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Abstract 

Background: P4 medicine (predict, prevent, personalize, and participate) is a new 
approach to diagnosing and predicting diseases on a patient‑by‑patient basis. For the 
prevention and treatment of diseases, prediction plays a fundamental role. One of the 
intelligent strategies is the design of deep learning models that can predict the state of 
the disease using gene expression data.

Results: We create an autoencoder deep learning model called DeeP4med, including 
a Classifier and a Transferor that predicts cancer’s gene expression (mRNA) matrix from 
its matched normal sample and vice versa. The range of the F1 score of the model, 
depending on tissue type in the Classifier, is from 0.935 to 0.999 and in Transferor 
from 0.944 to 0.999. The accuracy of DeeP4med for tissue and disease classification 
was 0.986 and 0.992, respectively, which performed better compared to seven classic 
machine learning models (Support Vector Classifier, Logistic Regression, Linear Discri‑
minant Analysis, Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbors).

Conclusions: Based on the idea of DeeP4med, by having the gene expression matrix 
of a normal tissue, we can predict its tumor gene expression matrix and, in this way, 
find effective genes in transforming a normal tissue into a tumor tissue. Results of Dif‑
ferentially Expressed Genes (DEGs) and enrichment analysis on the predicted matrices 
for 13 types of cancer showed a good correlation with the literature and biological 
databases. This led that by using the gene expression matrix, to train the model with 
features of each person in a normal and cancer state, this model could predict diagno‑
sis based on gene expression data from healthy tissue and be used to identify possible 
therapeutic interventions for those patients.

Keywords: P4 medicine, Deep learning, Gene expression matrix, Prediction model, 
Classification, Tumor

Background
In the past, diseases were considered the result of alterations in the function of one 
or more genes, so the diagnosis and treatment of patients were based on reductionist 
approaches to correct these genetic alterations. However, a fundamental revolution in 
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medicine is a change from this reductionist view to a more holistic (systems biology) 
approach to understanding the biology of disease [1–3]. In systems biology, organ 
function results from the simultaneous interaction of all genes, mRNA, proteins, and 
metabolites across different cells constituting different types of tissues. Therefore, omics 
studies aimed to collect High-throughput genomic, epigenomic, transcriptomic, prot-
eomic, and metabolomic data [4]. From this perspective, each omics dataset is a net-
work layer, and the cell was considered as several integrated networks, so the disease is 
defined as a disorder or change in these networks [5].

P4 medicine (predict, prevent, personalize, and participate) is the latest approach to 
overcoming complex diseases like cancer. The development of computational models 
that can use omics data to predict disease and offer proper drugs to each person is very 
challenging [6, 7]. One of the essential omics is transcriptomic and deep learning is a 
powerful method for processing gene expression data and extracting new knowledge 
from disease [8]. In 2019, Lotfollahi developed scGen to analyze and predict the effect 
of a perturbation (i.e., drug, disease) at single-cell resolution [9]. This was followed by 
several review articles that explained the role of data science and machine learning in 
precision medicine (Fröhlich in 2018, Papadakis in 2019, and MacEachern in 2020 pub-
lished) [10–12]. Finally, in 2022, Leon Hetzel developed a deep learning model for drug 
discovery based on cellular response to perturbations in a single-cell transcriptomics 
context [13]. Also, many research consortia worldwide have started working in this field, 
including MLPM (Machine learning for personalized medicine) at the Marie Curie Ini-
tial Training Network, funded by the European Union [14–17].

Many studies aimed to obtain genes expressed differently in tumors and normal. These 
genes are critical to understanding the function of the disease, but in these studies, two 
groups of individuals were compared [18–20]. At the same time, cancer is a complex 
disease, and patients with the same type of cancer may have different gene expressions. 
Also, some studies were performed to repurpose drugs for diseases based on these genes 
[21], but one drug is effective in some patients and ineffective in others. Our goal is to 
get one step closer to personalized medicine by trying to get the cancer-related genes for 
each person individually. So We try to make every tumor sample as close to normal as 
possible to find effective genes specific to that patient.

In this study, we developed a model called DeeP4med to apply deep learning in P4 
medicine. We used the datasets collected and preprocessed [22] which is a combina-
tion of The Cancer Genome Atlas (TCGA) [23] and genotype-tissue expression pro-
ject (GTEx) [24]. This dataset contains 6111 tumor and 2996 normal samples in total 
that have been sampled from 13 different tissues. We selected 18,154 features (genes) 
that were common across all samples. For simplicity, we ignored the sub-tissue clas-
sification within the tissue type. In the preprocessing step, we divided each feature by 
its maximum value in the dataset. DeeP4med comprises a classifier and a Transferor. 
The classifier is used to identify the tissue type and the tissue condition (normal or 
tumor). Transferor takes a person’s normal expression matrix and predicts the tumor 
matrix in the same person and vice versa. Hence, the model tries to learn the impor-
tant features of converting a normal sample to a tumor sample. Then, based on a sam-
ple’s important features and other personal features, it predicts and generates a new 
expression matrix. Because of this ability of the model, it considers two components 
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of P4 medicine: predict and personalize, and by using them, we can achieve two other 
components: prevent and participate. To evaluate the results predicted by the model, 
we analyzed them in terms of conventional machine learning and bioinformatics 
methods, which are reviewed in the results section. (Fig. 1.)

Results
After creating the model, we evaluated the model’s performance with two different 
approaches: (1) Performance analysis of the Transferor and Classifier of DeeP4med. 
(2) Investigating the validity and biological significance of the data generated by the 
model by Differentially expressed genes (DEGs) and enrichment of analysis.

Performance analysis of transferor and classifier

In order to show the Transferor’s performance for changing the type of mRNA (nor-
maltumor and tumor  normal), we computed its F1-Score (see Table  1), Precision 
and Recall (Additional file 1: Tables S1 and S2, respectively). To achieve this, we also 
needed to evaluate the Classifier performance with respect to the tissue(breast, pros-
tate, lung, …, etc.) and disease (tumor, normal) beforehand. For this purpose, we 
report their F1-Score, Precision and Recall, for tissue and disease classification. These 
performance measures, along with their corresponding confusion matrices summa-
rised in Fig. 2.

Fig. 1 Workflow of our article: In the first step, we convert the tumor samples to the closest possible normal 
ones and the normal ones to the closest possible tumor samples and obtain new gene expression matrices. 
To evaluate the performance of our model through computational models, we compare the classification 
accuracy of our model with other machine learning models. Finally, we evaluate the obtained biomarkers 
through benchmark biology
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Table 1 F1 score of tissue classification. (Left), F1 score of tissue classification with Classifier. (Right), 
F1 score for tissue classification of generated data with Transferor network that evaluated with 
Classifier

Category Mean SD Category Mean SD

Bladder 0.959 0.008 Bladder 0.944 0.032

Breast 0.993 0.001 Breast 0.993 0.004

Cervix 0.935 0.017 Cervix NaN NaN

Colon 0.995 0.006 Colon 0.997 0.005

Esophageal 0.999 0.001 Esophageal 0.997 0.003

Kidney 0.992 0.008 Kidney 0.994 0.005

Liver 0.995 0.005 Liver 0.994 0.009

Lung 0.992 0.004 Lung 0.991 0.003

Prostate 0.997 0.005 Prostate 0.994 0.007

Salivary 0.974 0.011 Salivary 0.951 0.035

Stomach 0.998 0.004 Stomach 0.997 0.005

Thyroid 0.999 0.001 Thyroid 0.999 0.001

Uterus 0.959 0.011 Uterus 0.956 0.016

Fig. 2 The confusion matrix of the Classifier performance and the generated data with Transferor. a The 
confusion matrix of tissue classification with Classifier. b The confusion matrix for the tissue of generated data 
with Transferor and evaluated by Classifier. c The confusion matrix of disease classification with Classifier. (d) 
The confusion matrix for the disease of the generated data with Transferor and evaluated with Classifier
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Performance of classifier compared with other machine learning models

To reduce the data dimensionality, we used principal component analysis (PCA) as 
a preprocessing step [25]. When dealing with high-dimensional data, it is natural 
to assume that the latent variables of the data-generating distribution sit on a much 
lower-dimensional manifold. By finding a lower-dimensional representation through 
PCA, we preserve important information while removing redundant dimensions, 
simplifying analysis and modeling. After tuning the parameters of seven traditional 
machine learning models, we used K-Fold cross-validation with K = 5. we put one-
fifth of the data for testing and the other four-fifths for training and validation in each 
fold. Finally, to report the model’s performance, we considered the average perfor-
mance of the model in different folds. Finally, we compared their performance with 
performing DeeP4med. Selected baselines are Support vector classifier (SVC), Logis-
tic regression (LR), Linear discriminant analysis (LDA), Naive Bayes (NBayes), Deci-
sion tree (DTree), Random forest (RForest), K nearest neighbors (KNN). The results 
show that DeeP4med has a better performance for identifying tissue types (Addi-
tional file  1: Table  S3 (left)) and outperforms the other baselines in classifying dis-
ease samples (Additional file 1: Table S3 (right)). We should note that the results are 
consistent using different PCA dimensions (PCA dim = 120, PCA dim = 90, and PCA 
dim = 150). See Additional file 1: Tables S3, S4, and S5, respectively.

Biological benchmark

Since our primary purpose was to develop a model that (i) can predict the disease 
state (i.e., tumor transcriptome) on a patient-by-patient basis based on (RNAseq) 
healthy tissue information and (ii) predict the healthy state from known tumor infor-
mation (i.e., RNAseq from tumor biopsies), we designed DeeP4med to produce two 
types of expression matrices for each tissue:

(1) “transfer tumor” (TT). This data is generated by applying DeeP4med to RNAseq 
data form normal tissue samples (i.e., original normal data, ON).

For notation clarity, we label this data set as ON_TT
(2) “transfer normal” (TN). This data is generated by applying DeeP4med to 

RNAseq data from tumor tissue samples (i.e., original tumor data, OT).
For notation clarity, we label this data set as OT_TN.
Half of the data are original in these two types of expression matrices; the remaining 

are transfers. To evaluate the model’s performance of these two matrices in each tis-
sue, (1) DEGs analysis and (2) ENRICHMENT analysis is performed. Then the results 
were compared against each other. The number of samples in each tissue is shown in 
Additional file  1: Table  S6, and the expression matrices of all tissues are present in 
Additional file 2: part 1.

DEG analysis

DEG analysis between tumor and normal states was performed using the limma pack-
age [26] on the idep.951 platform [27] between (i) ON and TT groups and (ii) OT and 
TN groups.
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We predicted that if DeeP4med works accurately, there should be a significant over-
lap of DEGs identified in conditions (i) and (ii).

To test this, genes with adjusted p-value ≤ 0.05 and LFC (log fold change, tumor ver-
sus normal) ≤ -1 (down-regulated) and LFC ≥ 1 (up-regulated, i.e., when the gene is 
expressed higher in the tumor compared to the normal) were considered for further 
analysis. The result files from the idep.951, including DEGs and PCA plots for each tis-
sue, are in the Additional file 2: part 2. We use the Venn diagram tool [28], to identify the 
intersecting DEG genes (up or downregulated) that are common to conditions (i) and 
(ii).

Using Eqs. (1) and (2), the true positive rate was calculated (Additional file 1: Table S7).

The prostate had the highest true positive rate, so we chose it to evaluate the model’s 
performance from a biological aspect. Figure 3 shows the results of the Venn diagram 
and PCA in the prostate, which shows that the DeeP4med can distinguish between 

(1)True positiveUP =
intersect (UP)

mean UP (ON/TT&OT/TN )

(2)True positiveDown =
intersect (Down)

mean Down (ON/TT&OT/TN )

Fig. 3 Venn diagram of DEGs and PCA plots. The intersect up (a) and down (b) genes between OT_TN & 
ON_TT in the prostate. The PCA plots of prostate samples in_OT_TN (c) and ON_TT (d) in the prostate. Based 
on PCA plots, the model could distinguish between tumor and normal samples
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normal and tumor states in each matrix (Venn diagrams of other tissues are in the Addi-
tional file 2: part 3).

Enrichment analysis

By DEGs and using the Enrichment Analysis Visualization Appyter website[29], sev-
eral enrichment analyzes were performed, which we will discuss below: (1) Gene ontol-
ogy (GO)_biological process. (2) Cancer cell Line encyclopedia (CCLE) Proteomics. (3) 
Kyoto encyclopedia of genes and genomes (KEGG) pathway. (4) ChIP enrichment analy-
sis (ChEA). Table 2 shows the results of these four types of enrichment and some exam-
ples of intersecting results between the two types of matrices in the 13 types of cancer. 
Although the enrichment results for all tissues are shown in Table 2, in the following, 
we will only evaluate the enrichment results of prostate cancer based on the articles. 
(Results of enrichment analysis for all tissues are presented in the Additional file 2: part 
4).

CCLE_Proteomics_2020 enrichment analysis

According to Table 2, VCAP is present in the enrichment result of both types of pros-
tate matrix. Using the TCGA-110CL (https:// comph ealth. ucsf. edu/ app/ tcga- 110) web-
site, the expression profiles of real prostate cancer samples in the TCGA database were 
compared with the expression profiles of different cell lines, as shown in the Additional 
file 1: Fig. S1. This figure shows that the VCAP cell line correlates most with prostate 
cancer samples. Therefore, the nature of the data produced by DeeP4med is consistent 
with real data. The number of cell lines that have been correctly identified by enrichment 
analysis for each tissue and the best cell line and its P-value are shown in the Additional 
file 1: Table S8. The expression matrix generated by the model was correctly identified in 
11 of the 13 tissues. Only salivary and cervical tissues lacked the appropriate cell lines. 
However, for salivary, five cell lines such as BICR6, SCC25, HSC4, BICR22, and CAL27, 
were identified that were anatomically close to this tissue (Additional file 2: part 4_sali-
vary section).

KEGG 2021 human enrichment analysis

According to Table 2, there are 21 intersect metabolic pathways in the prostate, and the 
Ras signaling pathway is one of the most important of them, so we discuss its role in 
prostate cancer (a complete list of metabolic pathways is shown in the Additional file 2: 
part 4_prostate section). In 2009, Pearson et al. [30] showed malfunction in Wnt and Ras 
signaling, and mutations in K-ras and beta-catenin can lead to invasive carcinoma in the 
prostate. In 2016, Chen et al. [31] by text mining the prostate cancer articles, extracted 
41 important proteins, and created a protein–protein interaction (PPI) network. By 
applying functional annotation on a network, they find Ras protein signal transduction 
is one of the important signaling pathways in prostate cancer. Also in 2021, Strittmatter 
et al. [32] show the change in ERG expression gene by Ras/ERK and PI3K/AKT signaling 
pathways, promoting prostate tumor.

https://comphealth.ucsf.edu/app/tcga-110
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Table 2 Enrichment results. Four types of enrichment were performed on ON_TT and OT_TN in 
the 13 types of cancer. The number of results for each matrix is shown as well as the number of 
intersecting results. In the last column, the names of some intersecting results are shown

Tissue Enrichment method ON_TT output OT_TN
output

Intersect
ON_TT & 
OT_TN

Examples of intersects

Bladder GO_Biological_Pro‑
cess_2021

557 523 217 Epithelium development 
(GO:0060429)
MAPK cascade (GO:0000165)
Ras protein signal transduc‑
tion (GO:0007265)

CCLE_Proteomics_2020 5 4 3 T24 URINARY TRACT TenPx37
UBLC1 URINARY TRACT 
TenPx15
KU1919 URINARY TRACT 
TenPx36

KEGG 2021 Human 46 23 13 Pathways in cancer
TGF‑beta signaling pathway
Cell cycle

ChEA_2016 14 12 4 FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
FOXP3 21,729,870 ChIP‑Seq 
TREG Human
CTNNB1 24,651,522 ChIP‑Seq 
LGR5 + INTESTINAL STEM 
Human

Breast GO_Biological_Pro‑
cess_2021

498 602 265 Mammary gland epithelium 
development (GO:0061180)
Actin filament organization 
(GO:0007015)
Regulation of mitotic cell 
cycle phase transition 
(GO:1,901,990)

CCLE_Proteomics_2020 7 9 4 HCC1395 BREAST TenPx15
MDAMB453 BREAST TenPx19
HCC1187 BREAST TenPx20
HCC2218 BREAST TenPx21

KEGG 2021 Human 31 25 14 FOXO signaling pathway
TGF‑beta signaling pathway
Ras signaling pathway

ChEA_2016 6 8 4 FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
TFEB 21752829 ChIP‑Seq 
HELA Human
FOXA1 26,769,127 Chip‑Seq 
PDAC‑Cell line Human
FOXA2 19,822,575 ChIP‑Seq 
HepG2 Human

Cervix GO_Biological_Pro‑
cess_2021

491 574 189 Negative regulation of 
Wnt signaling pathway 
(GO:0090090)
Regulation of mitotic cell 
cycle phase transition 
(GO:1,901,990)
Regulation of transcrip‑
tion by RNA polymerase II 
(GO:0006357)

CCLE_Proteomics_2020 0 0 0 –
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Table 2 (continued)

Tissue Enrichment method ON_TT output OT_TN
output

Intersect
ON_TT & 
OT_TN

Examples of intersects

KEGG 2021 Human 37 49 18 Human papillomavirus infec‑
tion
Pathways in cancer
Hedgehog signaling pathway
IL‑17 signaling pathway

ChEA_2016 12 6 4 SUZ12 18,692,474 ChIP‑Seq 
MEFs Mouse
VDR 23401126 ChIP‑Seq LCL‑
AND‑THP1 Human
RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
CTNNB1 24,651,522 ChIP‑Seq 
LGR5 + INTESTINAL STEM 
Human

Colon GO_Biological_Pro‑
cess_2021

499 469 193 Rho protein signal transduc‑
tion (GO:0007266)
Epithelium development 
(GO:0060429)
TNF‑mediated signaling 
pathway (GO:0033209)

CCLE_Proteomics_2020 13 13 8 SNUC1 LARGE INTESTINE 
TenPx19
HCC56 LARGE INTESTINE 
TenPx07
SW948 LARGE INTESTINE 
TenPx11
RKO LARGE INTESTINE 
TenPx04

KEGG 2021 Human 29 37 13 Hedgehog signaling pathway
Pathways in cancer
Cell cycle
Ras signaling pathway

ChEA_2016 9 12 6 FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
HNF4A 19822575 ChIP‑Seq 
HepG2 Human
KDM2B 26808549 Chip‑Seq 
K562 Human

Esophageal GO_Biological_Pro‑
cess_2021

586 582 278 MAPK cascade (GO:0000165)
Cellular protein catabolic 
process (GO:0044257)
Epithelium development 
(GO:0060429)
Regulation of EGFR signaling 
pathway (GO:0042058)

CCLE_Proteomics_2020 4 9 2 TE4 OESOPHAGUS TenPx33
KYSE410 OESOPHAGUS 
TenPx38

KEGG 2021 Human 59 41 27 Pathways in cancer
TGF‑beta signaling pathway
Hedgehog signaling pathway
mTOR signaling pathway
PI3K‑Akt signaling pathway
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Table 2 (continued)

Tissue Enrichment method ON_TT output OT_TN
output

Intersect
ON_TT & 
OT_TN

Examples of intersects

ChEA_2016 11 10 7 KDM2B 26808549 Chip‑Seq 
K562 Human
FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
VDR 23401126 ChIP‑Seq LCL‑
AND‑THP1 Human
HNF4A 19822575 ChIP‑Seq 
HepG2 Human

Kidney GO_Biological_Pro‑
cess_2021

613 515 250 Regulation of immune 
response (GO:0050776)
Kidney development 
(GO:0001822)
TNF‑mediated signaling 
pathway (GO:0033209)

CCLE_Proteomics_2020 6 5 4 A498 KIDNEY TenPx05
CAKI1 KIDNEY TenPx36
769P KIDNEY TenPx25
OSRC2 KIDNEY TenPx20

KEGG 2021 Human 50 39 23 Pathways in cancer
TNF signaling pathway
Colorectal cancer
Cellular senescence

ChEA_2016 6 17 4 RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
KDM2B 26808549 Chip‑Seq 
K562 Human
PRDM5 23,873,026 ChIP‑Seq 
MEFs Mouse

Liver GO_Biological_Pro‑
cess_2021

835 581 340 ERK1 and ERK2 cascade 
(GO:0070371)
Intrinsic apoptotic signaling 
pathway (GO:0097193)
Programmed necrotic cell 
death (GO:0097300)

CCLE_Proteomics_2020 9 9 8 JHH1 LIVER TenPx34
HEP3B217 LIVER TenPx02
JHH7 LIVER TenPx05
HEPG2 LIVER TenPx02

KEGG 2021 Human 77 63 43 FoxO signaling pathway
MAPK signaling pathway
NF‑kappa B signaling pathway
Ras signaling pathway

ChEA_2016 13 9 7 TP63 19,390,658 ChIP‑ChIP 
HaCaT Human
HNF4A 19822575 ChIP‑Seq 
HepG2 Human
FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
VDR 23401126 ChIP‑Seq LCL‑
AND‑THP1 Human

Lung GO_Biological_Pro‑
cess_2021

508 453 196 Protein processing 
(GO:0016485)
Regulation of RNA metabolic 
process (GO:0051252)
NIK/NF‑kappaB signaling 
(GO:0038061)
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Table 2 (continued)

Tissue Enrichment method ON_TT output OT_TN
output

Intersect
ON_TT & 
OT_TN

Examples of intersects

CCLE_Proteomics_2020 38 29 23 LU65 LUNG TenPx22
DMS273 LUNGTenPx06
DV90 LUNG TenPx12
LUDLU1 LUNG TenPx09

KEGG 2021 Human 22 32 11 Sphingolipid metabolism
Pathways in cancer
Cellular senescence
Focal adhesion

ChEA_2016 4 10 4 RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
CTNNB1 24,651,522 ChIP‑Seq 
LGR5 + INTESTINAL STEM 
Human
GABP 19822575 ChIP‑Seq 
HepG2 Human

Prostate GO_Biological_Pro‑
cess_2021

487 455 264 MAPK cascade (GO:0000165)
regulation of EGFR signaling 
pathway (GO:0042058)
cellular response to FGF 
stimulus (GO:0044344)
Fc receptor signaling pathway 
(GO:0038093)

CCLE_Proteomics_2020 3 1 1 VCAP PROSTATE TenPx21

KEGG 2021 Human 40 36 21 Ras signaling pathway
Pathways in cancer
Regulation of actin cytoskel‑
eton
Rap1 signalling pathway

ChEA_2016 3 13 3 FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
KDM2B 26808549 Chip‑Seq 
K562 Human

Salivary GO_Biological_Pro‑
cess_2021

505 464 173 Gland morphogenesis 
(GO:0022612)
Positive regulation of secre‑
tion by cell (GO:1,903,532)
Wound healing (GO:0042060)
Polarized epithelial cell dif‑
ferentiation (GO:0030859)

CCLE_Proteomics_2020 0 0 0 –

KEGG 2021 Human 29 40 13 Protein processing in endo‑
plasmic reticulum
Protein export
Ras signaling pathway
Glycerolipid metabolism
Focal adhesion

ChEA_2016 9 6 2 RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
ESR1 21,235,772 ChIP‑Seq 
MCF‑7 Human

Stomach GO_Biological_Pro‑
cess_2021

430 474 219 Polarized epithelial cell dif‑
ferentiation (GO:0030859)
NIK/NF‑kappaB signaling 
(GO:0038061)
VEGFR signaling pathway 
(GO:0048010)
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Table 2 (continued)

Tissue Enrichment method ON_TT output OT_TN
output

Intersect
ON_TT & 
OT_TN

Examples of intersects

CCLE_Proteomics_2020 2 5 2 HGC27 STOMACH TenPx06
KATOIII STOMACH TenPx15

KEGG 2021 Human 36 26 14 Ubiquitin mediated prote‑
olysis
Adipocytokine signaling 
pathway
TNF signaling pathway
AMPK signaling pathway
JAK‑STAT signaling pathway

ChEA_2016 11 15 9 FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
CTNNB1 24,651,522 ChIP‑Seq 
LGR5 + INTESTINAL STEM 
Human
TFEB 21752829 ChIP‑Seq 
HELA Human
KDM2B 26808549 Chip‑Seq 
K562 Human
HNF4A 19822575 ChIP‑Seq 
HepG2 Human

Thyroid GO_Biological_Pro‑
cess_2021

434 497 226 Recombinational repair 
(GO:0000725)
Protein polyubiquitination 
(GO:0000209)
Interleukin‑1‑mediated signal‑
ing pathway (GO:0070498)

CCLE_Proteomics_2020 2 1 1 8305C THYROID TenPx30

KEGG 2021 Human 25 36 12 Calcium signaling pathway
Pathways in cancer
TGF‑beta signaling pathway
IL‑17 signaling pathway
Regulation of actincytoskel‑
eton

ChEA_2016 8 13 2 RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
KDM2B 26808549 Chip‑Seq 
K562 Human

Uterus GO_Biological_Pro‑
cess_2021

566 499 255 Cytokine‑mediated signaling 
pathway (GO:0019221)
MAPK cascade (GO:0000165)
Rho protein signal transduc‑
tion (GO:0007266)
Negative regulation of 
Wnt signaling pathway 
(GO:0030178)

CCLE_Proteomics_2020 7 8 5 HEC108 ENDOMETRIUM 
TenPx39
JHUEM2 ENDOMETRIUM 
TenPx28
HEC59 ENDOMETRIUM 
TenPx25
HEC265 ENDOMETRIUM 
TenPx37
SNU685 ENDOMETRIUM 
TenPx33



Page 13 of 22Mahdi‑Esferizi et al. BMC Bioinformatics          (2023) 24:275  

GO_Biological_Process_2021 analysis

Based on enrichment results in Table  2, 264 intersect biological processes in prostate 
cancer were obtained (In the Additional file 2: part 4_prostate section). The MAPK cas-
cade intersects between two matrices and is a key downstream of Ras signaling, so we 
choose the MAPK cascade to discuss its role in prostate cancer. A search of the corem-
ine (https:// www. corem ine. com/ medic al/# search) database revealed that there were 
approximately 20 articles related to prostate cancer and MAPK cascade (GO:0000165) 
and 12 articles related to actin cytoskeleton reorganization (GO:0031532) and prostate 
cancer. In 2019, Wu et al. [33] with an analysis of expression and methylation profiles 
of prostate cancer, find 322 genes that were hypermethylated and downregulated. By 
enriching these genes, they found one of the important biological processes was the 
MAPK cascade. In 2020, Singh et al. [34] for the identification of biomarkers in prostate 
cancer, analysis proteomics profile of prostate cancer cell lines such as LNCaP and PC-3 
by mass spectrometry, they found 474 proteins were deregulated. Enrichment analysis 
reveals that some biological processes, such as the MAPK cascade, have an essential role 
in the initiation and progression of cancer. In 2021, Shen et al. [35] MAPK4 expression 
(one gene of MAPK cascade) promoted prostate cancer cell proliferation, so this gene 
was a potential target for prostate cancer treatment.

ChEA_2016 enrichment analysis

According to Table  2, FOXP1, RELA, and KDM2B, transcription factors intersect in 
OT_TN & ON_TT in prostate cancer. The Coremine website finds approximately 18, 
250, and 4 articles for FOXP1, RELA, and KDM2B related to prostate cancer. In 2021, 
Panigrahi et al. [36] knocked down the RAD9 gene in prostate cancer DU145 cells and 
found that expression of FOXP1 were down-regulated, so migration and proliferation of 
tumor cell decreased. In 2022, Raspin et al. [37] investigate some gene fusions in pros-
tate cancer in TCGA data. One of the genes fusion related to RYBP: FOXP1. (complete 
list of transcription factors enrichment is shown in the Additional file 2: part 4_prostate 
section).

Table 2 (continued)

Tissue Enrichment method ON_TT output OT_TN
output

Intersect
ON_TT & 
OT_TN

Examples of intersects

KEGG 2021 Human 51 48 23 Pathways in cancer
Human papillomavirus infec‑
tion
Regulation of actin cytoskel‑
eton
Basal cell carcinoma
MAPK signaling pathway
PI3K‑Akt signaling pathway

ChEA_2016 12 8 4 RELA 24523406 ChIP‑Seq 
FIBROSARCOMA Human
FOXP1 21,924,763 ChIP‑Seq 
HESCs Human
XRN2 22,483,619 ChIP‑Seq 
HELA Huma

https://www.coremine.com/medical/#search
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To better evaluate the performance of our model, we compared the matrices produced 
in the model with the original matrix (ON/OT). We used two different approaches: a 
biological approach using the DEGs method and a statistical approach using the PCA 
and UMAP methods which show the distribution of samples by reducing the dimen-
sions. The output of our model for each tissue is two types of matrices: OT/TN and ON/
TT. Next, we separately compared the DEGs obtained from each of these matrices with 
the DEGs obtained from the true matrix by the Venn diagram. There are 13 tissues; for 
each tissue, there are two comparisons (OT/TN vs. original and ON/TT vs. original), 
and in each comparison, two states of up and down were analyzed separately. Therefore, 
52 Venn diagrams were obtained (Additional file 2: part 5_Venny and DEGs). The results 
show that depending on the type of tissue, a sufficient number of DEGs (UP & Down 
genes) are common in these three types of matrices, which indicates that our model has 
been able to produce matrices that are similar to the true matrix. Also, PCA and UMAP 
plots show that in three types of matrices (original, OT/TN, and ON/TT), normal sam-
ples’ distribution differs from tumor samples. These results indicate that our model 
has understood the pattern of normal and tumor samples and produced new matri-
ces (Additional file  2: part 5_PCA&UMAP). Also, the list of common DEGs between 
all three matrices and their Venn diagram in Additional file 2: part 6 is available. These 
genes are the most important because they exist in all three matrices.

Discussion
By focusing on each patient and understanding the complex molecular mechanisms of 
the disease and its interaction with environmental factors and individual genetic diver-
sity, P4 medicine has become the most effective approach in personalized medicine. By 
applying system biology methods, P4 medicine’s primary goal is to make the disease 
state predictable, preventable, and curable. However, individuals’ genetic and demo-
graphic information affects the molecular mechanisms that drive the disease stage, and 
identifying them requires deep learning approaches. In this work, we developed a trans-
fer model capable of predicting the disease state using RNAseq data (i.e., bulk transcrip-
tomics). Transcriptomic data is readily available through different projects (i.e., TCGA) 
and is also more dynamic than genomic data alone, as it also reveals changes in the epi-
genome of cells and how gene expression is modulated by different disease conditions 
but also, in the context of cancer cells, by the interaction of tumor cells and the tumor 
microenvironment. That means RNAseq captures the changes in disease cells by meas-
uring the cell’s gene expression profile. Because the changes in all genes are measured, 
RNAseq data is very comprehensive and suitable for applications in Deep Learning. Our 
fundamental goal in developing DeeP4med was to use deep learning to predict changes 
in gene expression profiles. In this regard, previous work has attempted to do this using 
different datasets. For example, DeepChrome uses histone modifications to predict gene 
expression profiles [38]. HE2RNA use histopathology images to predict gene expression 
profiles in tumor [39] or tuberculosis [40]. Some models, like Enformer [41] or similar 
models [42, 43], predict gene expression from DNA sequences. DeeP4med predicts nor-
mal gene expression from tumor gene expression and vice versa. One of DeeP4med’s 
uses is to predict how cancer would look if happening to a normal person. Suppose we 
have a normal gene expression profile of a healthy person in a specific tissue. The model 



Page 15 of 22Mahdi‑Esferizi et al. BMC Bioinformatics          (2023) 24:275  

can predict the probable tumor profile of that healthy person in the future. So we can 
find out which genes are involved in this process and reduce the risk of cancer in that 
person by prescribing certain drugs or taking special care. By developing such models 
using other omics data such as genomics, proteomic or metabolic, we can hope that 
besides predicting the expression profile, the model can also suggest specific and proper 
drugs for treatment. Developing this model and its capacity to predict the tumor state 
from healthy conditions will stimulate further research in P4 medicine. One of the thera-
peutic aspects of developing such models is integrating them with models that use deep 
learning in drug Repositioning [44, 45]. The use of combined models is a new horizon in 
the diagnosis and treatment of diseases.

Method
Our deep learning model contains two separate deep models, Classifier and Transferor, 
based on their function. We first trained a neural network called Classifier to classify 
the type of gene expression profiles (tumor or normal) and their corresponding tissues. 
Then, using Classifier as our discriminator, we trained Transferor, an autoencoder for 
transferring the type of gene expressions from the tumor to their nearest normal version 
and vice versa while keeping their tissue of origin unchanged. The Transferor is condi-
tioned on the type of input sample (tumor or normal) and simultaneously generates the 
normal and tumoral versions of the input. Classifier helps us accurately measure the per-
formance of the Transferor in terms of concordance between the expected type and tis-
sue and that of the first generated mRNA. Another performance measure that has been 
introduced to the loss function of the Transferor is the mean squared distance between 
the input sample and the second generated mRNA.

Experimental setup

The loss function of the Transferor is a weighted sum of three losses. The first two losses 
are computed based on the Classifier’s output and measure the Transferor’s perfor-
mance as a classification task. The third loss computes the distance between the gen-
erated mRNA and the input and can be considered a regression task. We used mean 
squared error to measure the distance between the input and the generated mRNA. We 
use cosine similarity to measure the correspondence between the type and tissue of the 
input and generated mRNA [46]. To assess the performance of the model, we used five-
fold cross-validation.

Classifier

The classifier has an architecture similar to that of the model proposed in DeePathology 
[46], which is an autoencoder augmented with two classifiers (see Fig. 4). In this work, 
after training the whole proposed architecture, we remove all layers related to mRNA 
reconstruction and only use the type and tissue classifier layers. Following DeePathology 
[46], to show that our autoencoder effectively separates the input samples, we visualize 
the embeddings at the bottleneck layer of DeeP4med.

This network can be symbolized as:
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Combination of autoencoder and classifier with weighted loss as below:

(3)(tissueoutput , typeoutput ,mRNAoutput) = MLPautoencoder
γ (mRNAinput)

(4)

w1 ∗MSE mRNAinput ,mRNAoutput + w2 ∗ Cosine Distance typeinput , typeoutput

+ w3 ∗ Cosine Distance tissueinput , tissueoutput

Fig. 4 The architecture of Classifier. This model gets an mRNA expression matrix as input and has three 
outputs, including tissue and type, modelled as a classification task, and mRNA expression, modelled as a 
regression task. The total loss function for training this network is a weighted sum of three losses (which are 
the cosine similarity between the predicted tissue and ground truth tissue, the cosine similarity between the 
predicted type and ground truth type, and the mean square error between the input mRNA expression and 
the reconstructed mRNA)
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Such that w1,w2 and w3 are weights and we set as they have used before [46]. We used 
only the classifier part of this network in learning Transferor, as we explained in Eq. (8).

Transferor

The transferor consists of an encoder and two decoders that share parameters. In each for-
ward pass of the model, an mRNA profile and its type are encoded and again concatenated 
to each type separately. The resulting vectors are encoded sequences of mRNA concate-
nated with a type that is opposite or the same as the input. Then, the type of augmented 
embeddings is fed to the decoders individually (Fig.  5). Formally, we can summarise the 
encoding process in Eq. (5).

MLPφ shows our encoder is parametrized by φ and h is the embedding of an mRNA 
given its type. Equations (6) and (7) show decoding.

We want DeeP4med to keep the tissue unchanged but control the type of mRNA. For-
mally, it should satisfy Eq. (8):

Each output of the Transferor contributes to the loss function: The first output, which 
should have the same tissue but the opposite type as the input, is evaluated by the Classifier. 
The second output, which should have the same tissue and the same type as the input, is 
used to measure the similarity between the input and output. Finally, the total loss for this 
network is a weighted sum of the cosine distance between the Classifier’s outputs and the 
expected tissue and type and the mean squared distance between the generated mRNA and 
the input. Mathematically, we have Eq. (9):

(5)h = MLPenc
φ (mRNAinput; type)

(6)mRNA
(1)

dec = MLPdec
ψ (h; typeoriginal)

(7)mRNA
(2)

dec = MLPdec
ψ (h; typeopposite)

(8)(typeoutput; tissueoutput) = MLP
Classifier
θ (mRNA

(2)

dec)

(9)

LossTotal = w1 ·MSE
(

mRNA
(1)

dec;mRNAinput

)

+ w2 · Cosine Distance
(

typeopposite; typeoutput
)

+ w3 · Cosine Distance
(

tissueinput; tissueoutput
)

Fig. 5 The high‑level architecture of Transferor together with Classifier for transferring mRNA profile. One 
output of the Transferor is fed to the Classifier to measure its performance. Transferor gets mRNA and its type 
as inputs of the encoder and embeds these two inputs to the last layer of the encoder. Then, the embedded 
vector is given once with its original type and once with the transferred type (opposite of its original type) to 
the decoder as inputs. The mean square error of this output and input mRNA expression is included as a part 
of the total loss of the Transferor. The total loss also includes the cosine similarity between predicted tissue 
with Classifier and ground truth tissue of input mRNA and the cosine similarity between the predicted type 
with Classifier and transferred type. Hence, the total loss function of the Transferor is a weighted sum of three 
losses

(See figure on next page.)
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At this stage, only the Transferor parameters are updated, and the classifier param-
eters are frozen.

Fig. 5 (See legend on previous page.)
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Hyperparameter tuning

In Neural Networks (NN), there are many hyperparameters, and tuning them is criti-
cal for finding the best model. Given that we used multilayer perceptron networks, the 
hyperparameters are:

• Units: The number of neurons in layers is critical to finding the best architecture.
• Activation function: In Artificial neural network (ANN), an activation function is 

applied after a weighted sum of input for each neuron. ReLU (Rectified linear unit) 
[47], defined as f(x) = max(0; x), widely used in ANN, was one of our selections for 
the activation function. Softplus (f(x) = ln(1 +  ex))[48] and Linear (f(x) = x) are 
another of our selection. Also, we use Elu (Exponential linear unit), which is defined 
as Eq. (10):

• Dropout rate: Dropout layer set to zero values with probability as defined rate. This is 
a widely used technique for preventing overfitting in recent years.

The hyperparameter search space is shown in the Additional file 1: Tables S9 and S10.

Conclusion
A general review of all the results shows that DeeP4med has been successful in terms of 
machine learning methods. Also, regarding biological results, DeeP4med performs rela-
tively well depending on the tissue type. Of course, DeeP4medis still needs to complete 
and have considered all aspects. Indeed, the performance of the model can be improved 
in future studies.

Abbreviations
DEGs  Differentially expressed genes
TCGA   The Cancer Genome Atlas
GTEx  Genotype‑tissue expression
SVC  Support vector classifier
LR  Logistic regression
LDA  Linear discriminant analysis
NBayes  Naive Bayes
DTree  Decision tree
RForest  Random forest
KNN  K nearest neighbors
PCA  Principal component analysis
TT  Transfer tumor
ON  Original normal
TN  Transfer normal
OT  Original tumor
LFC  Log fold change
GO  Gene ontology
CCLE  Cancer cell line encyclopedia
KEGG  Kyoto encyclopedia of genes and genomes
ChEA  ChIP enrichment analysis
PPI  Protein–protein interaction
ReLU  Rectified linear unit
Elu  Exponential linear unit
MLPM  Machine learning for personalized medicine
ANN  Artificial neural network

(10)f (x) =

{

ex − 1 ≤ 0

x > 0
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