score, TM-score,  Econtact and  Zcom. 
The two highest ranking interactions were identified for ISG15 (SM-score = 1.11) and 
ANKUB (SM-score = 1.10). ISG15 has recently been experimentally confirmed as a sub-
strate [32] and ANKUB was suggested in a computational cleavage enrichment study 
[29].

SARS‑CoV2 spike protein (S) and myelin‑oligodendrocyte glycoprotein

We also identified Human proteins interacting with SARS-CoV2’s spike protein (S). The 
top-ranking interaction was found for angiotensin (ACE2/ACE), which is widely known 
to be the primary receptor for SARS-CoV2 [48].

The second highest ranking model was detected for the interaction with the mye-
lin-oligodendrocyte glycoprotein (MOG, see Fig. 3). MOG is a protein located on the 
surface of myelin sheaths in the central nervous system [14]. Our pipeline modeled 

Fig. 1 Human (left) and Yeast (right) protein–protein prediction results and comparison. Showing Matthew’s 
correlation coefficients (MCCs) as produced by comparing SPRING predictions with different protein–protein 
interaction experiments available in the BioGRID database. Each experimental method serves as a positive 
validation set for every other method

https://usegalaxy.org
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the monomeric structure of MOG with the highest ranking homologue in the PDB70 
database which is PDB entry 4PFE [9] at a Z-score of 102.2. We compared the resulting 
monomeric model with the model provided by Mesleh et al. [26]. Both models resolve 
MOG as a beta-barrel and share significant similarity at a TM-score of 0.70. Addition-
ally several suitable multimeric template frameworks were identified. The corresponding 
PDB entries are 7C8V [21], 6XC2 [43], 6XC4 [43], 7BZ5 [42] and 7C01 [32]. All of these 
structures, except 7C8V, were crystalized with a potent neutralizing antibody of SARS-
CoV2. Table 2 shows the identified template frameworks and the resulting model scores. 
The results indicate two distinct putative binding modes which may occur in tandem 
(see Fig. 3C).

The MOG receptor is associated with MOG antibody disease (MOGAD), a neuro-
inflammatory condition that may cause inflammation of the optic nerve, the spinal 

Fig. 2 Putative ubiquitin-like substrates (colored) of SARS-CoV2 papain-like protease (green)

Table 1  SARS-CoV2 papain-like protease substrates 

Top scoring Human protein complex models for SARS-CoV2 papain-like protease of Nsp3

UniProt ID Name PDB entry Reference SM TM Econtact Zcom

ISG15 Ubiquitin-like protein 6XAA Klemm [49] 1.11 0.96 − 15.07 38.3

ANKUB Ankyrin repeat 5BZ0 [15] 1.10 0.87 − 23.39 27.3

UBB Ubiquitin B 6XAA Klemm [49] 1.09 0.93 − 16.52 66.9

ELOB Elongin-B 4WUR [17] 1.06 0.85 − 20.81 31.1

MIDN Midnolin 5W8T [7] 1.03 0.85 − 18.02 45.6

TMUB1/B2 Transmembrane 5TL7 [7] 1.02 0.82 − 20.45 41.4

SUMO3 Ubiquitin modifier 3 5W8T [7] 1.02 0.83 − 18.78 43.1

UBL7 Ubiquitin-like protein 7 5WFI [25] 1.02 0.80 − 21.48 36.1

NF2IP NFATC2-interacting protein 5BZ0 [15] 1.02 0.78 − 23.89 24.5

UBC Polyubiquitin C 6XA9 Klemm [49] 1.02 0.87 − 14.99 162.9

RD23A/B UV repair protein Rad23 5WFI [25] 1.01 0.77 − 24.14 45.5

IQUB Ubiquitin-like domain 5WFI [25] 0.99 0.77 − 21.67 35.2

UBD Ubiquitin D 5W8T [7] 0.98 0.84 − 13.66 42.6
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cord and brain. Recent research has shown that SARS-CoV2 does trigger a relapse of 
MOGAD [41].

SARS‑CoV2 Spike protein (S) and dipeptidyl peptidase‑4

High-scoring models were also generated for dipeptidyl peptidase-4 (DPP4, see Fig. 4), 
confirming the computational modeling results presented by [19, 22]. DPP4 is a cell sur-
face glycoprotein receptor involved in T-cell activation and assumed to play a role in cell 
adhesion, migration and tube formation [8].

Fig. 3 Putative binding modes of SARS-CoV2 receptor-binding domain (green) and A the top-ranking model 
of myelin-oligodendrocyte glycoprotein (cyan) with the homologue template of PDB entry 7C8V (pink) and 
B a cluster of secondary models (orange). C Display of both binding modes in complex with SARS-CoV2 
receptor-binding domain

Table 2 Multimeric frameworks identified for myelin-oligodendrocyte glycoprotein

Top scoring protein complex templates for the interaction between SARS-CoV2 spike protein (S) and myelin-
oligodendrocyte glycoprotein receptor domain (MOG)

PDB entry Reference Name SM TM Econtact Zcom

7C8V [21] Sybody SR4 0.90 0.82 − 8.57 45.8

6XC2 [43] Neutralizing Antibody CC12.1 0.86 0.83 − 3.53 55.2

7C01 [31] Neutralizing Antibody 0.86 0.83 − 3.28 55.3

7BZ5 [42] Neutralizing Antibody 0.85 0.83 − 2.79 55.3

6XC4 [43] Neutralizing Antibody CC12.3 0.84 0.81 − 2.54 53.4
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Additionally, inhibiting DPP4 prevents glucagon release while increasing insu-
lin secretion to decrease blood glucose levels [24]. DPP4 is known to interact with 
MERS-CoV [40]. The highest scoring template frameworks for DPP4 were PDB 
entry 4KR0 [23] with a  Zcom score of 216.30 and PDB entry 4L72 [40] with 213.4. The 
resulting dimeric models are very similar to each other. The multimeric template 
matched the individual models with a TM-score of 0.62, a mean contact energy of 
-6.7 and SM-score of 0.69.

Several sites are known to significantly contribute to the interaction between DPP4 
and MERS-CoV’s receptor-binding domain (RBD). These are DPP4 residues K267, 
R336, R317, and Q344 ([22, 34], see Fig. 4) along with polymorphic sites as outlined 
in Table  3. Our method illustrates that SARS-Cov2’s S protein interacts with sites 
on DPP4 shared by MERS-CoV in addition to novel interaction sites (see Table 3). 

Fig. 4 Putative binding mode between SARS-CoV2 (S) receptor-binding domain (RBD) (navy) and dipeptidyl 
peptidase-4 (DPP4) (cyan) with known MERS-CoV and DPP4 critical binding sites highlighted (red). The 
multimeric template framework is PDB entry 4L72 (pink), with the MERS-CoV receptor-binding domain (RBD) 
(orange)

Table 3 shows sites on DPP4 that are critical in binding MERS-CoV’s receptor-binding domain (RBD) 
and sites predicted to interact with SARS-CoV2’s RBD 

Sites on DPP4 that are known to be polymorphic in the Human population are highlighted. The results indicate that SARS-
CoV2 interacts with sites on DPP4 known to be critical and additional novel sites

Sites on DPP4 Interacting virus Critical, polymorphic or novel

K267 MERS-CoV Critical and Polymorphic

R317 MERS-CoV Critical and Polymorphic

R336 MERS-CoV Critical

Q344 MERS-CoV Critical

T186 SARS-CoV2 Novel

T282 SARS-CoV2 Novel

S334 SARS-CoV2 Novel
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Additionally, half of fourteen critical binding sites [18] have been identified as poly-
morphic in Humans. Taken together, binding propensities between SARS-Cov2’s S 
protein and DPP4 might vary based on the population.

Discussion
Accurate identification of protein–protein interactions is essential to decipher cellular 
processes and detect novel drug targets. In the present work we implemented a Galaxy 
pipeline using the SPRING method which detects and structurally models protein–pro-
tein interactions by identifying distantly related protein complex structures with similar 
protein–protein interfaces.

The presented pipeline yields insights into the biochemical activity of SARS-CoV2 
by identifying distant homologues with similar binding interfaces to Human proteins. 
For the papain-like protease of the non-structural protein 3 (Nsp3), we detected sev-
eral ubiquitin-like substrates of which some have been experimentally confirmed. The 
method produced a top-ranking model for SARS-CoV’s spike protein (S) and dipepti-
dyl peptidase-4 (DPP4) in alignment with existing literature. Our method produced 
novel complex models between the S protein and myelin-oligodendrocyte glycoprotein 
(MOG). Here two top-ranking binding modes were produced. Experimental explora-
tion will be needed to determine what impact these novel binding sites might play in 
pathogenicity, immune evasion, and adaptation. The prediction confidence relies on the 
accuracy of the homology match between templates, the structural fit and a knowledge-
based contact potential, providing likely binding modes and interaction partners for fur-
ther investigation. Only additional experimental validation can determine which or if 
any of the predicted binding modes occur in nature.

A limitation of our method is that it may produce high-confidence models between 
proteins which are localized in different subcellular regions. Existing literature has 
shown that such cross-interactions occur in a significant number of cases. In the present 
work we avoid filtering predicted protein interaction pairs by their corresponding sub-
cellular locations since this would bias the obtained Matthew’s correlation coefficients. 
Identifying an accurate set of truly non-interacting protein pairs is critical and particu-
larly challenging for the evaluation of protein–protein interactions. Randomly sampling 
protein pairs across a genome may lead to the inclusion of interacting protein pairs. A 
more accurate method is to sample non-interacting sets by pairing proteins from differ-
ent subcellular regions as presented here. Yet another common suggestion is to exclude 
homologue protein pairs from the non-interacting set all together in order to avoid 
the inclusion of interacting pairs. This however is not an option due to the nature of 
the presented method which relies on homology detection to predict protein–protein 
interactions.

Another limitation is that homology modeling does rely on experimental templates. 
All of the fifteen most confident models derived for Human proteins interacting with 
Nsp3’s protease rely on four crystallographic complex structures.
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Conclusions
This pipeline demonstrates the ability to detect interactome networks for a range of 
organisms. The increasing number of resolved co-crystal structures in the PDB, will 
continually improve the model quality and coverage over time [6]. Since the pipeline 
includes all data preparation steps no manual adjustment is required once new data has 
been published to the PDB. Galaxy enables users to employ the pipeline within their own 
methodologies and add or modify steps as required using Galaxy’s web-based workflow 
editor. Users are now able to reproduce and share the resulting interactome networks. 
The present contribution expands the repertoire of Galaxy tools to structural modeling 
methodologies, making them available for a large number of users. Recent advances in 
protein structure prediction and modeling [3, 13, 16] complement existing sequence 
analysis tools and provide novel targets for drug discovery and elucidating biochemical 
processes through structural insights.

Methods
Protein–protein interaction analysis pipeline

We present a Galaxy pipeline to predict and structurally model protein–protein interac-
tions on a genomic scale. The pipeline takes the following inputs:

(1) An individual file or a pair of files containing multiple FASTA entries of protein 
coding sequences. The pipeline will attempt to identify protein–protein interac-
tions within the set of query sequences.

(2) Text file containing the list of all Protein Data Bank (PDB) [5] entry identifiers to be 
employed as a multimeric template library. This step can be skipped if the library 
has already been constructed.

(3) PDB70 threading library files as provided by the developers of HHsearch. These 
files are used to perform single-chain threading and can be obtained from http:// 
wwwus er. gwdg. de/ ~compb iol/ data/ hhsui te/ datab ases/ hhsui te_ dbs/.

The following outputs are generated:

(1) Tabular file containing all identified interactions with their corresponding tem-
plates and  Zcom scores.

(2) Tabular file containing the details of the produced multimeric structural models 
and the corresponding model properties, i.e. SM-score, TM-score, a knowledge-
based contact energy term  Econtact and the fraction of inter chain clashes.

(3) Collection containing dimeric structural models for each interaction, including the 
structures of the identified templates from the PDB.

(4) Bar chart displaying the prediction accuracy in comparison to experimental results 
derived from the BioGRID database.

This workflow is available at: https:// usega laxy. org/u/ guerl er/w/ inter action- predi 
ction.

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/
http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/
https://usegalaxy.org/u/guerler/w/interaction-prediction
https://usegalaxy.org/u/guerler/w/interaction-prediction
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Data preparation

The presented pipeline utilizes all protein–protein interfaces available in the PDB as a 
template library for interface homology detection (Fig. 5). The data preparation starts by 
using the DBkit tool in Galaxy to download all PDB entries and store them as a ffindex/
ffdata database pair. As of November 29th, 2020 this amounted to 170,860 files. Then the 
SPRING Cross tool is applied which scans each PDB entry for protein–protein interfaces 
and stores the corresponding interacting PDB chain identifiers in a 2-column lookup 
table as a pairwise index of all interactions. In more detail, the SPRING Cross method 
proceeds by using the PDB REMARK 350 entries to build all bio units available in a 
given PDB entry. Then all C-alpha atom distances between two separate chains within 
the same bio unit are determined. If more than five distances below 10Å are detected for 
a pair of PDB chains, the corresponding PDB chain identifiers are deemed as interacting 
and added as a new row to the resulting 2-column lookup table. This yields a complete 
set of 988,784 interacting PDB chain identifier pairs contained in the PDB which we will 
use as a multimeric template library.

In a consecutive step the SPRING Map tool is applied which uses PSI-BLAST [2] to 
detect close homologues of the PDB70 database for each PDB chain identifier listed in 
the columns of the lookup table. The identifiers of matching PDB70 entries are added in 
two additional columns to the lookup table. This allows us to apply HHsearch on a non-
redundant subset of the PDB, containing entries with less than 70% sequence identity to 
each other. Although possible, expanding the monomeric threading database by includ-
ing every PDB chain would significantly impact the database preparation time without 
improving the overall prediction performance. We used the PDB70 database issued on 
November 18, 2020 containing 58,900 entries. If a PSI-BLAST E-value equal to zero is 
used, 257,698 interaction frameworks which exactly match the sequences in the PDB70 
are detected. With an E-value threshold of 0.001, the resulting 4-column lookup table 
contained 900,772 interaction frameworks suitable for the monomers available in the 
PDB70 database.

Fig. 5 Schematic overview of the presented pipeline, illustrating the main input data sets, tools and outputs
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Interaction prediction

The pipeline’s interaction prediction logic uses SPRING with HHsearch and TMalign, 
and was designed to exploit the redundancy of available protein–protein interfaces in 
order to predict and model novel protein tertiary structures.

Initially each query sequence Q is threaded by HHsearch against the PDB70 mono-
meric template library to identify a set of putative templates  (Ti, i = 1,2,…) each associ-
ated with a Z-score  (Zi). The Z-score is defined as the number of standard deviations by 
which the raw alignment score differs from its mean. A higher Z-score indicates a higher 
significance and usually corresponds to a better alignment.

Considering all possible target sequence pairs, the SPRING Min-Z tool uses the pre-
viously described 4-column lookup table to select interaction frameworks which are 
shared by the monomeric templates of a query pair. The Z-score of the framework is 
defined as  Zcom which is the smaller of the two monomeric Z-scores. A more detailed 
description of this algorithm is provided in [10, 11].

Interaction validation

The accuracy of predicted protein–protein interactions is evaluated using the SPRING 
MCC tool. This tool compares the set of interactions from SPRING with interactions 
obtained from experimental methods contained in the Biological General Repository for 
Interaction Data sets (BioGRID) [28]. BioGRID is an open access database that contains 
protein interactions curated from primary biomedical literature for all major model 
organism species and Humans. The SPRING MCC tool accesses the BioGrid Tab 3.0 for-
mat columns 24 and 27, containing the UniProt [36] accession identifiers of interacting 
protein pairs. The method only operates on interactions identified for sequences which 
are available in the UniProt database.

Initially, the SPRING MCC tool produces a `negative` data set of non-interacting pro-
tein pairs by randomly sampling protein–protein interaction pairs from the set of query 
protein sequences. If a UniProt localization file is provided, the non-interacting pairs 
can be determined by sampling protein sequences from different subcellular regions. 
This approach can reduce the false-negative rate of the resulting negative data set.

Subsequently, the protein–protein interaction sets identified by each experimental 
method are considered to be truly interacting, constituting the `positive` data sets for 
the cross-validation process. Each method is compared to all other methods using the 
positive data sets and a negative data set of equal size. The resulting Matthew’s correla-
tion coefficients (MCC) are plotted using the Matplotlib library [12]. An example of such 
a plot is shown in Fig. 1, displaying the results for the Human and Yeast interactome val-
idation. The legend lists the experimental methods used to determine the corresponding 
positive data set.

Structural modeling

If a pair of proteins, Chain A and Chain B, is deemed to potentially interact e.g.  Zcom > 25, 
the complex structure is constructed by structurally aligning the top-ranked mono-
mer templates of Chain A and Chain B to all putative interacting frameworks using the 
SPRING Model tool which utilizes TM-align. The structural alignment is built on the 



Page 11 of 13Guerler et al. BMC Bioinformatics          (2023) 24:263  

subset of interface residues. The resulting models are evaluated by the recently estab-
lished SPRING model score [38]:

where TM-score is the smaller TM-score returned by TM-align when aligning the top-
ranked monomer models of Chain A and Chain B to the interaction framework;  Econtact 
is a residue-specific, atomic contact potential derived from 3897 non-redundant struc-
ture interfaces from the PDB using the formula of RW [45]. The weight parameter  w0 is 
set to 0.01 through a training set of protein complexes to maximize the modeling accu-
racy of the interface structures. The final model is evaluated for clashes and removed if 
more than 10% of the resulting C-alpha atom contacts share a distance of less than 5Å 
between the interacting pair of protein structures.
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BioGRID  Biological General Repository for Interaction Datasets
DPP4  Dipeptidyl peptidase-4
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MOG  Myelin-oligodendrocyte glycoprotein receptor
MOGAD  MOG antibody disease
Nsp3  Non-structural protein 3
PDB  Protein Data Bank
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