
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Newton et al. BMC Bioinformatics          (2023) 24:292  
https://doi.org/10.1186/s12859-023-05397-8

BMC Bioinformatics

A pipeline for the retrieval and extraction 
of domain‑specific information with application 
to COVID‑19 immune signatures
Adam J. H. Newton1,2,3,4, David Chartash2,3,5, Steven H. Kleinstein4,6,7 and Robert A. McDougal2,3,7* 

Abstract 

Background:  The accelerating pace of biomedical publication has made it impractical 
to manually, systematically identify papers containing specific information and extract 
this information. This is especially challenging when the information itself resides 
beyond titles or abstracts. For emerging science, with a limited set of known papers 
of interest and an incomplete information model, this is of pressing concern. A timely 
example in retrospect is the identification of immune signatures (coherent sets of bio-
markers) driving differential SARS-CoV-2 infection outcomes.

Implementation:  We built a classifier to identify papers containing domain-specific 
information from the document embeddings of the title and abstract. To train this 
classifier with limited data, we developed an iterative process leveraging pre-trained 
SPECTER document embeddings, SVM classifiers and web-enabled expert review 
to iteratively augment the training set. This training set was then used to create a clas-
sifier to identify papers containing domain-specific information. Finally, information 
was extracted from these papers through a semi-automated system that directly solic-
ited the paper authors to respond via a web-based form.

Results:  We demonstrate a classifier that retrieves papers with human COVID-19 
immune signatures with a positive predictive value of 86%. The type of immune signa-
ture (e.g., gene expression vs. other types of profiling) was also identified with a posi-
tive predictive value of 74%. Semi-automated queries to the corresponding authors 
of these publications requesting signature information achieved a 31% response rate.

Conclusions:  Our results demonstrate the efficacy of using a SVM classifier with docu-
ment embeddings of the title and abstract, to retrieve papers with domain-specific 
information, even when that information is rarely present in the abstract. Targeted 
author engagement based on classifier predictions offers a promising pathway to build 
a semi-structured representation of such information. Through this approach, par-
tially automated literature mining can help rapidly create semi-structured knowledge 
repositories for automatic analysis of emerging health threats.
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Introduction
The rapid growth in scientific publications  [1] presents a challenge for researchers 
to seeking a comprehensive understanding of the literature. This challenge is of par-
ticular importance in emerging disciplines and domains without existing comprehen-
sive reviews or widely accepted frameworks for representing the field. The COVID-19 
pandemic is one such example of an emerging publication phenomenon. While 
machine learning has provided many solutions for search problems related to infor-
mation retrieval (IR)  [2], application of IR to specific scientific domains remains an 
active area of research  [3, 4]. Researchers have leveraged search engines to retrieve 
relevant literature, with keywords searches [5] or alerts [6], but these approaches usu-
ally require substantial further refinement.

Once relevant sources have been retrieved, information has to be obtained from 
the text. For some domains, machine consumable structures make specific data types 
trivial to extract, e.g. genes [7] and proteins [8], however integrating this information 
with a more comprehensive data model remains challenging. There are many methods 
to obtain salient information from identified sources, including; manual curation e.g. 
HIPC  [5], rule-based semi-automated extraction of metadata from an abstract, e.g. 
the metadata suggestions for ModelDB [9], and PICO (population, intervention, con-
trol, and outcomes) extraction  [10], which tags words related to the PICO elements 
in randomized control trials. Given the novelty of the scientific domain of COVID-19 
research, it is difficult to known what information characterizes this subfield and how 
it will be presented in the paper. Thus, a semi-automated human in the loop approach 
facilitates a solution.

COVID-19 may affect the human immune system in different ways. These effects—
which could be at the level of changes of gene expression, of proteins, of metabolites, 
of antibodies, etc.—may vary by population (e.g. young vs old), disease severity (e.g. 
mild vs severe), etc, with each pattern of effects constituting an immune signature 
for the disease. For some diseases (e.g. cervical cancer [11]), immune signatures have 
shown potential as predictors of survival or other clinical outcomes. Unfortunately, 
identifying papers containing human immune signatures and locating those immune 
signatures within publications is non-trivial. Immune signatures can appear in the 
text, figures or tables, with dozens of distinct signatures in a single publication, and 
may not be presented as the principle finding.

We developed a semi-automated pipeline (Fig.  1), which utilized human-in-the-
loop learning. As part of this pipeline we have created and validated a literature 
classifier that uses the abstracts and titles to retrieve papers likely to contain human 
COVID-19 immune signatures from a corpus of scientific literature. The pipeline then 
uses author solicitation: authors were asked to fill out a structured form describing 
the immune signature(s) in their papers. Author-supplied signatures from over thirty 
such papers are available on our website at covid-signatures.org [12].
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Fig. 1  Pipeline for semi-automated curation of COVID-19 immune signatures. Data acquisition utilized 
CORD-19 which required prepossessing; including substantially filtering of the dataset and removing 
duplicate entries. Triage divides the articles into one of 3 relevant (“Type A”, “Type B” and “Type C”) or 2 
not-relevant (“review article” and “no signature”) classes, which are then used to build a classifier to provide 
further articles for triage as well as directly for solicitation. Solicitation is done in a semi-automated fashion 
using an email template and an online form for the author to complete. After solicitation the information is 
made available via covid-​signa​tures.​org.

https://covid-signatures.org
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Implementation
Generic online platform

We developed a general purpose online literature review, author solicitation, and 
information sharing. The platform is powered by the Django web framework [13] for 
templating and user management, MongoDB database backend [14], Bootstrap [15] 
for layout, and jQuery [16] for streamlined scripting (Fig. 1). The pipeline keeps track 
of timestamps, change history, and associated user IDs for auditing and error recov-
ery. Visitor privacy is respected by not sending cookies or other tracking mechanisms 
to non-logged in users, while authentication status is preserve across page loads using 
cookies. This generic platform is freely available at [17].

Software architecture

The pipeline is powered by Django, a web framework that handles templating and user 
management, and MongoDB, a database backend for efficient data storage. Front-end 
components, such as Bootstrap and jQuery, enhance the user interface and facilitate 
streamlined scripting. The architecture includes modules for triage and solicitation, 
which are crucial components of the system. The modular architecture of the pipeline 
project enables flexibility, maintainability, and scalability.

The triage module focuses on effectively managing the document triaging process. 
It incorporates features such as document queues, review stages, and status track-
ing. By leveraging MongoDB, the module ensures access to document information 
and supports efficient retrieval and updating of metadata. The solicitation module 
enables communication and feedback collection from authors. It provides a form 
with a unique URL for each entry in the database, allowing authors to submit details 
of immune signatures in their papers. The solicitation module ensures secure and 
accountable data entry, with the entered data stored in the database and logged for 
auditing purposes.

COVID‑19 immune signature pipeline

To adapt the generic platform for COVID-19 immune signatures, a JSON-encoded 
configuration file was used to specify database details, paper categories, explanatory 
text, data solicitation forms, email templates, etc  (see Additional File 1). This semi-
automated pipeline consists of several stages (Fig. 1). (1) Data acquisition. (2) Pre-pro-
cessing to remove duplicates and identify papers for review or solicitation. (3) Review 
of papers by experts to identify papers for solicitation and build a labeled dataset. 
(4) Solicitation, contacting authors for immune signatures. (5) Initial entry, authors 
provide immune signatures via an online form. (6) Data dissemination, immune sig-
natures are published online.

Data acquisition

For interoperability with other COVID-19 literature analysis efforts through the use 
of shared identifiers, we leveraged the Allen Institute’s COVID-19 Open Research 
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Dataset (CORD-19) [18]. CORD-19 provides a corpus with clear information retrieval 
benchmarks (see TREC-COVID challenge [4, 19, 20]), standardized machine readable 
data and SPECTER document embedding of each title and abstract [21].

CORD-19 is regularly updated (often weekly); we use these updates to add new papers 
to our pipeline. The results presented here are base on the 8th November 2021 release of 
CORD-19.

Pre‑processing

To ensure the quality and relevance of the dataset for COVID-19 immune signatures, 
we performed extensive pre-processing by applying filters and removing duplicates. To 
focus on primary sources that could contain COVID-19 immune signatures, we filtered 
this dataset to exclude:

•	 PubMed papers with “Comment”, “Review”, “Editorial”, or “News” article type.
•	 Papers from journals whose journal title includes “rev” as a whole word or as the 

start of a word to avoid review journals.
•	 Papers published before December 1, 2019.
•	 Papers that do not explicitly mention “COVID” or a related term (e.g. “2019-nCoV”) 

in the paper title or abstract.

Duplicate and near duplicate papers frequently end up in the corpus due to the pres-
ence of papers released on preprint services before their formal publication in a journal. 
The CORD-19 Unique Identifier is linked to a conceptual document, which may include 
multiple versions of the manuscript. Using the SPECTER embedding, we identified near-
duplicate papers by grouping documents within a certain proximity. By experimenting 
with a 30-unit threshold in the SPECTER embedding space, we effectively excluded 
most duplicates while retaining distinct articles. For each group of papers, only the most 
recently released paper was used for further analysis. It is worth noting that some near 
duplicates may have missing metadata for one duplicate, resulting in discrepancies in 
processing. For this reason, we also remove entries with near duplicates in our excluded 
set.

We developed a two-stage Support Vector Machine (SVM) based classifier to deter-
mine the presence and then the type of immune signature for the filtered CORD-19 lit-
erature. For the first stage, the SVM model (polynomial kernel of degree 4) simply seeks 
to determine if a paper contains an immune signature or not; this SVM was trained by 
grouping the three immune signature classes into one super class (signature present) 
and the “review article” and “no signature” classes into another super class (signature not 
present). A second SVM model (polynomial kernel degree 5), trained on only the papers 
confirmed by our expert reviewers to contain a COVID-19 immune signature, was used 
to predict the type of immune signature that would be present for those papers predicted 
by the first classifier to contain an immune signature. Probabilities were obtained from 
the SVM classifiers using Platt scaling [22]. Feature vectors are used by SVMs to con-
struct a decision boundary; we used the SPECTER embeddings [21] (768-dimensional 
feature vectors). SPECTER utilizes SciBERT [23], a transformer pre-trained on scientific 
literature, to create document level embeddings from the titles and abstracts of papers, 
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not the full text. Both SVM models were trained and applied on the SPECTER embed-
dings of the title and abstract, not directly on the text. Source code for pre-processing, 
classification, and querying the database is included (Additional File 2). The SVMs used 
|sklearn| version 0.24.2 [24] with Python 3.6.10.

Review

Expert review was performed using the aforementioned platform (Fig. 1). A limited set 
of rules based on whole-word matching (e.g. the word “patients” implies that the paper 
studied humans) were used to tag the abstracts so that reviewers could examine by tag 
if desired (see Additional file 3: Table S1). Three expert reviewers each with at least five 
years graduate computational immunology training, examined the papers in the queue 
to determine whether or not they contained immune signatures and, if so, what type. 
The reviewers were presented with a title that links to the paper full text, abstract, 
selected metadata, and buttons to indicate their conclusions. To support reviewer cor-
rections to automatic database population, an edit button allowed changes to the title 
and URL which were then pushed to the server via an AJAX call. For papers with a 
COVID-19 immune signature, reviewers were asked to choose from three broad classes 
of immune signatures. We included two additional review queues: “let’s discuss” for 
papers where the category was not obvious, and “review article” for work that may have 
a human immune signature but not be the primary source. An additional, auto-saved 
notes field allowed reviewers to make notes for themselves and for any future discussion. 
After 288 papers were reviewed, we tasked one of the expert reviewers with re-review-
ing the papers to identify key words from the abstract that, in their judgment, made it 
more (e.g.“IL-8”) or less (e.g. “influenza”) likely that a paper would contain a COVID-19 
immune signature. These identified terms were highlighted in the abstracts during the 
review phase (see Additional file 3: Table S2).

Solicitation

Once papers containing COVID-19 immune signatures have been identified, either 
manually or automatically, we contacted the corresponding author(s) to request details 
of the immune signatures in the paper, corresponding to our data model (Fig. 2).

Our platform provides a form with a unique URL for each entry in the database. This 
form identifies two classes of data—one that is global and applies to the entire form—
and one that pertains to a specific fact about the paper (in our case, a specific immune 
signature), of which there can be many. The field names are configurable via the JSON 
configuration file, but for this project, the form asks for global data identifying the paper 
and contributor (reference, contributor, organization, and email address), and specific 
instance data about each immune signature (description, location in the paper, tissue, 
immune exposure, cohort, comparison, any repository ID, analysis platform, response 
components and response direction).

Initial entry

The process of providing details of an immune signature from a paper involves gen-
erating a customized email with field data, enabling recipients to access a paper-spe-
cific page for data entry and storage, ensuring security and accountability. The email 
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recipients receive a link to a page for just their specific paper, which does not require 
a login. Each field on the form has associated help text and examples. All fields are 
editable by the email recipient except for the paper reference. An arbitrary number of 
immune signatures may be entered for each paper. When the contributors press the 
“submit” button, the entered data is stored in the database and logged in a separate 
file, allowing administrators to revert to a previous version in the case of accidental or 
malicious changes after initial data entry. A typical data entry form is shown in Fig. 2.

To allow third-party manual solicitations, a “submit your immune signatures” but-
ton on the [12] homepage opens an entry form that is the same as one seen by solic-
ited contributors except without the pre-filled global fields and with an editable paper 

A)

B)

Fig. 2  Immune signatures model and solicitation. A Our data model for COVID-19 immune signatures is 
based on [5]. B The immune signature template provided to authors, with help text shown in gray



Page 8 of 22Newton et al. BMC Bioinformatics          (2023) 24:292 

reference field. These entries are assigned an automatically generated internal identi-
fier which the website administrators can later map to a CORD-19 identifier.

Data dissemination

The contributor-entered details of the immune signatures are stored in a MongoDB 
database and are made available via [12] in both HTML and JSON. Internal users 
can access the full database entries, whereas the public version does not include edit 
history, contributor details, or internal identifiers (but does include the CORD-19 
identifiers).

Data analysis

Python Data Analysis Library |pandas| 0.24.2 [25] was used to manage the data from 
CORD-19 and the pipeline for analysis. We used |sklearn| 0.24.2  [24] to perform 
k-means clustering, for SVM and logistic regression classifiers with tolerance set to 
10−7 . Uniform manifold approximation and projection (|UMAP|) 0.4.6 [26] was used 
to visualize the clusters. |SciPy| 1.5.4[27] was used for statistical tests. To evaluate 
the classifier, we used Natural Language Toolkit (|NLTK|) 3.5 [28] for tokenization, 
excluding English stop words and words with less than three characters. Word-
Net  [29] was used to lemmatize the words. TD-IDF computation was facilitated by 
the |sklearn| package, including 1- and 2-grams. The logistic regression classification 
used inverse of regularization strength 50. When comparing word frequencies, we 
excluded words that occurred fewer than five times in the titles and abstracts of the 
selected papers. We used |Gensim| 3.8.3 [30] to perform Latent Dirichlet Allocation 
(LDA)  [31] with 1000 iterations and 100 passes, on the filtered CORD-19 abstracts 
and titles, excluding words that occurred in more than 80% of abstracts or fewer than 
5%.

Results
Our overall workflow involved the development of a training set of papers containing 
COVID-19 immune signatures, SPECTER and SVM-powered identification of papers 
likely to have these immune signatures, expert review of a subset of papers, data solic-
itation from the authors, and then data dissemination on the covid-signatures.org site 
(summarized in Fig. 1). As we envision this workflow will generalize to other semi-
structured data acquisition efforts, we developed a generic online platform to stream-
line its application.

Papers with immune signatures are clustered in SPECTER abstract embedding

We sought to determine whether SPECTER embedding preserved sufficient infor-
mation to identify papers containing COVID-19 immune signatures. SPECTER pro-
vides document-level embeddings using a pre-trained language model. The CORD-19 
dataset provides a SPECTER embedding, a 768 dimensional vector representation of 
the title and abstract, for each of the papers. We manually identified 5 papers from 
CORD-19 with COVID-19 immune signatures. We also considered an additional 
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69 papers with non-COVID immune signatures that were identified as part of the 
Human Immunology Project Consortium (HIPC) [5], together with a matched con-
trol group of papers for the HIPC immune signatures taken from the same volume 
of the journals. We used the pre-trained SPECTER model [21] to obtain an embed-
ding for each of the additional papers from their title and abstract. K-means cluster-
ing applied to the SPECTER embeddings identified k = 6 clusters based on Akaike 
Information Criterion (AIC) [32]. Almost all of the papers with immune signatures 
were grouped in a single cluster, cluster 3. Four of the 5 papers with COVID-19 signa-
tures and 68 of 69 papers with vaccination signatures were in cluster 3. The remaining 
papers with immune signatures were part of a second cluster, cluster 6 (1 of 5 papers 
with COVID-19 signatures, and 1 of 69 papers with vaccination signatures). In con-
trast, a control group of papers were more widely dispersed in the embedding space 
with a significantly different distribution compared to the papers with vaccination 
signatures ( χ2

= 14.42 , p = 0.006 ) (Fig. 3).

Fig. 3  Uniform manifold approximation and projection (UMAP) of ∼ 170, 000 papers from the CORD-19 
dataset (small points) based on their SPECTER embedding. Manually selected papers with COVID-19 immune 
signatures ( n = 5 ; large points), vaccine response immune signatures ( n = 69 ; * markers), and matched 
control papers ( n = 68 , x markers) are marked. Each paper was assigned to a cluster via k-means clustering, 
with k = 6 based on the AIC
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This significant sub-clustering suggests that the SPECTER embedding effectively pre-
serves information on whether or not a paper contains an immune signature. These 
results suggest that we can use the SPECTER embedding as the basis to construct a clas-
sifier to identify papers with COVID-19 immune signatures.

Papers with COVID‑19 signatures can be predicted with high accuracy

We built a classifier to determine if the SPECTER embedding could be used to pre-
dict which papers contained COVID-19 immune signatures. To create the classifier we 
iteratively built a training set, consisting of papers with a label indicating whether they 
contained immune signatures. We took advantage of the close grouping of immune 
signature papers in the SPECTER embedding by starting with five initial papers with 
COVID-19 signatures (shown in Fig. 3), and identifying the nearest 100 papers to each of 
these points in the embedding space. We also included the 100 papers from the filtered 
CORD-19 dataset that were nearest to the center of the vaccine immune signatures.

These papers were labeled by expert reviewers, using the pipeline interface. To allow 
simultaneous article review by multiple parties, only a random, small portion of the 
dataset is shown on the pipeline review platform at a time by default, minimizing the 
risk of duplicate review of the same paper. Overall, this identification and review process 
resulted in 271 papers, of which 140 contained immune signatures. An additional 52 
papers from CORD-19 identified by rule-based filters were subjected to expert review, 
identifying another 11 relevant papers.

Inter‑rater reliability of signature presence

To test the reliability of our expert reviews, we selected 100 articles at random from the 
set of papers to be reviewed independently by two reviewers. The two reviewers had 92% 
agreement on determining whether a paper contained a COVID-19 immune signature. 
Cohen’s kappa coefficient  [33], a robust measure of inter-rater reliability that accounts 
for chance agreements, shows very good agreement (0.84, 0.73–0.95 95% confidence 
interval). Papers where reviewers did not agree on the presence of an immune signature 
were not included in the training set for the classifier.

Classifier development and performance

A SVM classifier [24] was fit to the 316 papers unambiguously identified by reviewers as 
either containing or not containing immune signatures. To achieve reliable classifier pre-
dictions, we iteratively selected additional papers for review based on the prediction of 
the classifier. We added papers with estimated probability of containing human COVID-
19 immune signatures between 0.80 and 1.0 to increase the number of positive examples 
(Fig. 4).

This iteration was deemed sufficient as the marginal improvements to the classifier’s 
performance were small. Specifically, the average reduction in positive predictive value 
(PPV) based on Leave-One-Out Cross Validations (LOOCV) with one fewer paper was 
0.10 ±0.28 (from 81.3 to 81.2%). Overall, this yielded a set of 216 papers containing 
immune signatures and 185 papers without immune signatures.
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Using a SVM classifier trained on these 401 papers, we selected an additional 91 
papers based on predicted probability ( >= 0.8 ) to be highly likely to contain a COVID-
19 immune signature. An expert reviewer (SK) then classified these articles, and deter-
mined that the majority ( 92% ) contained immune signatures. Given the size of the 

86 abstracts
64 with signatures

21 without
1 ambiguous

91 abstracts
85 with signatures

 6 without

69 vaccine 
immune 
signature 
papers

271 abstracts
141 with signatures

127 without
3 ambiguous

5 COVID-19 
immune 
signature papers

6 points in the 
embedding 
space

100 closest 
abstracts in 
embedding 

space

SVM classifier 
prediction 

(p>0.8)
316 abstracts

SVM classifier 
prediction (p>0.9)

401 abstracts

Final training 
set

52 abstracts
11 with signatures

37 without
4 ambiguous

Result of expert 
review

Set of papers 
selected

Fig. 4  Iterative identification of papers for developing the classifier. The iterative process was initiated with 
papers selected with rule-based filters for expert review. We then leveraged the SPECTER embedding to 
select papers for review based on their distances in the embedding space. Once an initial training set was 
labeled, we fit an SVM classifier with the 316 abstracts and used it to select 86 additional papers. An SVM 
classifier fitted to the 401 abstract, predicted 91 highly likely papers to validate the classifier. This gave a final 
training set of 492 papers, 301 with immune signatures, 8 of which were ambiguous (where reviewers did not 
agree on the presence or absence of immune signatures)
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corpus, and the fact that emailing corresponding authors included a manual step (i.e., 
a human-in-the-loop, see methods), we decided to use a greater specificity threshold to 
select papers for direct solicitation in order to increase efficiency. Considering a higher 

Fig. 5  The classifier can identify papers containing immune signatures from the SPECTER embedding A The 
receiver operating characteristic (ROC) curve based on LOOCV for the classifier with the default threshold 
(0.5), validation threshold (0.8) and direct solicitation threshold (0.9) highlighted. Different lines are shown 
for the SVM classifier with SPECTER, SVM classifier with TF–IDF and LR with TF–IDF. B Number of papers in 
the CORD-19 dataset predicted to have immune signatures of different types at different thresholds of the 
classifier. The first SVM classifier predicted the probability of the paper containing an immune signature at the 
threshold indicated. The second SVM classifier then predicted the type of immune signature

Table 1  Classifier confusion matrix based on LOOCV

Here the “present” class represents the presence of any type of human COVID-19 immune signature in the paper

Correct predictions are highlighted in bold

Present Not present

Predicted present 278 49

Predicted not present 23 142
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threshold (predicted probability >= 0.9 ), of the 61 papers that met this threshold, 60 
of them contained COVID-19 immune signatures (94%). These additional papers gave a 
final training set of 492 papers, with 301 containing COVID-19 immune signatures.

We evaluated the performance of the SVM classifier on our training set using LOOCV. 
The receiver operating characteristic (ROC) area under the curve (AUC) was 0.916 
(Fig. 5A).With a probability threshold of 0.5, the SVM classifier had a PPV of 86%, with 
accuracy 85%, sensitivity 92% , selectivity 74% and F1-Score 89% (Table 1).Applying this 
SVM classifier to the filtered CORD-19 collection identified (at the probability thresh-
old of 0.5) around 15,500 papers ( ∼ 2% of the CORD-19 corpus) are likely to contain 
COVID-19 immune signatures.

After the iterative construction of the training set was complete, we evaluated whether 
the SPECTER embedding was essential for achieving ongoing high performance of the 
classifier. We compared the SVM classifier using the SPECTER embeddings to the widely 
used approach of Term Frequency–Inverse Document Frequency (TF–IDF) [34] of the 
titles and abstracts, with both a SVM classifier and with logistic regression. TF–IDF with 
SVM classifier achieved an AUC of 0.928 using LOOCV, which was very similar to the 
SPECTER approach. Likewise TF–IDF with logistic regression had similar performance 
with an AUC 0.928 (Fig. 5A). As these alternative approaches performed similarly, we 
chose to continue to use the SPECTER embedding for the rest of this study as it was 
supplied with the CORD-19 dataset and did not require any additional text processing.

The SPECTER embedding captures information about the type of COVID‑19 signature

We next sought to determine if the SPECTER embedding of titles and abstracts con-
tained sufficient information to distinguish between papers describing different types 
of COVID-19 immune signatures. We divided the COVID-19 immune signatures into 
three types: (A) Type A papers contained gene expression signatures, (B) Type B papers 
included signatures involving proteins, metabolites and/or cell types, and (C) Type C 
papers included all other COVID-19 immune signatures.

Inter‑rater reliability of signature type

To verify that the different signature types were meaningful and distinct, two experts 
reviewed a set of 100 papers. Papers where reviewers agreed on the type of immune sig-
nature (38 of 46) were added to the training set for the second stage classifier. The classes 
of immune signatures were well recognized by our reviewers, with substantial ( 82% ) 
agreement when including whether a paper contained an immune signature or not and 
the type of immune signature ( κ 0.72, 0.61–0.83 95% confidence interval) (Table 2).

Table 2  Independent expert review of articles showed substantial agreement between the three 
immune signature classes

Bold numbers indicate consensus between the expert reviewers

Type A signature Type B signature Type C signature No signature

Type A signature 7 2 0 0

Type B signature 2 21 2 1

Type C signature 1 3 8 1

no signature 1 0 5 46
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Classifier performance

Using the papers that were initially identified as containing COVID-19 immune signa-
tures, we fit a “second stage” SVM classifier to predict the type of signature. To evaluate 
performance, we tested the classifier using the 84 of the 91 papers used to validated the 
previous classifier. The 91 papers were predicted to contain immune signatures (prob-
ability threshold >= 0.8 ) and the 84 used here are those that were validated by expert 
review as actually containing immune signatures. These papers included all three of the 
signature types: 10 type A, 58 type B, and 16 type C signatures. On this independent 
test set, the weighted averages (where each class’s contribution is scaled by the fraction 
of papers in that class) were PPV 74% , with sensitivity of 58% , specificity 58% and F 1 
score 61% . Incorporating these newly reviewed papers provided 291 annotated papers 
with immune signatures (out of the 506 total papers in our final training set). We then 
refit the classifier to the 291 papers with signature types. LOOCV of this “second stage” 
classifier (Table 3), gave weighted average PPV 69% with sensitivity 70% , selectivity 80% , 
and F 1-Score 69%.

Despite having the fewest examples in the training set, the classifier performed best on 
“Type A” signatures, the narrowest category. While the broadest category “Type C” had 
the greatest proportion of incorrect predictions. These performances strongly suggests 
that the embedding is able to capture the the differences between signature types.

Features driving the classification

To discover which features our classifiers were using to determine the presence of 
immune signature, we compared papers with high and low probabilities of containing 
COVID-19 immune signatures. For the high probability papers, we selected the 500 arti-
cles with the highest predicted probability to contain an immune signature based on the 
classifier. As a comparison group, we selected 500 papers with a low probability ( ∼ 0.1) 
of containing an immune signature. This low probability was chosen for the comparison 
set to avoid selecting marginal papers from the corpus and those not written in English. 
A log-likelihood comparison of word frequencies [35] between these two groups identi-
fied 171 words with significantly different frequencies, of which 38% were more frequent 
in papers containing immune signatures ( χ2

1
 with adjusted 5% threshold for 876 compar-

isons). The top 10 differences are shown (Additional file 3: Table S3) and are consistent 
with the focus of the classifier on human immunology, e.g. “patient”, “health”, “cell” and 
“severe”.

To further interrogate the classifier, we applied LDA topic modeling to the CORD-19 
corpus filtered to include only potential relevant entries as described in methods (Fig. 6).

Table 3  Second stage classifier confusion matrix based on LOOCV

The correct predictions are highlighted in bold

Type A Type B Type C

Type A signature predicted 42 6 2

Type B signature predicted 15 135 45

Type C signature predicted 1 18 27
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When comparing the sets of papers described above, papers predicted to contain 
immune signatures were predominantly related to topics 6 and 8, which appear to 
describe immunological and clinical work. There were significant differences in the topic 
composition across all topics (Mann–Whitney U tests at the Dunn–Šidák corrected 5% 
significance level for 10 tests).

Next we consider which features may be driving the “second stage” classifier in assign-
ing different signature types. We chose a random sample of 500 papers most likely to 
contain a particular immune signature type (prediction p > 0.5 of containing immune 
signatures and p > 0.5 for the type of immune signature). Comparing word frequencies 
between the titles and abstracts of the different signature types identified 413 statisti-
cally significantly different words for type A COVID-19 immune signatures ( 26% had 
higher relative frequency in type A sample). Similarly for the predicted type B titles and 
abstracts there where 343 statistically significantly different words ( 14% with greater rel-
ative frequency in the type B sample) and 326 for type C (with 15% with greater relative 
frequency in the type C sample). For each case, the ten words that differed the most are 
shown (see Additional file 3: Table S3), with bold typeface indicating they occurred with 
greater relative frequency in that sample. These word frequencies suggest one way that 
the classifier predicts the paper contains an immune signature may be the presence of 
certain words associated with immune signatures (e.g. “patient”, “cell”, etc). In contrast, 
the type of immune signature may be determined by a reduction in the frequency of 
confounding words, such as “patient”, “clinical”, etc for type A immune signatures. We 
performed LDA topic modeling for different types of immune signatures. While papers 
with all types of signatures were predominately associated with topics 6 and 8, there 
were significant differences between them, with type A being 61% topic 6, type B 12% 
and type C only 3%.

High author response rate was found for immune signature extraction

Previous work demonstrated many authors are willing to provide both data and meta-
data about their work [9]. To discover if this is also the case for COVID-19 immune 

Fig. 6  LDA of the CORD-19 dataset with average scores given to a samples of papers based on SVM 
classifier predictions. A 10 topics identified from the abstracts and titles of the filtered CORD-19 corpus. B 
comparison of the average topic composition for a sample of 500 papers predicted to contain COVID-19 
immune signatures and 500 papers predicted not to contain immune signatures. C comparison of average 
topic composition for three samples of 500 papers predicted to contain a specific type of COVID-19 
immune signature. D comparison of average topic composition for the 31 solicited papers where authors 
provided immune signatures and the 69 where they did not. Error bars show the standard error of the mean. 
Statistically significant differences between topics is shown based on Mann–Whitney U tests at the 5% 
significance level using the Dunn–Šidák correction for multiple tests
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signatures, we developed a semi-automated pipeline to contact the corresponding 
author(s) of papers and ask them to provide details of their published immune signa-
tures via an online form (Fig. 2).

Articles were chosen via expert review or based on a predicted probability from the 
SVM classifier. Expert review is the gold standard for the presence of immune signa-
tures, when using the classifier, to avoid an unnecessary burden corresponding with 
authors of potentially unrelated work, we required a higher specificity when retrieving 
papers for solicitation. We used probabilities > 0.9 for containing an immune signature 
(from the first SVM classifier) and combined probability > 0.8 of it being type A or B 
(from the second classifier). The high threshold for the predicted probability of having 
any immune signature changes the confusion matrix and subsequently increases the 
specificity to 96% at the cost of sensitivity ( 50% ), with PPV 96% . Although the SVM clas-
sifiers were used to select articles for direct solicitation, a human was kept in-the-loop 
for quality control and validation. We selected a convenience sample of 100 papers to 
directly solicit information on the COVID-19 immune signatures (63 of these papers 
were selected by the classifier and 37 by expert review).

We sent solicitations to authors of the 100 selected papers; 31% of these authors con-
tributed immune signature information. Notably, we sent only a single solicitation email 
to each author with no reminders. The majority of responses (20 of 31 papers) submitted 
a single immune signature, while 2 signatures were specified in 5 of the responses, 3 sig-
natures were specified in 2 responses, and one contributor each specified 4, 12, 14, and 
27 signatures for a single paper. While the submission form did not have any required 
fields, all of the responses included a free-text description of the signature, the compari-
son underlying the signature, and the source of the signature in the paper (e.g., the figure 
or table number). However, only 35% (11 or 31 responses) provided a list of the immune 
response components (e.g., gene or protein names) that comprise the signature. Thus, 
while the overall response rate to direct solicitation was reasonable, follow-up is needed 
to obtain signature details.

We next sought to determine if there were differences between the papers the led to 
successful solicitations compared with those that did not. The likelihood of obtaining an 
authors response for the 63 papers selected with our classifiers was not correlated with 
the predicted probability of the paper containing an immune signature (Point-biserial 
correlation coefficient coefficient r = −8.09× 10−4 , t61 = 6.32× 10−3 p = 0.995 ). The 
lack of correlation may be because of the small probability range chosen for solicitation. 
We did not detect a difference in the predicted class (“Type A”, “Type B” or “Type C”) 
for papers with or without author responses ( χ2

2
= 0.47 , p = 0.93 ). Finally, although 

the response rate of papers chosen by the classifier was lower than those chosen by 
expert review (27% vs. 38%, respectively), this difference was not statistically significant 
( χ2

1
= 0.89 , p = 0.35).

Topic modeling of the papers where we solicited further information showed they 
were predominately topics 6 and 8 (Fig. 6D). There were significant differences between 
the contribution of topic 8 where authors responded compared with papers where 
authors did not, 5% level with Dunn–Šidák correction for 10 comparisons (Topic 6; 
Mann–Whitney U p = 0.015 , Topic 8; p = 0.0045).
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Discussion
We systematically analyzed the CORD-19 dataset [18], a standardized collection of 
COVID-19 related literature, to identify papers that contained immune signatures and 
to classify the type of immune signatures. There were two key challenges to building 
such a classifier: (1) a limited number of examples of relevant papers, and (2) immune 
signatures themselves are generally not reported in the title or abstract, the text that was 
available to analyze. Using SPECTER embeddings [21] solved both of these challenges as 
this pre-trained, SciBERT-powered [23] model places similar papers (e.g. those that have 
COVID-19 immune signatures) near each other in the embedding space without requir-
ing any custom training. Taking advantage of this property, we were able to iteratively 
identify a collection of COVID-19 immune signature papers from only 5 initially known 
examples, using a human-in-the-loop process. Once a large set of examples was gath-
ered, SPECTER lost its advantage and conventional approaches like TF–IDF with logis-
tic regression provided slightly better performance, at the cost of requiring an explicit 
training step. For papers predicted to contain immune signatures, we solicited additional 
details from the corresponding authors, and disseminated the information received on 
the covid-​signa​tures.​org website.

The platform we developed to do this iterative positive sampling, human-in-the-loop 
review, solicitation, and data sharing is available on GitHub at [17]. We designed this 
platform to be easily adaptable to other domains with all the immune signature-spe-
cific parts confined to either configuration files or data acquisition once an appropri-
ate data model has been identified. In particular, the platform described here has also 
been applied to a computational neuroscience model repository, ModelDB [36]. As 
with COVID-19 immune signatures, the presence of results derived from a computa-
tional model can often be inferred from the abstract, but the model details are gener-
ally not themselves present in the abstract. With ModelDB, we found this platform to 
be an effective way to distribute the task of reviewing large numbers of papers across 
multiple reviewers who have varying availability to review. This process of review by 
domain experts, although time consuming, generates valuable data that can be helpful 
for training future classifiers. In early work, the emphasis was to identify relevant papers, 
so we sorted the candidate papers by a heuristic for probability of relevance based on the 
number of inclusion criteria met. We currently have an unmodified version of the plat-
form on our development site http://modeldb.science with ModelDB providing its own 
interface for data sharing. In the process, we learned that it was important to distinguish 
between papers that are not relevant for inclusion in ModelDB because of text reasons 
(e.g. they do not involve computational neuroscience) from those that are not relevant 
for inclusion for non-text reasons (e.g. being a preprint instead of a journal article). This 
distinction is essential for enabling community reuse, which we envision to be focused 
on abstract concepts (in our case, if something involves computational neuroscience) 
and not on repository-specific choices.

In both of our use cases, engaging the authors is essential. In ModelDB’s case, we 
have the advantage of reaching out on behalf of a community tool that has existed for 
over 25 years; we believe familiarity helps increase the willingness of the community to 
engage. Nonetheless, even for this new COVID-signatures project, with no publications 
or examples of how others have shared their data, 31% of solicited authors contributed 

http://covid-signatures.org
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immune signatures in response to a single solicitation. The willingness of authors to 
share information, likely varies by field and over time as the culture of the field shifts 
(see e.g. the discussion in [37]). Nonetheless, improving survey responses is a common 
challenge in social sciences research. To increase the number of survey responses, cer-
tain design decisions have been found to be effective [38]. These include using multiple 
contacts and mixed modes of invitation, ensuring that invitation text is complete and 
persuasive but not overly verbose, placing the survey URL at the end of the invitation, 
and providing accurate time/effort estimates and using an authoritative subject line. As 
the curation project grows, it may incentivize authors to provide more detailed findings 
to increase the visibility and impact of their work.

A high response rate is only useful if the responses are of sufficient quality to be reus-
able. A key challenge is balancing the need to minimize the burden on the contributor 
with the desire for structured information. In our case, we provided structured fields 
and examples, and requested authors report information as it appeared in the paper 
rather than attempting to translate terms to a standardized form (e.g., leveraging the Cell 
Ontology for cell types that are reported as response components) [39]. Thus, signatures 
included references to “NK cell”, “CD3 T cells” and “gammadelta T cells,” which could 
then be mapped to terms from the Cell Ontology: “natural killer cell” (CL:0000623), “T 
cell” (CL:0000084), and “gamma-delta T cell” (CL:0000798), respectively in post process-
ing. While such data needs to be further processed to be standardized, it also gives us a 
data set that represents immune signatures as they are likely to appear in publications, 
which can assist in future development of methods to detect immune signatures and 
their component parts.

We focused the machine learning and natural language processing on the paper titles 
and abstracts, but there is more information available in the full text and, in particular, 
the COVID-19 immune signatures are themselves expressed in the body of the paper 
(figure captions, results, etc). However, the structured full-text is only available for about 
a quarter of the CORD-19 dataset and there is lower signal-to-noise ratio in the full-
texts than in abstracts [9, 40]. Nonetheless, some types of data are relatively unambigu-
ously identifiable from the full text. In particular, journals often require certain types 
of data to be archived in a repository, such as GEO, ArrayExpress and FlowRepository. 
These repositories use standardized formats for their accession IDs that can be identi-
fied using regular expressions. However if the paper contains multiple signatures in mul-
tiple repositories, manual curation is still necessary to correctly divide them between 
immune signatures.

More sophisticated language models facilitate higher performance on information 
extraction tasks, e.g. SciBERT (which underlies SPECTER) has shown success in retriev-
ing Population Intervention Comparator Outcome (PICO) elements in the randomized 
controlled trial literature [10]. The PICO elements have been tested to both identify text 
spans and extract structured information for automated biomedical evidence extrac-
tion  [41]. While PICO elements partially overlap the immune signature data model 
(Fig.  2), there are several challenges to leverage PICO extraction to further automate 
COVID-19 signature extraction. For example, information about immune signatures is 
often not present in the text, but rather in figures or tables [5]. Current PICO extraction 
methods also group the intervention and comparison categories, which makes it more 
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difficult to apply them to our data model. Papers containing multiple signatures present 
the additional challenge of grouping the PICO elements for a particular immune signa-
ture. PICO predictions could be used to assist manual entry, such as by providing paper-
specific autocomplete suggestions or placeholder text to reduce the burden of data entry. 
This approach risks, however, biasing the author responses. The author-supplied infor-
mation may be used to improve machine learning for identifying PICO information by 
providing data for model training and testing, although this may be complicated by the 
variability with how author contributors specify their COVID-19 immune signatures.

Crowd-sourcing further curation offers a potential mechanism for reducing variability 
and providing consistently annotated human COVID-19 immune signatures similar to 
those made available through the HIPC Dashboard [5]. A portal is under development 
that facilities community annotation of COVID-19 immune signatures commu​nity.​
covid-​signa​tures.​org, utilizing the signatures retrieved by this pipeline.

Identifying papers containing COVID-19 immune signatures and collecting data and 
contextual information (metadata) regarding the signatures can help speed scientific 
progress in this area. As has been seen with vaccination [42] and inflammation [43], pro-
viding access to such a resource supports secondary and comparative analyses result-
ing in a broader understanding of immune system response. We have demonstrated this 
pipeline approach (Fig. 1) is able to identify and classify relevant papers from a large and 
varied corpus (Fig. 5), starting from only a few examples. Our method has also shown 
that authors are often willing to provide useful clinical and contextual information about 
their work.

Conclusion
This paper describes the development of a pipeline to retrieve papers containing 
COVID-19 immune signatures and for their semi-automated curation. Within this pipe-
line, we iteratively built a training set and incorporated machine learning to classify 
papers from an existing repository (CORD-19). We found that SPECTER embedding 
provides a good reduced representation of a paper and its relatedness to other papers 
that can be adopted for the purpose of identifying scientifically salient features of the 
paper (in this case immune signatures). However, SPECTER was not a necessary com-
ponent, as TF–IDF with logistic regression has similar performance to the SPECTER 
approach. Thirty-one percent of authors of papers with immune signatures voluntar-
ily provided semi-structured representations in response to a request from our team, 
regardless of the immune signature type.

Given its start as a neuroinformatics tool, the successful application to COVID-19 
demonstrates that this pipeline approach is readily adaptable for other fields to identify 
papers containing scientifically relevant features, which can be further processed—by 
data solicitation, manual curation, or automated means-to extract the relevant data for 
presentation in a unified knowledge base or dashboard.
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