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Abstract 

Background:  Integration site (IS) analysis is a fundamental analytical platform for eval-
uating the safety and efficacy of viral vector based preclinical and clinical Gene Therapy 
(GT). A handful of groups have developed standardized bioinformatics pipelines to pro-
cess IS sequencing data, to generate reports, and/or to perform comparative studies 
across different GT trials. Keeping up with the technological advances in the field 
of IS analysis, different computational pipelines have been published over the past dec-
ade. These pipelines focus on identifying IS from single-read sequencing or paired-end 
sequencing data either using read-based or using sonication fragment-based methods, 
but there is a lack of a bioinformatics tool that automatically includes unique molecular 
identifiers (UMI) for IS abundance estimations and allows comparing multiple quantifi-
cation methods in one integrated pipeline.

Results:  Here we present IS-Seq a bioinformatics pipeline that can process data 
from paired-end sequencing of both old restriction sites-based IS collection methods 
and new sonication-based IS retrieval systems while allowing the selection of different 
abundance estimation methods, including read-based, Fragment-based and UMI-
based systems.

Conclusions:  We validated the performance of IS-Seq by testing it against the most 
popular  analytical workflow available in the literature (INSPIIRED) and using different 
scenarios. Lastly, by performing extensive simulation studies and a comprehensive 
wet-lab assessment of our IS-Seq pipeline we could show that in clinically relevant 
scenarios, UMI quantification provides better accuracy than the currently most widely 
used sonication fragment counts as a method for IS abundance estimation.
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Background
Integration site analysis (ISA) plays a key role for the monitoring of clonal dynamics 
of engineered cells in viral vector-based gene therapy. Recent developments in wet-lab 
protocols for insertion site retrieval and sequencing technologies have substantially 
expanded the reach and resolution of ISA. Concomitantly, the constant evolution of ISA 
techniques called for the development of bioinformatic tools for processing the sequenc-
ing results and automation of insertion sites mapping and quantification. Among the 
main computational pipelines developed over the past years, we can list IntegrationSeq/
Map [1], SeqMap [2] and SeqMap2.0 [3], QuickMap [4], MAVRIC [5], VISPA [6], VISA 
[7], GeIST [8],the most widely used INSPIIRED [9, 10], VISPA2 [11] and VSeq-Toolkit 
[12]. The general structure of these pipelines is based on processing and excluding a 
mosaic of oligos primer, adapters, sample barcodes, viral Long Terminal Repeat (LTR) 
sequences in order to release the host genomic DNA which will then be aligned to the 
host reference genome for the retrospective identification of the insertion sites. At the 
same time, specific bioinformatic tools embedded in these pipelines collect information 
relative to the abundance of each insertion site under the assumption that these will be 
reflective of the size of the relative clone contained in the original sample.

It is well known that the use of sequencing reads for abundance quantification can be, 
in certain scenarios, highly biased by the uneven PCR amplification of vector-genome 
junctions [13]. Deduplication can help removing PCR duplicates, but it has been shown 
that such process based exclusively on the use of mapping coordinates can also elimi-
nate erroneously many usable reads [14]. We have discussed previously why counting 
sonication fragments also has theoretical limitations in certain instances when it comes 
to accurate clonal abundance estimation [15]. To address this issue, Berry et al. devel-
oped a statistical inference approach (embedded in the sonicLength R package) based 
on deriving a likelihood function using the observed Fragment length-count data and 
applying a hybrid expectation–maximization algorithm to reach a Maximum Likeli-
hood Estimation (MLE) of abundance estimation of vector-genome junctions [16]. They 
showed that MLE based on Fragment data could indeed improve the quantification 
accuracy of ISA. In another work, Firouzi et  al. [17] showed that the use of a Unique 
Molecular Identifiers (UMI) tag system could further improve abundance estimation 
because of the high diversity of the UMI repertoire, although their analyses were limited 
to two clonal dilution points and their pipeline did not formally integrate the different 
quantification methods. Later, Rosewick et al. [18] developed an improved pipeline by 
combining Fragment length and UMI tag for abundance quantification. Wells et al. [18] 
combined experimental procedures with bioinformatics analysis to reduce the number 
of PCR/sequencing artifacts upon integration site identification. Lastly, a recent work 
also makes use of UMI-tag to achieve to quantify small somatic variant calling from 
ctDNA sequencing data [19]. Still, there is to date no systematic comparative evaluation 
of a UMI-based system against fragment-based methods for abundance quantification 
in the context of insertion site retrieval using a set of controlled “real-world” scenarios. 
We here present a novel computational pipeline for integration site (IS) retrieval called 
IS-Seq which is capable of detecting IS at high resolution while allowing a user to lev-
erage different tools for IS quantification including UMI abundance. We describe the 
overall design of the IS-Seq pipeline as well as the oligos used in our wet-lab protocol 
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for IS retrieval, including a unique UMI configuration to specifically address sequencing 
errors. We then present the results of our analyses comparing the performance of IS-Seq 
and INSPIIRED for IS retrieval and quantification, as well as an evaluation of the differ-
ent abundance estimation methods embedded in IS-Seq.

Results
Wet‑lab protocol and oligos design

The IS-Seq computational pipeline is tailored for analyzing the sequencing output of a 
customized ISA protocol previously described [20, 21]. Our wet-lab procedure resem-
bles closely the latest iteration of insertion site retrieval techniques utilized by others 
in the field and is built on the wet-lab method originally designed by Schmidt et al. [22] 
(Fig. 1A). Briefly, our ISA protocol is based on the fragmentation of gDNA by sonica-
tion, followed by ligation of a linker cassette (LC) with a known sequence, and by the 
exponential PCR amplification of the resulting fragments using vector LTR-specific and 

Fig. 1  A Schematic of the procedure used for insertion site retrieval. B Detailed view of the sequence 
structure of R1 and R2 upon Illumina sequencing (does not include Illumina adapters, P5 and P7 and the 
12nt random sequence used to facilitate cluster recognition). (LTR = Long Terminal Repeat, IS = Insertion 
site, LC1 = Linker cassette segment 1, LC2 = Linker cassette segment 2, UMI = Unique Molecular Identifier, 
nt = nucleotides)
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LC-specific primers. A final PCR step is carried out with primers that introduce into 
each sample Illumina adaptor sequences and a known sample index sequence: this 
allows pooling multiple samples for NGS on the Illumina platform and to demultiplex 
the results using an index-based assignment of the sequencing reads to each original 
sample. The oligos used in this protocol for the detection of lentiviral integration sites 
are shown in Additional file  1: Table  S1. It is beyond the scope of this manuscript to 
describe the entirety of this procedure in detail, however, to facilitate the interpretation 
of the IS-Seq readouts, we will focus here on the custom design of our linker cassette 
and of the custom Illumina adapters (Fusion primers, Additional file 1: Tables S2, S3).

The linker cassette used in our method carries a Unique Molecular Identifier (UMI) 
designed as shown in Fig.  1B, where two random 6nt stretches flank a 6nt “anchor” 
sequence (5ʹ-GTA​AGG​-3). Differently from UMIs used in other protocols, the addi-
tion of an anchor sequence in our design allows us to assess the quality of sequencing 
specifically in the UMI region. For our analytical purposes we can therefore discard 
sequences that have nucleotide/s mismatches in this area under the assumption that 
such sequencing errors might have extended to the 6nt random sequences at the 5ʹ and 
3ʹ of the anchor therefore affecting the UMI diversity readout. Downstream the UMI the 
LC2 sequence is the one that directly attach to the genomic fragments while, upstream 
the UMI, the LC1 sequence is designed to host the binding of reverse primers for PCR 
amplification of vector genome junctions and for fusion PCR with custom Illumina 
adapters (fusion primers). The fusion primers used in our pipeline are designed accord-
ing to Illumina protocol specification carrying at their 5ʹ end either the P5-Read1 (for 
the LTR fusion primers) or P7-Read2 (for the LC fusion primers) Illumina sequences. To 
facilitate cluster recognition upon sequencing these custom adapters have an additional 
12nt random sequence (5ʹ-NNNNNNNNNNN-3ʹ in Additional file  1: Tables S2, S3) 
immediately downstream Read1 or Read2. At the immediate 3ʹ end of this 12nt random 
stretch, 8nt sample barcodes are placed on both LTR and LC fusion primers, the combi-
nation of which is used for sample-specific tagging and demultiplexing by the computa-
tional pipeline as described below. Lastly, the 20nt segments at the 3ʹ end of the fusion 
primers, are designed to bind specifically to the LTR or LC sequence.

Overview of the IS‑Seq computational pipeline

The IS-Seq pipeline is designed to convert raw Illumina sequencing BCL files into 
a final table containing information of the genomic localization of integration sites 
(including annotation of the nearest gene) and their relative abundance per sample. 
To this aim, a series of steps are implemented based on quality filters, retrieval of frag-
ment lengths and UMIs, mapping to the reference genome and annotating the results, 
as schematized in Figs. 2 and 3. The first readout of the pipeline always expresses IS 
abundance in terms of absolute sequencing reads. The pipeline can then be run using 
the argument -a “fragment” or -a “umi” to obtain abundance results based on frag-
ment lengths or UMI counts (see “Methods” section). The IS-Seq pipeline utilizes 
Python Threading (https://​docs.​python.​org/3/​libra​ry/​threa​ding.​html) to analyze dif-
ferent samples concomitantly so that the average computational time for processing 
a MiSeq run is 4  h. Given the length of this pipeline, we added “checkpoints” that, 
if needed, allow resuming the run from intermediate steps without restarting from 

https://docs.python.org/3/library/threading.html


Page 5 of 31Yan et al. BMC Bioinformatics          (2023) 24:286 	

the beginning. The pipeline works using as input BCL files in combination with 
library information contained in the “association file”. This *.csv file contains a data-
sheet that must be prepared according to the instructions reported in the GitHub 
page. Importantly, the “PT-Transduction-ID” field in this file is used by the pipeline 

Fig. 2  Schematic representation of the computational steps of the IS-seq pipeline from processing raw BCL 
Illumina files to right before the alignment step (LTR = Long Terminal Repeat, LC = Linker Cassette)
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to retrospectively identify independent group of samples (such as the ones deriving 
from different patients or transduction experiments) among which we don’t expect to 
detect shared identical insertion sites.

The first part of the workflow consists in obtaining R1 and R2 FASTQ files carrying the 
genomic fragments ready for alignment against the reference genome (Fig. 2). To start, 
the BCL files need to be converted to FASTQ files using the bcl2fastq package [23]. This 
step is run independently and separately from the rest of the pipeline (see “Methods” 

Fig. 3  Schematic representation of the alignment procedure embedded in the IS-seq pipeline and the 
filtering steps generating the final output tables
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section). Once the FASTQ files are obtained the IS-Seq pipeline can be launched with 
a single command as described in the GitHub page and the rest of the steps will run 
automatically. Firstly, the FASTQ files are split for better computational handling and 
the pipeline proceeds then to identify and trim the 12 random nucleotides in our fusion 
primers. After this step the pipeline converts FASTQ files into FASTA file and look for 
the presence of the long terminal repeat (LTR) vector sequence on R1 and the linker 
cassette (LC) sequence on R2 using Blast against sequence files of reference (these files 
can be customized according to needs and applications). Our pipeline is designed with 
a conservative approach regarding the quality of the LTR match, because of the impor-
tance of this segment for appropriately identifying vector-genome junctions. Therefore, 
we discard all sequences that do not have at least a 90% match with the LTR and LC 
sequences. At this stage, the pipeline looks for sample barcodes and performs demulti-
plexing of LTR and LC barcodes independently. The LTR sequence in R1 is then trimmed 
with cutadapt and the remaining sequences are stored as FASTQ files. Likewise, LC is 
trimmed from R2, but these sequences are further processed for UMI recognition. The 
IS-Seq pipeline first identifies and checks for perfect match with the anchor sequence 
(“ancora” in the script), then looks at the flanking 6nts upstream and downstream the 
anchor. Lastly, the pipeline trims the 18nt sequence and stores the information for abun-
dance estimation via UMI quantification (see dedicated “Results” section). At the end 
of this process, sequence IDs in R2 are ready to be matched with the ones in R1. The R1 
and R2 FASTQ files with matching IDs are then selected for going through the align-
ment step.

Alignment is performed using the Burrows-Wheeler Aligner (BWA) algorithm [24] 
and the output are *.sam files for each R1/R2 barcode combination which are converted 
to .bam files to undergo additional filters (Fig. 3). Firstly, the IS-Seq pipeline identifies 
the reads that are aligned to host genome repetitive regions and filters the reads with low 
mapping quality by MAPping Quality (MAPQ) score. After this step, the IS-Seq pipeline 
outputs the reads that are not aligned to repetitive regions and combines these reads 
with the reads found in repetitive regions but having high mapping quality, into the R1_
R2*_allFilter.bam file. The IS-Seq pipeline then filters all alignments in R1_R2*_allFilter.
bam file that do not have a perfect match of the 3nt at the beginning of the genomic frag-
ment immediately downstream where the LTR originally was before trimming. This is to 
ensure that only bona-fide vector-genome junctions are carried over for identifying the 
insertion site of the vector. The “*nonSupplementary.bam” files are then selected for final 
parsing of the results. At this stage our pipeline is designed to output the alignments 
without further filters (filterNo) and the ones that survive an additional quality filter 
based on selecting only the alignments with at least a 60 bp long genomic match (fil-
ter60) of the sequence originally flanking the LTR. This is again to warrant a conserva-
tive quality assessment of vector-genome junctions used for insertion sites identification.

The IS-Seq pipeline calls insertion sites falling within a 7 bp window as identical inser-
tions. To this aim, the pipeline selects the alignment position associated with the highest 
abundance and then merges the insertions in the 7  bp region into a single entry with 
abundance corresponding to the sum of all abundances. This 7 bp window was estab-
lished based on tests on simulated and “real-world” datasets, where we measured the 
variance of total integration sites obtained using different merging windows from 0 to 
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50 bp (Additional file 2: Fig. S1). We observed, that when window size changes from 0 
to 3 bp the number of integration sites decreased progressively due to the merging of 
integration sites falling within this window. However, from windows of 3 bp to 7 bp, the 
pipeline output converged rapidly to stable numbers of IS which are therefore likely to 
represent true independent events. Therefore, we used the 7 bp window as a conserv-
ative cutoff to merge proximal integration sites under the reasonable assumption that 
everything closer than 7 bp most likely represent noise/artifacts or local fraying events 
which belong to a single IS event. Similar results and conclusions have been reported in 
another publication [11].

Lastly, samples are grouped according to the PT-Transduction-ID of origin as reported 
in the association file. At this stage rare identical genomic locations (“collisions”) iden-
tified across independent PT-Transduction-ID groups and defined again as IS falling 
within a 7 bp window from each other, are re-assigned based on a “tenfold abundance 
rule” [25–27] to the PT-Transduction-ID carrying a tenfold higher normalized abun-
dance than the rest of the groups. If an insertion is shared by two or more independent 
PT-Transduction-IDs with similar abundance (below the tenfold threshold), such inte-
gration site is not assigned to any of the groups and is discarded. The tenfold abundance 
rule idea is borrowed from RNA-Seq based Differential Gene Expression (DGE) analy-
sis. Usually, in DGE, log2[Fold Change (FC)] >  = 1.5 is used to define differential genes 
between two condition. That means FC should be greater or equal to 2.83. The number 
of reads belonging to integration sites across genome follow a similar negative binomial 
distribution as the number of reads across all genes in a gene expression study. There-
fore, we decided to introduce this filter but with a more conservative approach using FC 
between two samples greater than 10. To fit different users’ needs and experimental sce-
narios this parameter is fully customizable through a a command-line argument. Lastly, 
insertion sites are annotated and filtered for positions mapping in the vector genome 
(“VectMask”). The “*CollisionTable.txt” files are the final output of the pipeline, consist-
ing of a data frame with insertions sites and raw abundance by sample, to be used for 
further downstream analyses.

Datasets used for testing IS‑Seq performance

To test the performance of IS-Seq for insertion sites detection and quantification, we 
performed a series of comparative analyses against INSPIIRED, as the most recent pub-
licly available suite for insertion sites detection. The results described in the following 
sections have been generated using in silico and in vitro datasets. Firstly, based on the 
design of the wet-lab protocol for IS-Seq, we performed extensive simulation studies by 
generating different simulated data sets with 1, 5, 100 or 1000 integration sites as ground 
truth, and tested the ability of IS-Seq to detect the ground truth in absence/presence of 
mutations and background genomic noise. For the dataset containing 100 IS, we also 
generated simulations with one ground-truth IS having 100%, 99%, 75%, 50%, 10%, 1%, 
0% abundance with respect to other IS, and tested in silico conditions with different lev-
els of PCR duplicates or different UMI entropies. More details regarding these simula-
tions are reported in the “Methods” section of the manuscript. We then analyzed a test 
dataset from INSPIIRED (available at https://​github.​com/​Bushm​anLab/​intSi​teCal​ler) 
and sequencing data from 2 experimental conditions with HL60 cell line clones carrying 

https://github.com/BushmanLab/intSiteCaller
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known and traceable insertion sites of a Self-Inactivating Lentiviral Vector (SIN-LV) 
carrying the Green Fluorescent Protein (GFP) marker gene under a PhosphoGlycerate 
Kinase (PGK) promoter. Specifically, the first analysis was performed on 9 SIN-LV trans-
duced clones generated by single cell sorting and 27 days of expansion, carrying either 
1,2,3 or 5 lentiviral copies per cell, as validated by ddPCR for Vector Copy Number 
(VCN). The second set of analyses were performed instead on serial dilutions of gDNA 
from one clone (CL6) with VCN = 1 into a polyclonal transduced HL60 population. All 
raw outputs of the different pipeline iterations can be found in the Additional file 3.

Testing IS‑Seq performance on insertion site datasets from in silico simulations 

and INSPIIRED

To assess the detection and quantification potential of our IS-Seq computational pipe-
line, we first designed in silico simulations as described in the “Methods” section, 
where we factored in sequence size upon sonication, sequence composition upon wet 
lab processing, multiple mutation rates and the presence of random sequence reads as 
background noise. In addition, we simulated not only genomic localizations of IS but 
also their relative abundance to be able to measure distance of IS-Seq results from the 
ground truth.

Simulation 1 was based on extracting in silico a 3 kb fragment from the hg38 human 
genome and generating a simulated insertion site associated to 2924 reads in the 
chr19, 49,461,738 position appending LTR and LC sequences at the 5ʹ and 3ʹ ends 
respectively according to the expected R1 and R2 outputs of our wet-lab/sequencing 
procedure. As shown in Additional file 1: Table S4, the IS-Seq pipeline returned a per-
fect match with the input FASTQ file (2924 reads in the chr19 49,461,738 position). 
In simulation 2 we artificially introduced mutations in the first 50 bp after the LTR in 
10% of the 2924 input reads (The mutation rates of the mutated 50 bp sequence rang-
ing from 0.4651163 to 0.9230769) which we expected to be discarded by IS-Seq upon 
filtering and we obtained again the expected results with 2632 reads mapped in the 
chr19 49,461,738 position. For simulation 3 we also added genomic background noise 
in the form of 17,274,461 random reads. IS-Seq returned the same results with 2632 
reads mapped in the chr19 49,461,738 position without detecting any false positives. 
In simulation 4 we included 4 additional insertions sites as input material where 75% 
of the reads (n = 3006) belonged to the simulated insertion in the chr19 49,461,738 
position while 25% to 4 insertions in other genomic positions, 2 of which expected to 
map in repetitive regions (Additional file 1: Table S4). We also again added 17,274,461 
random reads as genomic background noise. We then run IS-Seq and obtained the 
results shown in Additional file 1: Table S4. IS-Seq correctly identified and annotated 
3006 reads in the chr19 49,461,738 position (75% relative abundance), 251 reads in the 
chr19 40,461,720 position and 251 reads in the chr19 2,036,173 position. As expected, 
reads belonging to remainder two additional insertions were split over 2 and 6 map-
ping positions respectively as a result of a non-unique mapping without any loss of 
reads. Again, no additional insertion was detected from 17,274,461 random genomic 
reads introduced as background noise. In simulation 5 and 6, we set to produce inte-
gration sites across the whole human genome assigning the number of integration 
sites proportionally to each chromosome based on its relative size, generating 100 or 
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1000 random integration sites respectively (including the one in the chr19 49,461,738 
position). We then evaluated the performance of IS-Seq on this simulated data and 
obtained high-performance metrics in terms of Precision-Recall (PR), Receiver Oper-
ating Characteristic (ROC) curves as well as of the proximity between estimated and 
expected abundance (Additional file 2: Fig. S2). Altogether these in silico simulations 
showed that IS-Seq had the potential to accurately detect insertion sites mapping in 
unique chromosomal locations, to properly filter mutated sequences and background 
noise as well as to preserve and collect insertion sites mapping in repetitive regions.

Given the limitations of inherently artificial in silico simulations in reproducing 
“real world” scenarios, we next conducted a series of additional tests on data gener-
ated from in vitro experiments. To this aim, we firstly analyzed the test dataset pro-
vided on the INSPIIRED GitHub webpage to directly compare IS-Seq performance 
against INSPIIRED in absence of potential biases associated with the different wet-lab 
protocol and sequencing conditions we use for IS retrieval. This dataset is composed 
of 3 FASTQ files from 8 vector-positive clones or a combination thereof (pool), each of 
which analyzed in 4 replicates for a total of 32 samples. Since the format of the INSPI-
IRED dataset is different from that used as input by the IS-Seq pipeline, we developed 
a procedure to reformat these data to an input format suitable for IS-Seq and adjusted 
the parameters accordingly. The details of this procedure are described in the “Meth-
ods” section. Despite the dataset being the result of a different wet-lab IS retrieval 
protocol specifically designed for INSPIIRED, with this adaptation, IS-Seq was still 
able to identify 7 out of the 9 IS retrieved using INSPIIRED, the two missing being 
background integrations constituting 0.08% of the total fragment counts each (Fig. 4). 
To quantify the degree of concordance between these two computational platforms, 
we artificially appended the 2 missing IS to the IS-Seq results and assigned an abun-
dance of 0 to both. We then generated two 9*32 matrixes, one for each computational 
pipeline, using in both cases as measure of IS abundance the Maximum Likelihood 
Estimation (MLE) of fragment lengths (the SonicAbundance method in the INSPI-
IRED pipeline). To calculate the distance between the 2 matrixes, we applied a multi-
variate statistical approach using the Procrustes analysis [28]. Using this method, we 
observed that the distance between the integration profile of INSPIIRED and the one 
obtained with IS-Seq was very low (0.000464197). To estimate the likelihood of such 
an outcome, we subsampled 500 random matrixes from the 9*32 IS-Seq matrix and 
calculated the Procrustes distance between the INSPIIRED profile and each of these 
random samples. We analyzed the distribution of the Procrustes distance for these 
500 samples to estimate how often this distance was equal or less than 0.000464197, 
showing that in all cases the distance was higher than this observed value (Additional 
file 2: Fig. S3). The result of this analysis allowed us to estimate as statistically negli-
gible the probability that the distance between INSPIIRED and IS-Seq results would 
equal 0.000464197, therefore supporting the notion that we obtained a high level of 
concordance between the results of these two pipelines. We also compared the abun-
dance calculated using IS-Seq or INSPIIRED to the expected abundance of each clone 
in this dataset by calculating the Mean Square Error (MSE) and observed IS-Seq 
results were as close to the true values as the one obtained with INSPIIRED (Table 1). 
These results suggest that IS-Seq can be adapted to reliably analyze data generated 
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with the INSPIIRED protocol, a first indirect validation of our pipeline as a reliable 
method for IS identification and abundance estimation.

Testing IS‑Seq performance to identify and quantify IS in single cell clones

To establish the ability of our wet-lab protocol combined with the IS-Seq computational 
pipeline to accurately identify IS and to estimate their relative abundance, we firstly 

Fig. 4  Relative abundance of insertion sites (IS) measured in single cell clones and pools from the publicly 
available INSPIIRED dataset using either the INSPIIRED (grey bars) or the IS-Seq (blue bars) pipelines. Mean 
and standard errors are reported for the 4 replicates relative to each sample. (MLE = Maximum Likelihood 
Estimate of fragment lengths)

Table 1  Mean square error (MSE) calculated between Is-Seq Fragment_MLE and INSPIIRED 
Fragment_MLE with known relative abundance of IS of all clones on INSPIIRED data set (https://​
github.​com/​Bushm​anLab/​intSi​teCal​ler/​blob/​master/​testC​ases/​intSi​teVal​idati​on/​truth.​csv)

The average MSE for all the results of each pipeline iteration is reported in the last row of the table

Fragment_MLE Maximum Likelihood Estimation of Fragment Lengths

Sample MSE_INSPIIRED MSE_ISSeq

Clone1(1 IS) 0.49 0.64

Clone2(1 IS) 0 0

Clone3(1 IS) 0.64 0

Clone4(1 IS) 0.16 0.36

Clone7(1 IS) 0 0

Pool1(5 ISs) 28.802 63.918

Pool2(5 ISs) 6.166666667 10.01

Pool3(5 ISs) 30.53 29.116

Average MSE 8.348583333 13.0055

https://github.com/BushmanLab/intSiteCaller/blob/master/testCases/intSiteValidation/truth.csv
https://github.com/BushmanLab/intSiteCaller/blob/master/testCases/intSiteValidation/truth.csv
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analyzed cell clones with known and uniform vector copy number (VCN). To this aim 
we generated single-cell HL60 clones and assessed their copy number by ddPCR (digi-
tal droplet PCR) as described in the “Methods” section. We obtained 9 stable and uni-
form cell clones, 1 of which with a VCN = 1, 6 with VCN = 2, 1 with VCN = 3 and 1 
with VCN = 5. We then applied IS-Seq to these datasets to establish whether we could 
detect the expected number of insertion sites in each clone with the expected relative 
abundance (e.g. from the clone with VCN = 5 we should have been able to identify 5 IS 
with approximately 20% relative abundance each). As performance comparator we used 
INSPIIRED providing as input R1 and R2 sequencing data preprocessed with IS-Seq 

Fig. 5  Relative abundance of insertion sites (IS) detected in single cell clones using different pipelines 
and sequence similarity thresholds (SST) based on the Maximum Likelihood Estimate of fragment lengths. 
(VCN = vector copy number) (results relative to the rest of the clones can be found in Additional file 2: Fig. S4)



Page 13 of 31Yan et al. BMC Bioinformatics          (2023) 24:286 	

before alignment (see “Methods” section). In Fig. 5 and Additional file 2: Fig. S4, we sum-
marized the results of our analyses based again on the use of MLE of fragment lengths 
quantifications for both pipelines. In both cases we were able to detect the main and 
most abundant vector insertion sites belonging to each clone in the expected numbers 
accompanied by a negligible fraction of background insertions with very low abundance 
(equivalent to a combined average of 1.5% for IS-Seq results), which in this context can 
be ascribed to contaminants, PCR artifacts or sequencing noise. We again estimated 
the Procrustes distance between INSPIIRED and IS-Seq which we measured as being 
0.265555, higher than what was observed in the previous test on the INSPIIRED dataset. 
However, when we measured the correlation coefficient between IS-Seq and INSPIIRED 
results for each clone, we could show that this was very high ranging from (0.97 to 1) in 
all clones except for CL6 where it was 0.18 (Additional file 1: Table S5). We identified this 
particular result as the one most affecting the overall Procrustes distance between the 2 
pipelines. Indeed, we noticed that, when analyzing this specific clone (with VCN = 1) 
with INSPIIRED we lost most reads belonging to the main IS. Inspecting these results 
more closely we identified that the reason was the 95% sequence similarity threshold 
(SST) used upon alignment with BLAT as per INSPIIRED default configuration. Indeed, 
by artificially lowering this parameter we observed a substantial increase in the retrieval 
of sequence reads belonging to the most abundant IS of CL6, as addressed below. Once 
established that the results of the two pipelines indeed have a high level of concordance, 
we went on measuring the distance between the theoretical and observed abundance 
of the most abundant IS in each of these clones for IS-Seq and INSPIIRED. Because of 
the adjustments required for the INSPIIRED pipeline to detect the IS in CL6, for a fair 
comparison between the two pipelines we estimated the distance between expected and 
observed results in INSPIIRED using sequence similarity thresholds of either 95%, 80% 
or 0% (Fig. 5 and Additional file 2: Fig. S4). The results of this analysis are reported in 

Table 2  Mean square errors (MSE) calculated between the results of each pipeline iteration and the 
expected relative abundance of the most abundant IS (main IS) detected for each clone (see Fig. 4 
and Additional file 2: Fig. S4 for the relative abundance results)

The average MSE for all the results of each pipeline iteration is reported in the second last row of the table, while the global 
MSE calculated for IS-Seq or INSPIIRED is shown in the last row

MLE Maximum Likelihood Estimation, SST Sequence Similarity Threshold

Sample VCN Expected (% of 
main IS)

Is-Seq 
(Fragment_MLE)
(2326)

INSPIIRED
(Fragment_MLE)

95% SST
(513)

80% SST
(621)

0% SST
(1314)

CL6 1 100 16.48 1111.09 244.14 14.00

CLH4 5 5*20 2.90 12.43 7.23 1.85

MOI30CLB6 3 3*33.33 8.30 3.29 5.76 25.03

MOI30CLB7 2 2*50 722.53 1881.30 1691.12 2066.29

MOI30CLC9 2 2*50 60.70 3.53 11.02 2.19

MOI30CLE1 2 2*50 12.24 56.40 60.45 74.38

MOI50CLB9 2 2*50 5.89 19.11 23.39 88.00

MOI50CLE6 2 2*50 28.39 15.26 36.38 218.71

MOI50CLH6 2 2*50 390.82 180.89 239.07 333.09

Average MSE 138.6944 364.8111 257.6178 313.7267

Global MSE 138.6944 312.0519
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Table 2, where we compared the MSE for each clone using each of the computational 
pipelines. The average MSE of IS-Seq was 138.6944 while for INSPIIRED was 312.0519, 
ranging from 257.6178 to 364.8111 based on the use of the 3 sequence similarity thresh-
olds mentioned above.

Notably, we observed that despite the threshold adjustments, the INSPIIRED pipeline 
was never able to detect with high efficiency the second most abundant integration of 
the CLB7 clone with VCN = 2, which was instead called as IS in the chr7, 75,504,993 
unique non-repetitive genome position with 20.7% relative abundance using IS-Seq, sug-
gesting that the BLAT mapping protocol, used by INSPIIRED, might have some inherent 
limitations when dealing with insertions in the genome of immortalized cell clones (see 
the “Discussion” section for more details). To assess whether INSPIIRED classified reads 
belonging to this insertion as IS in repetitive elements, we used the “multihits” clustering 
procedure of INSPIIRED. We first appended the unique hits with sequence clusters of IS 
in repetitive elements (Additional file 2: Fig. S5) generated with this function at different 
sequence similarity thresholds. Looking at these results the top abundant insertion in 
CLB7 was now a sequence cluster in a repetitive element, differently from both the first 
(chr6_32848036) and the second (chr7_75504993) most abundant IS identified with IS-
Seq in Fig. 5. By simply adding reads mapping in repetitive elements to the one mapping 
in unique IS without clustering them by sequence similarity, we recovered more reads 
belonging to the second most abundant IS in chr7, 75,504,993 (Additional file  2: Fig. 
S6), but, in the process, the background noise of reads assigned to other positions also 
increased to levels that made the results completely detached from the ground truth. 
Most importantly, when running the multihits clustering procedure on other two clones, 
CLH6 and CL6, whose IS were validated as 2 and 1 unique hits respectively using both 
INSPIIRED and IS-Seq, we observed that this procedure generated additional repetitive 
sequence clusters with high abundance on top of the IS mapping in unique positions 
previously identified (Additional file  2: Fig.  S5). This led us to the conclusion that the 
multihits clustering procedure, did not allow detecting with higher efficiency the second 
IS of the CLB7 clone, while instead increased the background noise impairing our abil-
ity to assess real-world ground truth IS content in this and other clones. Based on these 
findings, we advocate that the results of the “multihits” clustering procedure of INSPI-
IRED should be used with caution in contexts where there is no formal way to assess a 
priori the IS content of a given specimen such as when analyzing clinical samples.

Overall, these results underscore that our wet-lab protocol combined with IS-Seq is 
at least as (if not more) accurate and efficient than INSPIIRED in the identification and 
quantification of IS from clones with known VCN.

Testing IS‑Seq performance to quantify clone‑specific IS upon dilution into polyclonal 

populations

In a clinical scenario where IS analysis is requested, samples would contain individual 
clones with dominant insertion sites mixed with a polyclonal population of cells with a 
diversity of viral integrations. To reproduce such a scenario in a controlled laboratory 
experiment, we generated serial dilutions of CL6 genomic DNA (gDNA) into a poly-
clonal population of bulk HL60 cells transduced with the same lentiviral vector con-
struct as shown in Fig. 6A. The goal of this experiment was to test the performance of 
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IS-Seq on quantifying the relative abundance of the CL6 insertion site and, secondar-
ily, to test the capacity of our pipeline to detect the other insertions contained in the 
polyclonal population with a resolution comparable to INSPIIRED. To this aim we per-
formed 3 independent dilution experiments where we applied our wet-lab protocol for 
insertion sites retrieval to either 250 ng (250 and 250rep in Table 3) or 500 ng (500 in 
Table 3) of gDNA as starting material. We then sequenced the relative libraries in 2 inde-
pendent sequencing runs (250 + 500 in the first run and 250rep alone in the second run). 
To identify the insertion sites, we again used either an adaptation of INSPIIRED or our 
IS-Seq pipeline and quantified the insertional abundance by means of MLE of fragment 

Fig. 6  A Schematic representation of the serial dilutions of CL6 (in blue) into the bulk polyclonal HL60 
population (scale of oranges and reds). B Linear regression of expected relative abundance values (in black) 
versus observed relative abundance values using either IS-Seq (in blue) or different iterations of the INSPIIRED 
pipeline (in grey). All abundance are measured with Maximum Likelihood Estimate of Fragment Lengths 
(MLE). Mean and errors are shown as dots and error bars. The full line show the linear correlation (slope 
value reported in bold) while dotted line the 95% confidence interval (min and max slope values reported 
in normal font). (SST = Sequence Similarity Threshold, IS = CL6 insertion site) C Same analysis performed 
on IS-Seq results generated with the Unique Molecular Identifiers (UMI) or Sequence reads quantification 
methods
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lengths. Because of the previous observation relative to the inefficiency of the default 
mapping parameters of INSPIIRED to detect the CL6 insertion, we run this pipeline 
using either 95%, 80% and 0% sequence similarity thresholds. The results are shown in 
Fig.  6B, where we plot the relative abundance of CL6 measured with either IS-Seq or 
INSPIIRED, and in Table 3 where we reported also the average MSE calculated against 
the expected values for each dilution experiment and the overall MSE per pipeline itera-
tion. When comparing the results of IS-Seq and INSPIIRED against the expected values 
we observed that at higher dilutions (less than 10% of CL6 insertion site content) as well 
as when only CL6 clone gDNA was used as input material (100% CL6 insertion site con-
tent) the two pipelines performed in a relatively comparable fashion. However, when we 
analyzed the 10%, 50% and 75% dilution series, we observed that IS-Seq clearly outper-
formed INSPIIRED in terms of accuracy of clone abundance estimation regardless of 
the sequence similarity thresholds used for the latter. As a result, the average MSE value 
of IS-Seq (123.5367) was lower than any of the 3 INSPIIRED iterations (2897.03 using 
the 95% threshold, 922.66 using the 80% threshold and 336.8333 using the 0% thresh-
old). Regarding the number of insertions detected in the polyclonal population, we could 
show that IS-Seq and INSPIIRED had comparable efficiency to detect insertions sites 
other than CL6 at all dilutions. Specifically, when comparing the 0% dilution data point 
(only HL60 polyclonal population used as input) using 500 ng as starting materials, we 
could observe that the overlap of IS detected in the two pipelines (using INSPIIRED 
with 0% sequence similarity threshold) was of 855 IS, with 140 IS and 155 IS detected 
respectively by the INSPIIRED or IS-Seq pipelines only (Additional file 2: Fig. S7). Over-
all, these data show that IS-Seq is at least as (if not more) efficient and accurate than 
INSPIIRED to estimate the contribution of a given clone in a mixed cell population as 
well as to identify and quantify viral integrations in a polyclonal population. However, 
this experiment highlighted some limitations of the IS abundance estimation system 
based on MLE of fragment lengths, particularly for what concerned the accuracy of the 
75% and 50% clonal dilutions estimation. For this reason, we implemented in our IS-Seq 
pipeline the UMI diversity abundance estimator and tested its performance in the same 
experimental conditions against the most widely used MLE of fragment lengths.

Testing the performance of IS abundance estimation using UMI diversity and comparison 

with MLE of fragment lengths

As reported above, the IS-Seq pipeline can retrieve and store information relative to 
the abundance of UMIs embedded in our linker cassette design (Figs.  2 and 3) and 
to use their diversity for IS abundance estimation. To test the performance of this 
quantification method in a controlled experiment, we first run IS-Seq to identify and 
quantify IS in the single cell clones above described, using the UMI abundance esti-
mation option (see “Methods” section). The relative abundance of the insertion sites 
of each clone as measured by UMI diversity is shown in Fig. 7 where we also report 
the abundance calculated using sequencing reads counts as a benchmark control. We 
then quantified the distance between observed and expected results and obtained the 
MSE values reported in Table 4. In the same table we also reported the results of the 
IS-Seq pipeline run on the same samples using the MLE of fragment length. The aver-
age MSE across all samples using the UMI-based abundance estimation was 50.15 
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which was substantially lower than the average MSE obtained using the MLE of frag-
ment lengths (138.69). Notably, in this scenario, the MSE obtained using the Read-
based abundance estimation (49.82) showed that this method also outperformed the 
MLE of fragment length and that it was in line with the accuracy of the UMI quanti-
fication system. We then applied the same approach to the serial dilution experiment 
described in the previous paragraph to assess the performance of the UMI-based ver-
sus MLE of fragment length using IS-Seq. The results, summarized in Table  5 and 
Fig. 6C, show that also in this scenario the UMI-based method outperformed the MLE 
of fragment length upon quantifying serial clonal dilutions when measuring distance 
from the expected value (average MSE 24.2 vs. 123.53 respectively). We specifically 

Fig. 7  Relative abundance of insertion sites (IS) detected in single cell clones using IS-Seq based on either 
Unique Molecular Identifiers (UMI) or Sequencing reads (reads). (VCN = vector copy number)
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observed that the relative quantification of the 75% and 50% dilutions datapoints sub-
stantially improved using UMI diversity as compared to what previously measured 
through the more widely used MLE of fragment length. We again noticed that in this 
experimental setting, the sequencing reads counts showed a quantification accuracy 
similar to the UMI-based method.

Because the IS-Seq pipeline uses IS abundance for certain data filtering steps 
including collision detection, some IS with low abundance might be filtered out in 
one method but not in the other, hence the total number of integrations obtained 
using different abundance estimation methods might vary slightly. As an additional 
control, to account for such differences we merged the datasets obtained using each 

Table 4  Mean square errors (MSE) calculated between the results of IS-Seq using different 
quantification methods and the expected relative abundance of the most abundant IS (main IS) 
detected for each clone

The average MSE for all the results of each pipeline iteration is reported in the second last row of the table, while the global 
MSE calculated for each IS-Seq quantification method is shown in the last row

MLE Maximum Likelihood Estimation, UMI Unique Molecular Identifiers

Sample name VCN Is-Seq reads 
(n = 2490)

Is-Seq UMI 
(n = 2490)

IS-Seq 
Fragment_MLE 
(n = 2326)

CL6 1 27.99 29.98 16.48

CLH4 5 3.09 3.12 2.9

MOI30CLB6 3 19.96 20.25 8.3

MOI30CLB7 2 94.98 92.91 722.53

MOI30CLC9 2 20.8 22.2 60.7

MOI30CLE1 2 0.26 0.19 12.24

MOI50CLB9 2 0.95 0.84 5.89

MOI50CLE6 2 100.69 98.83 28.39

MOI50CLH6 2 179.64 183.06 390.82

Average MSE 49.82 50.15 138.69

Table 5  Expected and observed contribution of the CL6 insertion site upon serial dilution into a 
bulk HL60 transduced polyclonal population, as measured by IS-Seq using different quantification 
methods

In the second last row is reported the Mean square error (MSE) between the results of each pipeline iteration and the 
expected relative abundance of the serial dilutions of CL6. The average MSE for all the results of each pipeline iteration is 
reported in the last row of the table

MLE Maximum Likelihood Estimation, UMI Unique Molecular Identifiers

Expected 
(%)

IS-Seq UMI IS-Seq reads IS-Seq Fragment_MLE

250
(n = 1808)

500
(n = 3513)

250rep
(n = 2712)

250
(n = 1808)

500
(n = 3513)

250rep
(n = 2712)

250
(n = 1793)

500
(n = 3463)

250rep
(n = 2792)

0 0.007 0.000 0.035 0.006 0.000 0.033 0.102 0.000 0.318

1 0.143 0.433 0.749 0.150 0.424 0.748 0.455 0.543 1.807

10 5.166 7.127 7.481 5.263 7.269 7.638 9.916 8.108 10.931

50 42.208 39.109 52.226 42.505 39.795 52.902 39.640 32.362 43.331

75 64.728 64.761 73.874 64.962 64.929 73.954 55.847 46.021 57.026

100 99.829 99.942 99.257 99.835 99.945 99.326 97.085 99.099 85.303

MSE 31.727 38.672 2.197 30.021 35.56 2.602 80.496 193 97.53

Average 
MSE

24.2 22.73 123.66
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method for each sequencing run and selected only the identical insertions across the 
three methods, so to compare the performance of the 3 quantification systems on 
equal numbers of integration sites. The results shown in Additional file 1: Tables S6, 
S7 confirm our previous findings and show that the UMI-based method has a better 
accuracy than MLE of fragment length upon quantifying serial clonal dilutions.

Assessing UMI distribution using experimental and simulated datasets

The results above described suggest that the UMI-based method might be superior to 
the MLE of fragment length for IS abundance estimation. However, questions remain 
about whether the UMI distribution as measured upon sequencing in our controlled 
experiments, was biased towards certain UMI and if this reflected an unbalanced start-
ing library or was instead most likely due to the expected effects of the uneven PCR 
amplification of vector-genome junctions. To address this point, we first tested the UMI 
distribution of each sequencing run against the uniform distribution. In order to exclude 
the effects of the different filtering steps of the IS-Seq pipeline, we artificially extracted 
the UMIs from the raw R2 FASTQ files using the GTA​AGG​ anchor sequence as ref-
erence, therefore measuring the initial UMI content. In Additional file 1: Table S8, we 
summarized the number of UMIs obtained in the three sequencing runs described in 
this study and calculated their relative entropy as described in the “Methods” section. 
Notably, despite different sequencing depths, we observed that the UMI diversity was 
very similar across multiple sequencing runs ranging from 21.788 to 22.263 entropy 
values.

When visually inspecting the frequency of the most abundant UMIs in each run, we 
could clearly observe that the distribution of UMIs was already not uniform ahead of all 
filtering steps of the IS-Seq pipeline (Additional file 2: Fig. S8, left panels). To formally 
prove this point, we generated for each dataset a uniform distribution by Bootstrapping 
using the unique UMI extracted from the R2 reads and setting their total number as 
the sample size base (see “Methods” section for more details). We then calculated the 
average frequency of all unique UMIs, the entropy of each bootstrapped sample data-
set and applied the Kolmogorov–Smirnov (K–S) to compare the observed UMI distribu-
tion with the uniform distribution (Additional file 2: Fig. S8, center panels). The results 
shown in Additional file 2: Fig. S8 (right panels) formally demonstrate that the distribu-
tion of UMIs is not uniform. To assess whether this uneven UMI distribution could be 
due to a preferential and consistent selection of certain UMIs as a result of unbalances in 
the linker cassette library, we measured the level of sharing of identical UMIs across the 
3 sequencing runs. Firstly, we could observe that only 10% of total detected UMI were 
detected in all runs (Additional file  2: Fig. S9). We then used the recapture of identi-
cal UMIs over these 3 sequencing experiments, which were run sequentially at different 
times, to estimate the total UMI population available for our experiments. By this calcu-
lation we could estimate that we had available a total of 14,816,860 different UMIs which 
correspond to approximately 88% of the maximum theoretical number of different UMI 
combinations (16,777,216, calculated as 4^12[combined length of the two random 6nt sequences flanking 

the 6nt anchor sequence]) (Additional file 2: Fig. S10). This finding is highly supportive of a very 
diverse repertoire of UMIs available in our library. To estimate whether the abundance 
of each UMI in our library could have influenced the abundance of UMI observed in our 
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datasets, we restricted the analyses of shared UMI to the top100 most abundant UMI 
detected in each sequencing run. The results shown in Additional file 2: Fig. S11 indi-
cates that the level of sharing of the most abundant UMI across the three independ-
ent runs is very low (only 2 UMIs are shared among the top 100 most abundant UMIs 
across the 2 of 3 datasets, but 0 UMIs are shared across 3 data sets), supporting again the 
notion that we started from a very diverse distribution of UMIs in the original library.

Lastly, we set to model the “real-world” data on UMI diversity described above, with 
in silico simulations to better underscore the effect of different PCR duplicate levels and 
UMI entropies on IS abundance quantification. Using the simulated data set with 100 
IS, we generated different data sets with one ground-truth IS serially diluted in other 
IS at 100%, 99%, 75%, 50%, 10%, 1%, 0% relative abundance, and tested different lev-
els of artificially created PCR duplicates and entropy levels of UMIs (Additional file 1: 
Table S9). As expected, decreasing UMI diversity creates deviations from the true value 
while decreasing PCR duplicates improved the performance of read-based quantifica-
tions. Notably, when we replicated the scenario of our “real-world” library, setting UMI 
entropy at 14.65927 (resulting from 88% of the UMI combinations available in the simu-
lated library), and modulating the levels of PCR duplicates to up to 200 max reads per 
IS, we could show that UMI is indeed more likely to outperform not only PCR reads, 
as expected, but also sonication fragment length abundance. Taken together, the results 
of our in  vitro and in silico analyses suggest that the library generated using the pro-
posed UMI configuration carries enough diversity to allow for an accurate evaluation of 
IS abundance in oligo- and poly-clonal experimental settings.

Discussion
We here described IS-Seq, a new computational pipeline for the identification and 
quantification of viral integration sites applicable to the study of preclinical and clinical 
samples. Our pipeline is designed to be used on the Illumina sequencing output from 
amplicon libraries generated with a specific set of primers and oligos described in the 
“Methods” section. However, we showed that it can be adapted to analyze data gener-
ated using the INSPIIRED protocol as well.

To test the performance of our pipeline, we designed a set of controlled experiments 
using single cell clones with known copy numbers and serial dilutions of an individual 
clone in a polyclonal population. The IS-Seq pipeline also performed efficiently on dif-
ferent in silico simulated scenarios for what concerns precision, recall sensitivity and 
specificity. However, we believe that the analysis of in  vitro generated datasets is the 
most appropriate when it comes to establishing the efficiency and accuracy of a pipeline 
for IS retrieval and quantification due to the following reasons: (1) differently from the 
use in silico generated datasets, such method allows testing the efficiency of the com-
putational pipeline in combination with the wet-lab procedure (e.g. efficiency of gDNA 
fragmentation, binding of the oligos, sequencing library preparation etc.); (2) differently 
from the use of plasmids designed to reproduce specific vector-genome junctions, it 
allows establishing the detection and quantification potential of a given pipeline when 
IS are in their natural genetic and epigenetic milieu (e.g. better for testing the reach of 
sonication-based gDNA fragmentation or oligos specificity); (3) as compared to other 
methods, it better reproduces a”real world” scenario for clonal quantification in that for 
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each cell used as input, the ratio between a given vector-genome junction and the rest of 
the cellular gDNA is identical.

Throughout this manuscript, we have compared the performance of IS-Seq against 
INSPIIRED in terms of detection of insertion sites and accurate quantification of their 
relative abundance, the latter pipeline being the most widely utilized and the most 
recently described. To this aim we had to adapt either the INSPIIRED or the IS-Seq 
pipeline to run on each other’s sequencing datasets. We recognize that this reduced our 
ability to ultimately demonstrate the superiority of one pipeline versus the other, and 
it should be noted that this was never the scope of such comparison, which is rather 
intended to show that both pipelines can achieve similar results. Still, in the process, we 
could highlight certain technical limitations of INSPIIRED when applied to our experi-
mental contexts. For example, we observed that the default configuration of sequence 
similarity within the BLAT algorithm used by INSPIIRED could be too stringent when 
applied to certain scenarios such as the one aimed at identifying insertions in immor-
talized single cell clones. It is possible that either the selective pressure of the single 
cell expansion or the nature of the genomic content of the HL60 cell line used in these 
experiments generates a certain degree of sequence divergency with respect to the refer-
ence human genome used for mapping, therefore making the 95% sequence similarity 
threshold too stringent to capture the CL6 insertion. Reducing this threshold alleviated 
the problem but, concomitantly, increased the amount of background “noise” insertions 
and substantially expanded the computational time of INSPIIRED (from 2–3 h with the 
95% threshold to 16 h with the 0% threshold). When applied to these scenarios, the BWA 
algorithm embedded in the IS-Seq pipeline seems to provide instead more flexibility for 
IS identification allowing relaxing detection parameters while maintaining the same run 
time (4 h on average).

While the IS-Seq pipeline retains information relative to sequencing reads mapping in 
non-unique genomic locations (e.g. repetitive elements), it does not embed them in the 
final tabular results. We are aware of approaches aimed at addressing these occurrences, 
for example trying to use sequence similarities among amplicons mapping in repetitive 
elements to consolidate into individual entities in the attempt to retain more information 
for clonal tracking purposes [29]. We reasoned that, if insertions into repetitive elements 
constitute an important fraction of the insertion sites pool of a given polyclonal popula-
tion, missing such events should impact our ability to appropriately quantify serial dilu-
tions of a clone with a known insertion site into a polyclonal cell pool. Specifically, this 
would result in an over-estimation of the relative abundance of the insertion site of the 
diluted clone because we would be missing in the denominator several integrations in 
repetitive elements belonging to our polyclonal population used as dilutant. On the con-
trary, our results from serial dilution experiments showed that we often tend to under-
estimate the contribution of our clone of interest with respect to the expected value. In 
addition, none of the clones with known copy number used in our first test contained 
insertions in repetitive elements that went missing upon the IS-Seq computational anal-
ysis. Indeed, we showed that when we appended reads belonging to putative IS collected 
using the “multihits” procedure of INSPIIRED to the reads mapping in unique genomic 
loci, the background noise reached levels that detached the results from the ground 
truth. These observations lead us to the consideration that, whenever the insertion site 
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retrieval is performed in controlled experimental settings (such as when we can appro-
priately predict the expected abundance of a given clone over a polyclonal population), 
the impact of such occurrences seems negligible, therefore we advise extreme caution 
when attempting to estimate the true contributions of insertions in repetitive elements 
in samples with unknown clonal composition (such as the ones obtained from patients 
undergoing gene therapy).

The methods for quantifying the abundance of integration sites have also been objects 
of debate. Because it is well known that sequencing reads counts could be affected by an 
uneven exponential amplification of vector-genome junctions during the wet-lab proto-
col used for insertion sites retrieval, most, if not all, current techniques for insertion sites 
quantification, now make use of fragment length diversity upon sonication of gDNA. We 
have previously discussed the theoretical relevance and limitations of such an approach 
[21] and we could put it to test here against the use of UMIs embedded in the linker cas-
sette. In all our experimental tests, the UMIs largely outperformed the MLE of fragment 
length, more accurately predicting the contribution of individual clones upon serial dilu-
tions. As predicted in our recent publication [15], when the starting material ranges 
from 250 to 500 ng (corresponding to approximately 38,700 and 77,400 human diploid 
genomes respectively), the available diversity of fragment lengths, even using MLE cal-
culations, is not sufficient to cover for the size of the cell pool composing a clone rep-
resented in large numbers over a polyclonal population. Proving this point, the MLE of 
fragment length largely underestimated the true clonal abundance of the 50% and 75% 
data points of our dilution experiments, while they became progressively more accurate 
at bigger clonal dilutions 10–1%. Considering that a 20–30% clonal contribution is nor-
mally used for defining a clonal expansion event of clinical relevance, it is important to 
make use of a method for IS abundance quantification that is as accurate as possible 
in tracking highly expanded clones. In our controlled experimental settings, the UMI-
based quantification approach embedded in the IS-Seq pipeline proved better than the 
fragment length, for estimating clonal contributions at different dilution levels including 
at the 50% and 75% single clone contents. In this regard, the analysis of UMI distribu-
tion in our datasets strongly suggest that our oligos configuration combined with the 
IS-Seq sequence processing provides enough UMI diversity and UMI detection accuracy 
to cover a wide range of clonal contributions, even when applied to the analysis of gDNA 
samples of the size of the average clinical material (250–500 ng).

Despite being an efficient tool for IS retrieval and quantification, the IS-Seq pipeline 
still has some inherent limitations. The current version of IS-Seq is implemented in 
Python and R, therefore it requires some proficiency in these languages for the initial 
setup of the pipeline and for running IS-Seq. Even though we added a “checkpoints” fea-
ture to streamline re-runs of the pipeline, we envisage that future versions of this pipe-
line would benefit from a user-friendly flowchart for keeping track of the entire process, 
for example, implementing workflow management systems such as Snakemake [30] or 
Nextflow [31]. Moreover, because of the filtering of collisions based on IS abundance, 
the output of IS-Seq is dynamic in nature and the absolute number of IS per sample 
can change slightly as new related datasets are added to the analysis, for example, when 
adding new timepoints from a patient follow up. Should one need to retrospectively 
report the results of an older ISA data freeze, they must make sure they have archived 
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separately the collision table output of each previous pipeline run. Lastly, because the 
scope of the manuscript is to evaluate the core function of our pipeline for the detection 
and quantification of insertion sites, we have not addressed here the implementation of a 
system for generating reports and downstream analysis of the output of IS-Seq. We spe-
cifically designed the format of the output matrixes so that they can be flexibly and easily 
used as input for further processing. In this regard, our team is using a process based on 
the R Markdown package that generates interactive html documents whose content is 
fully customizable with tables and figures and whose code and use is described in our 
GitHub repository (see “Methods” section).

Conclusions
In summary, we here described IS-Seq, a computationally efficient bioinformatics tool 
designed for viral insertion sites identification and quantification through different 
abundance estimation methods. We showed that IS-Seq performs as well as INSPIIRED, 
the current benchmark pipeline for IS identification, and we addressed the limitations 
of the methods currently used for quantifying IS abundance or for identifying bona fide 
integrations in repetitive elements. IS-Seq expands the toolbox available to researchers 
for the clonal tracking of vector-marked cells upon preclinical and clinical gene therapy.

Methods
Generation of single cell clones

To generate single cell clones for our experimental datasets, we made use of the HL60 cell 
line (source: ATCC, CCL-240™). On Day 0, HL60 cells were seeded at 1,000,000 cells/mL 
with IMDM in the presence of 20% FBS and 1% Pen/Strep in 6-well plates. HL60 WT 
cells were then transduced with a lentiviral vector encoding for the GFP marker gene 
at the following Multiplicity of Infection (MOI) of 5, 10, 20, 30 and 50. After 1 day the 
medium of the transduced HL60 cells was replaced with fresh IMDM and the cells were 
then kept in culture for 14 days. On Day 14, half of the transduced HL60 cells were pel-
leted and frozen to be analyzed by ddPCR for their average VCN. To generate single cell 
clones, we sorted the HL60 transduced cells using the SONY MA900 sorter. Briefly, cells 
were stained with DAPI (4′,6-diamidino-2-phenylindole) to discriminate between living 
and dead cells. A total of 192 cells with high GFP MFI (Mean Fluorescence Intensity) 
were sorted individually into two 96-well plates in 100 μL IMDM complete media. Cells 
were then cultured in 96-well plates and further expanded in 24-well plates for 27 days, 
after which time the resulting single cell clones were pelleted for molecular analyses. For 
the clonal dilution experiment, the gDNA from clone CL6 with average VCN = 1 was 
diluted into gDNA from the transduced polyclonal HL60 bulk population at different 
relative contributions (100%, 75%, 50%, 10%, 1% and 0%) for a total amount of starting 
material of either 250  ng or 500  ng, which was then used for insertion sites retrieval, 
sequencing and downstream analysis.

VCN evaluation by ddPCR

Genomic DNA (gDNA) isolation from single cell clones was performed using a QIAamp 
96 DNA QIAcube HT Kit (Qiagen). DNA concentrations were measured by Qubit™ 4 
Fluorometer (Life technologies) using Qubit® dsDNA BR (Broad-Range) Assay Kits (Life 
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Technologies). The VCN assay was performed by ddPCR using (1) Vector-specific oli-
gos designed on the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element 
(WPRE): [Forward: TTC​TGG​GAC​TTT​CGC​TTT​CC, Reverse: CCG​ACA​ACA​CCA​
CGG​AAT​TA, Probe: 5ʹ FAM/ATC​GCC​ACG​GCA​GAA​CTC​ATCG/3IABkFQ] and (2) 
oligos designed on the Glycosyltransferase-like domain-containing protein 1 (GTDC1) 
as human gene control [Forward: GAA​GTT​CAG​GTT​AAT​TAG​CTG​CTG​, Reverse: 
GGC​ACC​TTA​ACA​TTT​GGT​TCTG, Probe: 5ʹ HEX/ACG​AAC​TTC​TTG​GAG​TTG​
TTT​GCT​/3IABkFQ]. The ddPCR mix was prepared using 10 µL of ddPCR Supermix for 
Probes No dUTP (BioRad), reverse and forward primers and probes at final concentra-
tions of 100 uM, 30 ng of gDNA and nuclease-free water in a total volume of 20 µL. The 
mixes were then loaded into the DG8™ Cartridge, and droplets were generated auto-
matically with the QX200™ Droplet Generator. The emulsion was transferred to a PCR 
plate and cycled using the following thermal cycler conditions: Hold: 95 °C for 10 min, 
40 cycles at 95 °C for 30 s, 60 °C for 1 min, then enzyme deactivation 98 °C for 10 min 
and final hold at 4 °C. Data acquisition and analysis were performed using the QX200™ 
Droplet Reader and QuantaSoft™ Software (Biorad).

Generation of the simulated data set based on the IS‑Seq design

We developed a procedure to generate an in silico simulated dataset based on the 
FASTQ output of the IS-Seq wet-lab analytical pipeline. The generation of the simu-
lated datasets was based on the following steps: (1) we first set an integration site posi-
tion to define the ground truth (to this goal we used the chr19, 49,461,738,—strand 
position of the CL6 IS); (2) next we extracted a 3 kb DNA Fragment (chr19: 49,458,738 
_49461738) from the positive strand of the host reference genome (hg38ChrOnly.fa). 
Since this IS is in the negative strand, we took the reverse-complement of this 3 kb as 
the 3000_fragment input FASTA for the simulation; (3) to run the simulation we used 
the ART software [32] with the following settings: art_illumina -ss MSv3 -p -I 3000_frag-
ment.fa -l 250 -c 17,274,461 -m 1000 -s 300 -d “simulate” -o simulationUp_3000_Frag; 
(4) We next aligned the simulationUp_3000_Frag1.fq and simulationUp_3000_Frag2.
fq output files to the human genome (hg38ChrOnly.fa) using the following command: 
bwa mem2 -t 8 path/to/hg38ChrOnly.fa path/to/ simulationUp_3000_49461738_Frag1.
fq path/to/ simulationUp_3000_49461738_Frag2.fq > path/to/ UpFrag49461738R1_
R2_Barcode_FB-P5-Rd1-LTR.9_FB-P7-Rd2-LC.9_aligned_mem.sam; (5) To follow, we 
run sam2filterNo.R on path/to/ UpFrag49461738R1_R2_Barcode_FB-P5-Rd1-LTR.9_
FB-P7-Rd2-LC.9_aligned_mem.sam to get POOL-ISA-AVRO-6-Preclin_FB-P5-
Rd1-LTR.9_FB-P7-Rd2-LC.9_final_parse_filterNo.txt file; (6) Then, from the * 
final_parse_filterNo.txt file generated in step5, we obtained the read IDs that aligned to 
the chr19, 49,461,738,—strand position; (7) Using the read IDs identified in step6, we 
selected the reads that match to these IDs from the simulationUp_3000_Frag1.fq and 
simulationUp_3000_Frag2.fq files; (8) Based on the R1 reads selected in step7, we cre-
ated new R1 reads appending the IS-Seq Illumina adapter sequence, sample barcode, 
LTR to the 5ʹ end of R1 in the following order: Illumina adapter sequence(12nt) + sample 
barcode(8nt) + LTR(32nt) + R1.

Similarly, based on the R2 reads selected in step7, we created new R2 reads append-
ing the IS-Seq Illumina adapter sequence, sample barcode, LC1, UMI, LC2 to the 5ʹ end 
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of R2 in the following order: Illumina adapter sequence(12nt) + sample barcode(8nt) + 
LC1(29nt) + UMI(18nt) + LC2(20nt) + R2. Note The UMI sequence includes 6nt random 
sequence + 6nt anchor sequence + another 6nt random sequence.; (9) Lastly, we updated 
the read ID of these new R1 and R2 reads as “Mchr19-simulate34517884 1”, and saved 
these new R1 and R2 reads as simulationUp_R1.fq.gz and simulationUp_R2.fq.gz; (10) 
The *.fq.gz files generated in step9 were then used as input for running IS-Seq. The steps 
1–10 are used to obtain the reads in the form of LTR-host genome fragment junction for 
the 1, 5, 100 or 1000 integration sites we decided to set up as the ground truth. In order 
to measure the performance of IS-Seq on different simulated scenarios, we further intro-
duced mutations in the first genomic 50nt after the LTR with 10% reads of R1 reads and 
added 17,274,461 random reads as background noise to evaluate the ability of IS-Seq to 
discriminate true IS from random sequencing reads. To generate the dilution data set 
with one IS diluted at 100%, 99%, 75%, 50%, 10%, 1%, 0% relative abundance into other 
IS, using the simulated data set with 100 IS, we considered chr19_49461738_- as the true 
IS, and set different levels of PCR duplicates and UMI entropies to obtain different simu-
lation data sets. We then calculated the MSE between the relative abundance of different 
simulation scenarios versus the ground truth value artificially established. The results 
of these analyses are described in the “Results” section and shown in Additional files 1: 
Tables S4, S9 and 2: Fig. S2.

Adaptation of the INSPIIRED and IS‑Seq pipelines for comparative analysis

For running INSPIIRED on the IS-Seq datasets, we re-implemented 3 INSPIIRED key 
functions, namely demultiplex, trim_after_demultiplex and integration_site_calling. 
First, we tested our INSPIIRED implementation on the INSPIIRED data set from the 
relative GitHub repository. For this test, a user needs 3 input FASTQ files (*I1_001.fastq.
gz,*R1_001.fastq.gz, *R2_001.fastq.gz), one sample information file (sampleInfo.tsv), 
one parameter file (processingParams.tsv) and a vector sequence file (p746vector.fasta). 
*I1_001.fastq.gz contains the sample barcode index,

*R1_001.fastq.gz, *R2_001.fastq.gz include reads needed to be demultiplexed for all 
samples. *I1_001.fastq.gz is used as an input for demultiplex.R. The *I1_001.fastq.gz file 
is trimmed by trimTailw function in ShortRead R package based on the quality of reads, 
and further selected to keep reads with 12nt. The selected index reads are decoded using 
the decode function from Python, and the reads with the correct code are selected in the 
processGolayTest.py script. Then, the reads of each sample are demultiplexed to each 
sample by matching the read name in the index file with the read name of two FASTQ 
files. Sample information, parameter, vector sequence, and the location of demulti-
plexed FASTQ files are processed and stored into a completeMetadata file, and this file 
is also used as an input for the demultiplex.R function. After this step, the demultiplexed 
paired-end reads of each sample are used as input for the trim_after_demultiplex func-
tion for the steps of filtering R1 and R2 reads, matching R1 and R2 and aligning to host 
reference genome by blat under the parameter setting in the completeMetadata file. The 
aligned *R1.psl and *R2.psl files are then used as input for the integration_site_calling 
function to call IS. After finished calling IS, we use the allSites.rds file from the output 
files to get the fragment length count data. Lastly, these fragment counts are used to esti-
mate fragment MLE using the sonicLength R package.
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When we run our INSPIIRED implementation on the data set from IS-Seq, we 
started from the R1 and R2 FASTQ files (R1*fq_trimwithCutAdapt and R2* fq_trim-
withCutAdapt FASTQ files) that were already processed by the IS-Seq pipeline (after 
demultiplexing, trimming and filtering steps). R1*fq_trimwithCutAdapt and R2* 
fq_trimwithCutAdapt files are selected by matching read name with R1_R2_Bar-
code*_trimmedID (an output file from the IS-Seq pipeline) to generate R1*fq_trimwith-
CutAdapt_ReadyToAlignSort and R2*fq_trimwithCutAdapt_ReadyToAlignSort files. 
These *ReadyToAlignSort files are converted into FASTA files by fastq_to_fasta function 
from FASTX Toolkit. The converted R1*.fa and R2*.fa are then aligned to the host refer-
ence genome using BLAT to generate R1*.fa.psl and R2*.fa.psl files; all these steps are 
implemented in the FqToFa.R script. R1*ReadyToAlignSort and R2*ReadyToAlignSort 
are matched by read name to generate a keys.rds file by MakeKeys.R Script. The aligned 
R1*.fa.psl, R2*.fa.psl files and key.rds files are subsequently used as input for the script 
called PslToIs_one_replicate_change_sequence_similarity.R to call the IS. Due to the dif-
ferent oligo design, in the protocol for IS retrieval used for running INSPIIRED, the LTR 
sequence is on R2, while in the wet-lab protocol at the basis of IS-Seq the LTR is on R1. 
Therefore, in this step, we had to swap R1 with R2. We used R2*.fa.psl as R1.psl and 
R1*.fa.psl as R2.psl to call integration sites and abundance quantification with INSPI-
IRED. Other inputs for PslToIs_one_replicate_change_sequence_similarity.R include 
completeMetadata.RData, the user-defined output directory, which reference genome is 
to be used, sample index and sequence similarity threshold for filtering reads from the 
aligned *.psl files (for this manuscript we used 95%, 80% and 0% thresholds). Lastly, frag-
ments MLE are obtained by applying the sonicLength R package on the fragment length 
counts extracted from the allSites.rds output file. Because we discovered that for effi-
ciently detecting the CL6 insertion site INSPIIRED needed to be run at SST = 0%, for a 
fair comparison with our pipeline, and to give INSPIIRED a better chance, we also run 
IS-Seq with MAPQ = 0.

Conversely, to apply IS-Seq to the INSPIIRED dataset, we needed to convert the 
input file format of the INSPIIRED dataset to a format recognizable by IS-Seq. To this 
aim, we implemented the following procedures. We first converted the *I1_001.fastq.
gz, *R1_001.fastq.gz, *R2_001.fastq.gz files into R1_001.fastq and R2_001.fastq files. In 
this step, *I1_001.fastq.gz is selected by matching the read name in the correct decoded 
FASTA file (correctedI2-1.fasta), and the selected reads are matched with the reads in 
*R1_001.fastq.gz, *R2_001.fastq.gz files. To follow, we appended each sample barcode of 
the index file at the beginning of the related R1 and R2 reads. We then had to swap R1 
with R2 and vice versa, to account for the different orientation of the primers used on the 
INSPIIRED protocol. Therefore after appending the sample barcode, R2_001.fastq was 
outputted as R1.fq, and R1_001.fastq was outputted as R2.fq. Next, the barcode_LTR.fil 
and barcode_LC.fil files were generated based on the values of the bcSeq column of the 
sampleInfo.tsv file from the INSPIIRED Github repository (https://​github.​com/​Bushm​
anLab/​intSi​teCal​ler/​blob/​master/​testC​ases/​intSi​teVal​idati​on/​sampl​eInfo.​tsv). Then, we 
generated the LTR_lentiviral.fa combining the primer and ltrbit columns of sampleInfo.
tsv, the LC_completo.fa from the leftmost 19nt sequence of linkerSequence column in 
sampleInfo.tsv (the 4 replicates of each clone would share the same sequence, but dif-
ferent clones would have different LC_completo.fa sequence), the LC1brcd_ancora.fa 

https://github.com/BushmanLab/intSiteCaller/blob/master/testCases/intSiteValidation/sampleInfo.tsv
https://github.com/BushmanLab/intSiteCaller/blob/master/testCases/intSiteValidation/sampleInfo.tsv
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(as an empty file, since INSPIIRED has no anchor sequence embedded in the UMI) and 
the LC1brcd_last.fa from the rightmost 16nt sequence of the linkerSequence column 
in sampleInfo.tsv (all samples would have the same sequence). Lastly, we generated one 
association file for each clone and downloaded the hg18 as human genome reference as 
well as the vector sequence FASTA file and their bwa index files. After all these files had 
been generated, we could use them as input to run IS-Seq starting from the initial step of 
the pipeline.

Extracting UMI and checking UMI distribution using IS‑Seq

In the IS-Seq pipeline, we use UMI-tools [33] to process UMI tags. The UMI-based 
abundance estimation is based on these extracted UMI-tags. To check UMI distribu-
tion, we develop our own R script to extract the UMIs from R2.fq.gz file using the GTA​
AGG​ anchor sequence embedded in each UMI tag. When browsing for the 6nt anchor 
sequence to identify the UMI region on R2, we can occasionally get secondary hits 
matching to the human genomic region flanking the linker cassette. Therefore, IS-Seq 
selects the hit position with the highest match frequency and double checks that it cor-
responds to the expected position in R2 to extract the UMI sequence. We defined these 
matched UMI sequences as “right-matched” UMIs and used an entropy measurement 
to quantify the randomness of the distribution of these UMIs. The entropy is calculated 
using the following formula:

where X is the right-matched UMI set, x is one UMI in the UMI set and p(x) is the 
occurrence probability of x in the UMI set.

To generate a uniform UMI distribution for each data set and to compare it with the 
real UMI distribution, we first extracted the unique UMIs from the total right-matched 
UMIs. We then performed 100 Bootstrap sampling using the unique right-matched UMI 
and set the number of right-matched UMI as the base of sample size (note: for the sin-
gle clone and the 250rep dilution dataset, we used the number of right-matched UMI, 
but for the dilution dataset 250–500, we had to multiply by tenfold the number of right-
matched UMI to be used as sample size given that we would have ended up sampling 
5,069,672 UMIs from 4,180,988 UMIs, hence under-representing the UMI population). 
From the 100 bootstrapped samples, the average occurrence frequency of each unique 
right matched UMI was calculated and used as uniform distribution for the null hypoth-
esis. The entropy of each bootstrapped sample was also calculated and used as entropy 
distribution for the null hypothesis. Lastly, we used the Kolmogorov–Smirnov (K–S) test 
to compare data UMI distribution with the uniform UMI distribution.

To estimate the UMIs population size, we used data derived from the three independ-
ent sequencing runs generated for this manuscript chronologically ordered by date of 
sequencing as (1) dilution dataset 250–500, (2) single cell clone dataset and (3) dilution 
dataset 250rep. We then applied the capture-recapture method embedded in the Rcap-
ture R package [34, 35], and used the closedp.mX function to fit a loglinear model for 3 
capture occasions without including any interaction.

H(X) = −

x∈X

p(x) log p(x)
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Details, installation and use of the IS‑Seq pipeline

A detailed description of the IS-Seq pipeline is available at the following reposi-
tory https://​github.​com/​aiminy/​IS-​Seq-​pytho​n3 and includes a full tutorial on how to 
install and use this tool as well as all the necessary files and input templates. We cre-
ated a Docker image based on Python 3.9.12 and R 4.1.2 with all software, tools and R 
packages required to use IS-Seq to facilitate the setup of this pipeline for non-expert 
users. We also supplied a tutorial to show how to use IS-Seq on the simulated data set 
including 1 IS. In this manuscript we used BLAT to align R1 and R2 IS-Seq reads to the 
host reference genome when adapting for INSPIIRED, using the same BLAT parameters 
of INSPIIRED for consistency. In the IS-Seq pipeline, we supply an additional option, 
also based on BLAT, to allow the user to check how many reads align to a given vector 
sequence. The parameters used for this procedure are based on the standard configura-
tion of BLAT for identifying sequence match on the UCSC genome browser.
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script using different windows for IS merging. Datasets reported are a combination of the outputs of filterNo and 
filter60or filter60 only. Each dot in the plot represent a sample, vertical line indicates the 7bp window. Fig. S2. IS-Seq 
performance metrics based on Precision-Recall curve, ROC curveand correlation between expected abundance and 
estimated abundanceon simulated datasets with 100and 1000integration sites. Fig. S3. Frequency distribution of 
distances between INSPIIRED relative abundance readouts and 500 matrixes randomly generated from the IS-Seq 
relative abundance results. Fig. S4. Relative abundance of insertion sitesdetected in single cell clones using different 
pipelines and sequence similarity thresholdsbased on the Maximum Likelihood Estimate of fragment lengths.. Fig. 
S5. A) Relative abundance of MLE of fragment lenghts of IS collected from CLB7, CLH6 and CL6  using INSPIIRED 
combining unique hits and sequence clusters from the multihits at different sequence similarity thresholds. Fig. S6. 
A) Relative abundance of MLE of fragment lenghts of IS collected from CLB7 using INSPIIRED unique, multihits and a 
combination thereof at different sequence similarity thresholds. B)  Absolute abundance of the 2nd top IS detected 
in CLB7 using different SST and different INSPIIRED functions. Fig. S7. Sharing of identical insertions detected with 
INSPIIRED and IS-Seq in the HL60 polyclonal bulk population. Fig. S8. Left panels show the distribution of the 
top 100 most abundant UMIs reads counts observed in the 3 datasets object of this study. Each bar represents an 
individual UMI whose sequence is reported in the x-axis. Below each plot is reported the entropy value of the whole 
UMI population. The center panels show the same analysis performed on 100 a random subsamplingof UMIs as 
described in the main text. Range of entropy values is reported below each plot. The right panels show the global 
distribution of the observed UMIs countsversus the mean of the counts obtained with bootstrapping. Kolmogo-
rov–Smirnovtest results are shown below each plot. Fig. S9. Sharing of identical UMIs among the 3 datasets object 
of this study. Fig. S10. UMIs recapture over 3 independent sequencing runs chronologically ordered based on date 
of sequencing where 1=dilution dataset 1, 2= single cell clones dataset and 3= dilution dataset 2. The top panels 
show the number of units re-captured overtime while the bottom panel the number of new units captured at each 
sequencing run. Fig. S11. Sharing of identical UMIs among the most abundant top 100 UMIs detected in the 3 
datasets object of this study.

Additional file 3: Raw data relative to Tables 1-5, Figures 4-7, Supplementary Table S9 and Supplementary Fig-
ures S2, S4-S6.
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