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Abstract 

Uveal melanoma arises from stromal melanocytes and is the most prevalent primary 
intraocular tumor in adults. It poses a significant diagnostic and therapeutic chal-
lenge due to its high malignancy and early onset of metastases. In recent years, there 
has been a growing interest in the role of diverse immune cells in tumor cell devel-
opment and metastasis. Using The Cancer Genome Atlas and the gene expression 
omnibus databases, and the CIBERSORT method, we investigated the topography 
of intra-tumor immune infiltration in uveal melanoma in this research. We evaluated 
the prognosis of uveal melanoma patients using the M2 macrophage immune cell 
infiltration score in conjunction with clinical tumor patient data. We built a prog-
nostic model based on the distinctive genes of M2 macrophages and combined 
it with patients’ clinical data in the database; we ran a survival prognostic analysis 
to authenticate the model’s accuracy. The functional study revealed the importance 
of macrophage-associated genes in the development of uveal melanoma. Moreover, 
the reliability of our prediction model was verified by combining tumor mutational 
load, immune checkpoint, and drug sensitivity, respectively. Our study provides a refer-
ence for the follow-up study of uveal melanoma.
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Introduction
Uveal melanoma develops in the stroma’s melanocytes and is the most prevalent pri-
mary intraocular tumor in adults [1]. Up to 50% of patients with primary uveal mela-
noma eventually develop distant metastases. The preferred location for this extremely 
malignant tumor is the posterior pole of the eye. It is vulnerable to metastasis by the 
transmural stream, with a dismal prognosis for 85% of cases metastasizing to the liver. 
The median survival is reported to be 4–5 months [2]. Uveal melanoma can originate 
from melanocytes anywhere in the uveal tract. About 85–90% arise from the choroid, 
with the remainder confined to the iris or ciliary body [3]. Most uveal melanoma has 
metastasized by the time of detection, and the treatment of metastatic uveal melanoma 

*Correspondence:   
cdacscscs@qq.com

1 Department of Ophthalmology, 
Jian Yang Hospital of Traditional 
Chinese Medicine, Chengdu, 
Sichuan, China
2 Department of Ophthalmology, 
Hospital of Chengdu University 
of Traditional Chinese Medicine, 
Chengdu, Sichuan, China
3 Department of Andrology, 
Hospital of Chengdu University 
of Traditional Chinese Medicine, 
Sichuan, Chengdu, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05396-9&domain=pdf


Page 2 of 15Fu et al. BMC Bioinformatics          (2023) 24:280 

is now limited by the absence of a viable systemic medication. The tumor microenviron-
ment (TME) is crucial in the development, progression, metastasis, and recurrence of 
melanoma. Immune, inflammatory, endothelial, and mesenchymal cells are among the 
several non-tumor and stromal cell components present in uveal melanoma TME [4]. 
Previous studies have shown that pro-angiogenic tumor-associated macrophages (TAM) 
promote homing, extravasation, and metastasis to the liver in uveal melanoma [5].

Macrophages are involved in numerous homeostatic and disease processes in the 
body. With effector activities including phagocytosis, antigen presentation, and flexibil-
ity in the secretion of various signaling molecules, they serve as an efficient “firewall” in 
controlling homeostasis in the body [6]. In recent years, it has been found that there are 
two different cell polarization patterns of macrophages, the classical polarization path-
way and the alternative polarization pathway, resulting in pro-inflammatory M1-type 
macrophages and anti-inflammatory, pro-proliferative, and pro-tumor M2-type mac-
rophages [7]. The diverse immune cells’ identification in carcinogenesis and the inves-
tigation of diagnostics and therapy processes have received increasing attention due to 
tumor immunity research [8, 9].

The extensive use of second-generation sequencing technologies has increased the 
emphasis on genetic and molecular explanations and studies of tumor cell development 
[10–13]. This study explored the intra-tumor immune infiltration landscape in uveal 
melanoma using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases and the CIBERSORT algorithm. We evaluated the prognosis of uveal 
melanoma patients based on the M2 macrophage immune cell infiltration (ICI) score 
and clinical data from tumor patients, constructed a prognostic model by characterizing 
genes in M2 macrophages, and validated the accuracy of our predictive model by com-
bining tumor mutational load, immune checkpoints, and drug sensitivity, respectively. 
To provide a reference for the follow-up study of uveal melanoma.

Methods
Data retrieval and collation

Eighty uveal melanoma patients’ RNA sequence data and clinical characteristics were 
gathered from The Cancer Genome Atlas (TCGA) database, and these samples served 
as a training set. For validation, an independent cohort GSE22138 was selected from the 
Gene Expression Omnibus database (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/), which 
contains data from 63 uveal melanoma cases. The processing comprised downloading 
the raw data, annotating the probe, complementing missing values, and eliminating 
inter-P discrepancies. Two expert bioinformatics analysts handled the processing of this 
data.

Immune cell infiltration analysis

We applied the CiberSort algorithm to analyze the immune cell infiltration in 22 samples 
from each training set [14], Each tumor sample’s relative immune cell infiltration con-
tent was determined, and M2 macrophage infiltration data were collected to serve as the 
basis for the following study. Co-expression analysis was used to acquire the clinical data 
and M2 macrophage-related gene expression in uveal melanoma samples in the TCGA 
database, establishing the groundwork for the subsequent analysis.

https://www.ncbi.nlm.nih.gov/geo/
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Functional enrichment analysis

To identify the pathways of M2 macrophage-related genes, we performed functional 
enrichment analysis of GO, KEGG, and GSEA for M2 macrophage-related genes. Addi-
tionally, we used protein interaction network analysis to clarify the potential correlations 
between M2 macrophage-related genes and uveal melanoma to investigate the relation-
ships between these genes.

Build prognosis model

Single-factor Cox regression analysis was conducted in the training team to screen 
potential prognostic genes. In Cox regression analysis, significant (p < 0.05) genes were 
considered potential prognostic genes. The median risk score served as the dividing line 
between the low- and high-risk patient groups in the training queue.

Survival analysis

Survival differences between high and low-risk groups were analyzed by ROC analysis to 
assess the prognostic ability of genetic traits further. Combining the samples and doing 
independent survival analyses for different sexes and stages, we examined the model’s 
performance across various subgroups to further validate its predictive accuracy.

Survival analysis of clinical subgroups

By integrating the sub-permits of the clinical data, we grouped the clinical data of the 
sample. Further, we evaluated the predicted outcomes of the prognostic model amongst 
the various subgroups.

Progression free survival (PFS) analysis

Combining the pan-cancer clinical data from the TCGA database with the risk values of 
the samples we generated from our model, we further analyzed the progression-free sur-
vival disparities between high- and low-risk groups by dividing the median risk values 
into high- and low-risk groups.

GSEA functional enrichment analysis

GSEA functional enrichment analysis was performed by combining the risk value of 
each sample and the gene expression matrix in the samples. After filtering parameters 
were established, the more obvious pathways in the high and low-expression groups 
were chosen as the next phase in the study based on the pathways with differential 
expression between the high and low-risk groups in the results.

Immune checkpoint correlation analysis

We performed co-expression analysis by the immune checkpoint-related gene expres-
sion and the samples’ risk values to obtain immune checkpoint genes correlated with the 
samples’ risk.

Analysis of differences in tumor mutational load

Using the tumor mutation load data of the samples in the TCGA database, combined 
with the risk values of the samples, we analyzed the differences in mutation load in high 
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and low-risk groups, analyzed the mutation differences of modeled genes between high 
and low-risk groups, and further revealed the tumor mutation mechanism.

Drug sensitivity analysis

We assessed each sample for drug sensitivity in conjunction with the database’s data files 
on drug sensitivity, and we then included the sample’s risk values to compare the sensi-
tivity of high- and low-risk groups to various drugs.

Results
The detailed flow chart of our study is shown in Fig. 1.

Co‑expression analysis results

We performed immune cell infiltration analysis in 22 samples of each training set by the 
CiberSort algorithm, combined with the characteristic genes of M2 macrophages, fil-
tered by correlation coefficient and p-value (filtering condition of correlation coefficient 
of corFilter = 0.4, pFilter = 0.05 filtering condition for correlation test p-value). Briefly, 
20 M2 macrophage-related genes were obtained, and these genes’ expression in the sam-
ples was extracted for the subsequent analysis. The results are displayed in Fig. 2A, B. 
According to the co-expression network diagram, 18 genes are positively associated with 
M2 macrophages, and two are negatively associated with them. We separately extracted 
the seven target genes (CCL18, SIGLEC7, CD300LF, CAPG, LILRA4, SDS, and FAH-
D2CP) for the modeling application. The results are shown in Fig. 2C–I.

Functional enrichment analysis

We conducted GO and KEGG functional enrichment analysis on M2 macrophage-
related genes to determine the pathways of these genes. By GO enrichment analysis, 
we found that M2 macrophage-related genes were mainly enriched in the follow-
ing pathways (cellular response to interleukin-4; response to interleukin-4; cellular 
response to tumor necrosis factor; response to tumor necrosis factor; monocyte 
chemotaxis; regulation of pattern recognition receptor signaling pathway; inhibitory 
MHC class I receptor activity). These genes were then analyzed by KEGG enrich-
ment analysis and mainly enriched in the following pathways (Leukocyte transen-
dothelial migration; Serotonergic synapse; Osteoclast differentiation; Phagosome; 
Neutrophil extracellular trap formation; Glycosaminoglycan biosynthesis—heparan 

Fig. 1  Flow chart of the entire study
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sulfate/heparin; Collecting duct acid secretion), and the results are shown in 
Fig.  3A–D. Furthermore, protein interaction network analysis was used to clarify 
potential relationships between these genes. After setting the filtering conditions 
and filtering to individual nodes, a protein interaction network map consisting of 19 
nodes and 60 relationship pairs was obtained, and the results are shown in Fig. 3E, F.

Construction of prognostic models

We screened for possible prognostic genes using one-way Cox regression on sam-
ples from the training cohort in the TCGA database. Genes that showed signifi-
cance (p-value < 0.05) in Cox analysis were considered potential prognostic genes, 
and 12 prognosis-related genes were obtained by HR value and P-value screening. 
The results are displayed in Fig.  4A. Using multifactorial Cox regression analysis, 
we developed prediction models using seven target genes shared across samples in 
the TCGA and GEO databases. Moreover, risk values were obtained for each sample 
based on the prognostic models, dividing patients into low- and high-risk groups, 
using the median risk score as the cut-off point.

Fig. 2  Co-expression analysis results.  A, B Results of co-expression of M2 macrophages -related genes 
with M2 macrophages ,18 genes positively associated with M2 macrophages and 2 two genes negatively 
associated with M2 macrophages. C–I represents the results of co-expression of 7 target genes (CCL18, 
SIGLEC7, CD300LF, CAPG, LILRA4, SDS, and FAHD2CP) with M2 macrophages
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Survival analysis

Combining each sample’s risk value and clinical data in our constructed model, we per-
formed a survival analysis, and from the results, we can see that the survival time of 
patients in the training and validation groups is significantly different between the high 
and low-risk groups. Moreover, it can be observed that our constructed model has a 
good role in survival prognosis. The results are shown in Fig. 4B, C. To further verify 
the accuracy of the model prediction, we performed independent prognostic analysis by 

Fig. 3  The result of functional enrichment analysis.  A, B GO function enrichment analysis results. From 
outside to inside, the first circle represents the ID of the GO, the second circle represents the number of 
genes on each GO, the color of the second circle represents the significance of the enrichment, the redder 
the color means the more significant the enrichment, the third circle represents the number of co-expressed 
genes, and the fourth circle represents the heat ratio of genes. C, D KEGG function enrichment analysis 
results. The color of the bar graph represents the P-value, the color change from light to dark means that the 
P-value becomes larger gradually, and the size of the endpoints represents the number of genes enriched 
in the pathway, the larger the endpoints the greater the number of enriched genes. E Protein protein 
interaction network, Protein interaction network results. The nodes represent genes, and the line between 
nodes indicates that two genes have protein interactions with each other. F Statistics of the number of 
protein interactions
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grouping the samples into different sexes and stages respectively, and the risk values of 
our prognostic model have good prediction results in both univariate and multifactorial 
prognostic analysis, and the p-values are less than 0.01. survival analysis, the results are 
shown in Fig. 4D. To validate the accuracy of model predictions further, we assessed the 
accuracy of our model across multiple groups by separating the samples and perform-
ing survival analysis individually for different sexes and different stages. The outcomes 
are depicted in Fig. 4E. We further demonstrated the prediction accuracy of the predic-
tion model at survival times of 1-, 3-, and 5-years by using ROC and risk curves, where 
the area under the ROC curve was (AUC at 1 year: 0.769; AUC at 3 years: 0.872; AUC 
at 5 years: 0.847), respectively. The results are shown in Fig. 4F, G. The risk curve shows 
that the number of deaths is higher in high-risk patients than in low-risk. The results are 
shown in Fig. 4H–J.

Survival analysis of clinical subgroups

We grouped the sample’s clinical data and compared the prognostic model’s prediction 
results between the different subgroups by combining the sub permits of the clinical 
data. There are considerable disparities in survival between high- and low-risk sub-
groups of gender, grade, and T, M staging. The results are shown in Fig. 5A–D.

PFS analysis

Combining the clinical data of pan-cancer in the TCGA database and the risk values 
of the samples obtained by our model construction, we further compared the survival 

Figs. 4  A Genes associated with prognosis obtained by univariate Cox regression analysis, Red means HR 
value is greater than 1, green means HR value is less than 1. B, C Survival curves. As survival time increased, 
the survival rate of the high-risk group was significantly lower than that of the low-risk group, B is the training 
set with data from the TCGA database and C is the training set with data from the GEO database. D, E The 
forest plots for single and multi-factor were significantly different only for risk values with p-values less than 
0.05. F, G ROC curves. F ROC curve of survival time, ROC curve of clinical data. H, I Risk curves. The number of 
deaths is higher in high-risk patients than in low-risk. J The heatmap of risk scores. CCL18, SIGLEC7, CD300LF, 
CAPG, LILRA4, SDS are high-risk genes, FAHD2CP is low-risk gene
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differences between the high and low-risk groups in progression-free survival status 
by dividing them into high and low groups by the median of risk values. According to 
the results of our model grouping, there is a substantial difference in progression-free 
survival between the high and low-risk groups regarding survival time. The results are 
shown in Fig. 5E.

GSEA functional enrichment analysis

The GSEA functional enrichment analysis was performed by combining the risk 
value of each sample and the gene expression matrix in the samples. Moreover, the 
pathways that were significantly expressed in the high-risk group were as follows: 
(GOBP_B_CELL_MEDIATED_IMMUNITY; GOBP_LYMPHOCYTE_MEDIATED_
IMMUNITY; GOCC_IMMUNOGLOBULIN_COMPLEX; GOCC_T_CELL_RECEP-
TOR_COMPLEX; GOMF_ANTIGEN_BINDING) and the pathways that were 
significantly expressed in the low-risk group were (GOBP_DETECTION_OF_ABI-
OTIC_STIMULUS; GOBP_DETECTION_OF_LIGHT_STIMULUS; GOCC_9PLUS0_
NON_MOTILE_CILIUM; GOCC_PHOTORECEPTOR_INNER_SEGMENT; 
GOCC_PHOTORECEPTOR_OUTER_SEGMENT), and the results are shown in 
Fig. 6A, B.

Figs. 5  Survival analysis of clinical subgroups.  A–D Results of survival analysis between high and low risk 
groups by gender, stage, T-stage and M-stage. E Results of PFS analysis, Results of progression-free survival 
were significantly different between high and low risk groups
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Immune cell correlation analysis

We obtained the strength of correlation with different target genes by co-expression 
analysis of immune cells with modeling target genes, respectively, and the results are 
shown in Fig. 6C.

Immune checkpoint correlation analysis

Co-expression analysis of the expression of immune checkpoint-related genes and 
the risk value of the sample yielded immune checkpoint genes correlated with the 
risk of the sample. It is possible to see the degree of the association between immune 
cells and the risk value derived from the model development, with HAVCR2 having 
the strongest correlation with the risk value. The results are shown in Fig. 6D.

Figs. 6  A, B Results of GSEA functional module analysis. The peak of the curve at the top indicates pathways 
that are clearly expressed in the high-risk group, and the peak of the curve at the bottom indicates pathways 
that are clearly expressed in the low-risk group. C Immune cell correlation analysis. The redder the color, 
the stronger the correlation. D Immune checkpoint correlation analysis. The expression of HAVCR2 had 
the strongest correlation with the value at risk. E–G Waterfall plot of tumor mutation load, the mutation 
frequency of the target genes we obtained is higher in the high risk group than in the low risk group
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Analysis of differences in tumor mutation load

By using the tumor mutation load data of the samples in the TCGA database, com-
bined with the risk values of the samples, we analyzed the differences in mutation 
load in the high and low-risk groups. Furthermore, we analyzed the mutation dif-
ferences of the modeled genes between the high and low-risk groups, and from the 
results, it can be observed that the mutation frequency of the target genes is higher 
in the high-risk group than in the low-risk group. The results are shown in Fig. 6E–G.

Drug sensitivity analysis

We scored each sample’s drug sensitivity in conjunction with the database’s data file 
on drug sensitivity, and then, in conjunction with each sample’s risk value, we ana-
lyzed the sensitivity of high-risk and low-risk groups to various drugs. By screening 
the results and removing any without differences, we were left with the data for nine 
drugs with different drug sensitivity results in high- and low-risk groups. The results 
are shown in Fig. 7A–I.

Fig. 7  The results of drug sensitivity analysis. A–I Results of differences in drug sensitivity of 9 drugs in high 
and low risk groups, where Topotecan, Daporinad, Mirin, AZ6102, Carmustine and Wnt-C59 have a greater 
sensitivity score in the high-risk group than in the low-risk group, and WIKI4, Venetoclax, ABT737 have a 
smaller sensitivity score in the high-risk group than in the low-risk group
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Discussion
Uveal melanoma is a malignant tumor in the uvea’s melanocytes. It is the most com-
mon, and despite new treatments, the prognosis remains poor, with up to 50% of 
patients developing metastases without effective treatment options [15]. Unlike cuta-
neous melanoma, uveal melanoma is considered an “immune escape” tumor [16], 
because of its low mutation burden and unique immunosuppressive microenviron-
ment [17]. Advanced cancers still have few therapy options available today. Immu-
notherapies provide hope for effectively managing many advanced diseases, but their 
therapeutic efficacy is suboptimal and greatly varies across individuals. Tumor-asso-
ciated macrophages (TAMs) are a major component of the tumor microenvironment 
(TME) [6], this condition is usually associated with poor prognosis and treatment 
resistance (including immunotherapy) [18, 19], Therefore, a deeper comprehen-
sion of the intricate function of tumor macrophages in immunotherapy control may 
offer fresh perspectives on TME and lead to additional research into immunotherapy 
for advanced tumors. This study explored intra-tumor immune infiltration in uveal 
melanoma using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases and the CIBERSORT algorithm [17, 18].

With the recent progress and wide application of second-generation sequencing 
(NGS) technology, more transcriptomic data of tumor tissues are rapidly accumu-
lated. TCGA and GEO databases are the most applied public databases containing 
transcriptional data of various tumor tissues [20]. This makes it possible to analyze 
the outcomes of immune cell infiltration in tumor tissues using a significant amount 
of transcriptional data and additional comparative analyses. This substantially simpli-
fies the technique of relying exclusively on tissue section staining, whether by tran-
scriptome sequencing findings or by further obtaining the results of immune cell 
infiltration analysis in target tumor tissues from single-cell RNA sequencing (scRNA-
seq) data in different cancer settings. There are currently recognized methods for cal-
culating immune cell infiltration in the following collections, including CIBERSORT 
[21], ESTIMATE [22], quanTIseq [23], TIMER [24], IPS [25], MCPCounter [26], 
xCell [27] and EPIC [28]. CIBERSORT is the most recognized method for detecting 
22 immune cells in TME, which can analyze cell biomarkers and therapeutic targets 
in RNA mixtures on a large scale with high accuracy. In addition to obtaining the 
relationship between immune cell infiltration and patient prognosis from the macro 
level, different types of immune cell infiltration can also be thoroughly understood 
about tumor growth and invasion from the micro level by using the CIBERSORT cal-
culation method to obtain the results of immune cell infiltration in tumor tissue and 
then conducting joint analysis on clinical data of patients in the TCGA database. To 
provide research directions for finding better immune targets and therapeutic drugs. 
Applying the CIBERSORT algorithm to analyze the immune infiltration of tumor tis-
sues in the TCGA database, the infiltration scores of various immune cells in renal 
clear cell carcinoma were obtained, and the immune cell types related to prognosis 
were obtained. Moreover, the infiltration scores of immune cells in other tissues, such 
as head and neck squamous cell carcinoma, gastric cancer, and other tumors [29–31]. 
Particularly the infiltration of M2 macrophages was studied about tumor growth and 
invasion; this provides a reference for our research [32–34].
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We evaluated the uveal melanoma patients’ prognosis by M2 macrophage immune 
cell-related genes combined with tumor patients’ clinical data. We built a prognostic 
model by M2 macrophage signature genes, with CCL18, SIGLEC7, CD300LF, CAPG, 
LILRA4, SDS, and FAHD2CP as the final modeled genes as our study focus. CCL18 
(C-C Motif Chemokine Ligand 18), Tumor-associated macrophages (TAMs) are vital 
in the malignant tumors’ development. Studies have shown that TAMs promote uveal 
melanoma metastasis by secreting CCL18 35. This chemokine attracts naive T lympho-
cytes to activated macrophages in dendritic cells and lymph nodes. It may play a role 
in humoral and cell-mediated immune responses [36]. In the presence of chemokines, 
the cellular interference mechanism between pericytes and uveal melanoma is more 
prominent, resulting in the conversion of pericytes into activated fibroblasts and lay-
ing the groundwork for the metastatic spread of tumor cells and fibrosis development 
[37]. SIGLEC7 (Sialic Acid Binding Ig Like Lectin 7), whose main relevant pathways 
include the natural immune system and class I MHC-mediated antigen processing 
and presentation [38]. Recent use of Siglec-7 as a therapeutic target for glyco-immune 
checkpoint and T-cell driven diseases and cancers [39]. CD300LF (CD300 Molecule 
Like Family Member F), the gene encodes a member of the CD300 protein family. 
Members of this family are cell surface glycoproteins with a single IgV-like extra-
cellular structural domain that regulates immune response and leukocyte functions 
like activation, proliferation, differentiation, migration, and immune function. They 
are considered potential targets for studying the development and progression of 
inflammation, infection, and other diseases [40]. CAPG (Capping Actin Protein and 
Gelsolin Like) This gene encodes a member of the actin regulatory protein gelatin/
vimentin family. The encoded protein reversibly blocks the ends of actin filaments in 
a Ca2+ and phosphatidylinositol-regulated manner [41]. Cells and tissues from diffuse 
large B-cell lymphoma expressed CAPG at high levels. CAPG enhances the prolif-
eration and invasion of diffuse large B-cell lymphoma cells, inhibits apoptosis, and 
activates the PI3K/AKT signaling pathway [42]. LILRA4 (Leukocyte Immunoglobulin 
Like Receptor A4) is a gene encoding an immunoglobulin-like cell surface protein, 
is expressed primarily on plasmacytoid dendritic cells (PDCs), and regulates these 
cells’ function in the immune response [43, 44]. SDS (Serine Dehydratase), This gene 
encodes one of three enzymes involved in the metabolism of serine and glycine. l-Ser-
ine dehydratase converts L-serine to pyruvate and ammonia and requires pyridoxal 
phosphate as a cofactor [45]. FAHD2CP (Fumarylacetoacetate Hydrolase Domain 
Containing 2 C), widespread expression in human testis and brain tissues. Expressed 
also in gastric cancer tissues in transcriptome sequencing [46]. The functional 
enrichment analysis shows that, based on GO enrichment analysis, we found that 
M2 macrophage-related genes are mainly enriched in the following pathways (cel-
lular response to interleukin-4; cellular response to tumor necrosis factor; response 
to tumor necrosis factors; monocyte chemotaxis; regulation of pattern recognition 
receptor signaling pathways; inhibitory MHC class I receptor activity), and by KEGG 
enrichment analysis, we found that these genes were mainly enriched in the following 
pathways (Leukocyte transendothelial migration; Serotonergic synapse; Osteoclast 
differentiation; Phagosome; Neutrophil extracellular trap formation; Glycosamino-
glycan biosynthesis—heparan sulfate/heparin; Collecting duct acid secretion). The 
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enrichment results of these genes focus on the aggregation of monocyte macrophages 
and pathways like polarization, and interleukin 4 is the cytokine most typically used 
to induce monocyte-macrophage polarization to M2-type macrophages in vitro [47, 
48]. For monocyte chemotaxis 49–51; the regulatory pathway of pattern recognition 
receptor signaling pathway also indicates the chemotaxis generated by tumor cells in 
the body, recruiting monocyte macrophages in the immune system to further play a 
role in tumorigenesis development. Prior research has shown that the number and 
complexity of tumor trophoblast vessels can predict tumor growth rate and invasive 
metastasis, determining the tumor patient’s prognosis [52, 53], M2-type macrophages 
have a tumor-promoting angiogenic function, and tumor-associated macrophages 
and their cytokines appear responsible for increased tumor aggressiveness [54, 55]. 
The tumor-favorable and angiogenesis-promoting effects are directly attributable to 
the M2-dominated tumor microenvironment, suggesting a plausible mechanism for 
the tumor-promoting actions of M2-type macrophages. We established a prognostic 
model by these macrophage-associated target genes and tested the model’s reliabil-
ity by survival analysis. Through multiple functional analyses, the potential functions 
of these genes in the development of uveal melanoma were identified, setting the 
groundwork for future research.

Conclusions
In this study, we explored the intra-tumor immune infiltration in uveal melanoma by 
the CIBERSORT algorithm by analyzing the sequencing results of uveal melanoma 
from TCGA and GEO public databases. We assessed the prognosis of uveal mela-
noma patients by the M2 macrophage immune cell infiltration (ICI) score, built a 
prognostic model by the characteristic genes of M2 macrophages, investigated the 
pathways of action of these characteristic macrophage genes by functional analysis, 
and validated our prediction by combining tumor mutational load, immune check-
point, and drug sensitivity, respectively. Combining tumor mutational load, immu-
nological checkpoint, and drug sensitivity confirmed the validity of our model, which 
serves as a benchmark for future research on uveal melanoma and immunotherapy.
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