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Abstract 

Background: In many applications of bioinformatics, data stem from distinct het-
erogeneous sources. One of the well-known examples is the identification of drug–
target interactions (DTIs), which is of significant importance in drug discovery. In this 
paper, we propose a novel framework, manifold optimization based kernel preserving 
embedding (MOKPE), to efficiently solve the problem of modeling heterogeneous 
data. Our model projects heterogeneous drug and target data into a unified embed-
ding space by preserving drug–target interactions and drug–drug, target–target 
similarities simultaneously.

Results: We performed ten replications of ten-fold cross validation on four different 
drug–target interaction network data sets for predicting DTIs for previously unseen 
drugs. The classification evaluation metrics showed better or comparable performance 
compared to previous similarity-based state-of-the-art methods. We also evaluated 
MOKPE on predicting unknown DTIs of a given network. Our implementation of the 
proposed algorithm in R together with the scripts that replicate the reported experi-
ments is publicly available at https:// github. com/ ocbin atli/ mokpe.

Keywords: Drug–target interaction prediction, Drug repurposing, Manifold 
optimization, Kernel methods, Machine learning

Background
Many applications and problems in bioinformatics require data originated from het-
erogeneous sources. One of the well-studied examples is the in silico identification of 
interactions between drugs and target proteins, which is a key area in genomic drug dis-
covery and drug repurposing [1]. High financial costs of conducting wet lab experiments 
to discover new interactions leads to a strong incentive to develop computational meth-
ods capable of detecting these potential drug-target interactions (DTIs) efficiently. In 
DTI prediction problem, we have heterogeneous data from two domains, drugs and tar-
gets. The cross-domain interactions correspond to the given data of experimentally vali-
dated drug–target interactions. The within-domain similarity scores correspond to the 
chemical similarities for drug–drug networks, and genomic similarities for target–target 
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networks. We want to approximate drug–target interactions, drug–drug and target–tar-
get similarities with Gaussian kernels to transfer local neighborhood information of the 
heterogeneous data to the projected subspace. Figure 1 shows the problem of predicting 
unknown DTIs using known DTIs and drug–drug, target–target similarities, as a con-
ceptual illustration.

Recently, many machine learning based methods, which transform knowledge about 
drugs, targets and known interactions into features that are pipelined to train predic-
tive models, have been developed. These machine learning models have been used to 
predict DTIs for drug repurposing or drug discovery, therefore, developing explainable 
and accurate novel models has gained attraction in the past decades with the advance 
of computational power and data analysis techniques. Recent global research effort on 
emerging infectious diseases (e.g., COVID-19) also shows the importance of the predic-
tive models when the need of developing effective treatments is urgent [2, 3]. For recent 
comprehensive surveys on DTI prediction models, we refer the reader to [4–8].

Section “Material and methods”  introduces the proposed embedding method, called 
manifold optimization based kernel preserving embedding (MOKPE), the data sets, and 
the experimental setup. Section “Experiments and results” explains comparison proce-
dure against the state-of-the-art similarity-based algorithms and evaluates MOKPE over 
four different data sets on the task of (i) predicting DTIs for unseen drugs and (ii) pre-
dicting unknown DTIs of a given network.

Material and methods
In this work, we follow the general framework of multiple kernel preserving embedding 
(MKPE) method, developed by Gönen [9], and propose preserving cross-domain inter-
actions and within-domain similarities of heterogeneous data simultaneously by approx-
imating them with kernels. Projecting the heterogeneous data into a unified embedding 
space is the central idea of our model formulation. To model both drug–target interac-
tions and drug–drug, target–target similarities, we assume that these are given as scor-
ing functions and we want to approximate these values in the projected space with kernel 
function values calculated in low-dimensional representations. We employ the limited-
memory Riemannian BFGS method-based algorithm (LRBFGS) of [10] to solve the cor-
responding optimization sub-problems, which are non-convex quadratic problems with 

Fig. 1 The conceptual schema of predicting DTI problem
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orthogonality constraints. Our framework can also be used with other cross-domain 
information retrieval tasks after defining scoring functions for cross-domain interac-
tions and within-domain similarities. Figure 2 illustrates the overview of our proposed 
optimization framework. It should be noted that our algorithmic framework can be 
extended for problems with more than two domains (e.g., modeling drug–target–disease 
interactions) (see S1, Additional file 1 for a detailed description of MOKPE).

To evaluate the performance of our algorithm, we tested it on the task of modeling 
four different biological interaction networks and we compare it against the state-of-the-
art algorithms based on different type of techniques. We used gold standard drug–target 
interaction data sets provided by [11]. We implement our algorithm in R programming 
language (version 4.0.2 [12]), and the source codes are publicly available at https:// 
github. com/ ocbin atli/ mokpe/. The source codes for the other algorithms that we com-
pared our method to are from [5, 13, 14].

All of the four data sets we used, Nuclear receptors (NR), G-protein-coupled receptors 
(GPCR), Ion channel (IC), and Enzyme (E), are important target families and publicly 
available at http:// web. kuicr. kyoto-u. ac. jp/ supp/ yoshi/ drugt arget/ [11]. The drug–drug 
and target–target similarity matrices are composed of KEGG LIGAND and KEGG 
GENES databases, respectively [15]. The adjacency matrices are composed of the inter-
action information provided by KEGG BRITE [15], BRENDA [16], SuperTarget [17], 
and DrugBank [18] databases [11]. Table 1 provides important information for the data 
sets in terms of numbers of drugs, targets, and experimentally validated interactions. 
Sparsity levels show the imbalance between known and unknown or non-existing DTIs, 
which reveal the importance of extracting intrinsic information from the drug and target 
spaces.

Fig. 2 The workflow of predicting drug target interactions from the drug chemical structures and the target 
(protein) sequences

Table 1 The drug–target interaction data sets provided by [11]

Data set Number of drugs Number of targets Number of known 
interactions

Sparsity (%)

NR 54 26 90 93.59

GPCR 223 95 635 97.00

IC 210 204 1476 96.55

Enzyme 445 664 2926 99.01

https://github.com/ocbinatli/mokpe/
https://github.com/ocbinatli/mokpe/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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We formulate the problem of modeling drug–target interaction networks as fol-
lows: D and T  correspond to sets of drugs and targets, respectively. The cross-domain 
interactions, namely, the set of experimentally validated drug–target interactions, are 
usually represented in the form of a binary matrix (i.e., 1 for the interacting pairs and 
0 for the non-interacting (unknown) pairs). We construct our cross-domain interac-
tion score from this binary interaction matrix as follows:

We set the interaction score to 0.9 for the interacting pairs. We leave the interaction 
score empty for the non-interacting pairs.

The chemical similarity score between two drug compounds is found by represent-
ing them as graphs and the Jaccard similarity coefficient is calculated over the sub-
structures of these two graphs [19]. Given two drugs di and dj , chemical similarity 
score between them can be found as follows:

The sequence similarity score between targets is found using a normalized version of 
Smith-Waterman score [20]. Given two targets t i and t j , genomic similarity score 
between them can be found as follows:

where SW(·, ·) gives the canonical Smith-Waterman score between two proteins. We use 
Gaussian kernels to approximate both similarity scores.

Our algorithm requires solving many non-convex quadratic optimization sub-prob-
lems with orthogonality constraints. Broyden-Fletcher-Goldfarb-Shanno algorithm 
(BFGS) is a commonly used iterative method for solving non-convex unconstrained 
optimization problems. It is a quasi-newton method that require only the gradient 
of the objective function to be supplied at each iteration, and measures the gradient 
vector differences to approximate the inverse of the Hessian [21]. Limited-memory 
BFGS (L-BFGS) is a computationally more efficient variant of BFGS, which stores and 
uses only the most recent solutions and gradient vectors to approximate the inverse 
Hessian [22, Chapter 9]. L-BFGS is widely used in non-convex unconstrained optimi-
zation and is known to perform well against the competitors (e.g., stochastic gradient 
descent, conjugate gradient), especially for low dimensional problems [21, 23]. Both 
BFGS and L-BFGS have extensions to Riemannian manifolds [10, 24, 25] which are 
suitable for our problem on optimization over the Stiefel manifold. We use limited-
memory Riemannian BFGS (LRBFGS) of [10] which performed best in our prelimi-
nary experiments whereas Riemannian BFGS (RBFGS) of [10] follows closely. Other 
benchmarks demonstrate similar results [10, 26, 27]. In the preliminary experiments, 
we also employed conjugate gradient, or stochastic gradient based manifold opti-
mization algorithms [28, 29], and they yielded only slightly better or similar results 

si
c,j =

0.9 if di and t j are interacting,
NA otherwise.

si
d,j =

|di ∩ dj|

|di ∪ dj|
.

si
t,j =

SW(t i, t j)
√

SW(t i, t i)SW(t j , t j)
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compared to our baseline algorithm, MKPE, steepest descent with Armijo-type line 
search (see S2, Additional file 1 for a detailed comparison of MOKPE and MKPE).

Experiments and results
Main computational bottleneck in solving our proposed model is the complexity of opti-
mization on the Stiefel manifold. In [9], a steepest descent method with Armijo’s rule 
based line search procedure was used. However, the batch steepest descent method 
may have slow rate of convergence [21, Chapter  3]. Therefore, we propose to use the 
algorithms specifically tailored to solve the optimization problems on Stiefel manifold. 
Throughout the last decade, many manifold optimization libraries have been released 
for use in different programming languages and machine learning frameworks (e.g., 
C++ [26], Julia [30, 31], Matlab [32], Python [33, 34], PyTorch [35, 36], R [37, 38], Ten-
sorflow [39]). Since the manifold optimization libraries and accompanying Riemannian 
optimization algorithms are still-evolving, promising lines of research [40, 41], using a 
manifold optimization library for our problem will provide a flexible framework which is 
easy to modify for novel algorithms, and will result with possible future improvements 
in terms of both evaluation metrics and computation times.

We show the performance of our out-of-sample embedding in predicting interac-
tions for unseen drugs. For all four data sets, we conduct ten replications of ten-fold 
cross-validation to test our model over previously unseen drugs. Drugs of training set 
are not included in the testing set. In this work, we employ ManifoldOptim  (version 
1.0.1 [38]), which is an R wrapper to C++ manifold optimization library ROPTLIB 
[26], for employing the algorithm LRBFGS in R. We use the default stopping criterion 
with default values to solve the sub-problems for NR, GPCR, and IC data sets. Due to 
the large size of the Enzyme data set, high computational time is needed, and we set the 
value of the stopping criteria tolerance to 10−4 when solving the sub-problems over the 
manifolds of drugs and targets. We use the default values for all other input parameters. 
We perform 25 iterations for all data sets since the training process usually converges 
between 15-25 iterations before the model starts overfitting in terms of AUROC values. 
For relatively smaller data sets NR and GPCR, the subspace dimensionality parameter, 
R, is set to 25, which is taken from {5, 10, 15, 20, 25} . For IC and Enzyme data sets, R is 
set to be 10, and 15, respectively, which is taken from {5, 10, 15} . In general, we see an 
increasing trend in performance measures for predicting DTIs with increasing subspace 
dimensionality, which is theoretically expected. It is possible to improve the results for 
all data sets (except NR, due to its small size) by adding more dimensions to the com-
mon subspace. MOKPE starts from randomly chosen points on both Stiefel manifolds 
and we use QR decomposition when randomly projecting matrices onto these manifolds 
during the initialization step [42].

We compare our method with some baseline and state-of-the-art algorithms, that 
utilize different types of techniques (e.g., neighborhood methods, matrix factoriza-
tion, graph-based, bipartite local models) and that are among the highest performing 
methods in their respective categories. In nearest profile method (NP), the interaction 
profile of an unseen drug is calculated via its chemically most similar nearest neigh-
bor’s interaction profile [11]. The weighted profile method (WP) is a generalized ver-
sion of NP, instead of the nearest compound, a weighted average of the unseen drug’s 
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similarities and their interaction profiles are used [11]. Laplacian Regularized Least 
Squares (LapRLS) is a semi-supervised learning framework that uses both labeled and 
unlabeled DTIs, and obtains predictions from both drug and target sides and com-
bines them [43]. Its objective function contains the minimization of prediction error 
and also includes a manifold regularization term that extends regularized least squares 
(RLS) with a Laplacian operator. While LapRLS estimates the drug and target spaces 
separately, Dual Laplacian Regularized Least Squares (DLapRLS) [13] approximates the 
interaction matrix of DTIs with interdependence of two spaces, by employing alternat-
ing least squares algorithm to solve the model, and the dual Laplacian regularization is 
used to smooth the weights. RLS-WNN is another RLS-based method that incorporates 
products of Gaussian kernels (GIP) constructed from DTI profiles [44]. A pre-process-
ing algorithm is used to approximate the drug interaction score profile for unseen drugs 
using the weighted nearest neighbors (WNN), and it is combined with GIP. Kernelized 
Bayesian matrix factorization with twin kernels (KBMF2K)[45], collaborative matrix fac-
torization (CMF) [46], weighted graph regularized matrix factorization (WGRMF) [47], 
and graph regularized generalized matrix factorization (GRGMF) [14] are the methods 
that approximate the DTI matrix by matrix decomposition. KBMF2K employs a Bayes-
ian formulation and uses variational approximation to project drugs and proteins into a 
unified subspace. CMF uses collaborative filtering, jointly approximating DTI matrix via 
two low-rank matrices that share the same subspace and approximate drug–drug and 
target–target similarity matrices. WGRMF is similar to CMF, but it preprocesses the 
interaction matrix to transform the binary values into interaction values with weighted 
nearest neighbor algorithm, and uses graph regularization for manifold learning to 
approximate the similarity matrices. GRGMF presents a model for predicting links in 
bipartite networks. The model is based on the assumption that the latent factor of each 
node, which is learned adaptively by its neighborhood information, of drugs and targets 
are correlated with each other and that the correlation can be represented by a bipar-
tite graph. Heterogeneous graph based inference (HGBI) [48] is an extended version 
of network-based inference method [49] that uses drug-target bipartite graph network 
similarity. Instead of a bipartite network, HGBI uses a network diffusion with incorpo-
rating drug–drug and target–target similarities on a heterogeneous network. For both 
MOKPE and compared methods, same testing and training drug sets are used in the 
experiments. Drugs in the test set are not present in the training set. In MOKPE, they 
are excluded both from the interaction matrix and the similarity matrices. Reported best 
hyper-parameters taken from [5, 13, 14] are used when running the compared methods 
(see S3, Additional file 1 for a detailed description of parameters for all methods).

Tables  2 and 3 give the average AUROC (area under the receiver operating charac-
teristic curve) and AUPRC (area under the precision-recall curve) values for MOKPE 
and compared algorithms. Best and the second best results in each column are bolded 
and underlined, respectively. In Figs. 3 and 4, we see the AUROC and AUPRC values for 
MOKPE and compared algorithms for each test set in the boxplots. Figs. 5 and 6 give 
the average AUROC and AUPRC values for MOKPE with changing number of itera-
tions. For MOKPE, we want to emphasize that there is an increasing trend for results 
with increasing subspace dimensionality for all data sets. It is anticipated that the pre-
diction performances in terms of AUPRC values might be improved on IC and Enzyme 
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data sets by increasing the number of iterations, increasing the subspace dimensionality 
and by fully exploiting the hyper-parameter space, especially for the stopping criteria of 
the sub-problems. Our experiments show that the results on the NR data set are unsta-
ble likely due to its small size, as aligned with previous research [5, 47, 50]. For the IC 
data set, all methods perform poorly compared to other data sets. Although the IC data 
set has more targets and more known interactions compared to the GPCR data set, the 
lesser ratio of the number of drugs to the number of targets may explain the phenomena 
[6]. Moreover, since the information for drugs is more valuable for the IC data set, this 
may give a disadvantage for methods (e.g., MOKPE) that have empty profiles for drug–
drug similarities for unseen drugs, and may explain the better results for methods that 
use the drug–drug similarity information for tested drugs (e.g., RLS-WNN with its pre-
processing for constructing temporary interaction profiles for unseen drugs). We note 
that many methods (e.g., DLapRLS, WGRMF, GRGMF) utilize preprocessed known 

Table 2 Average AUROC results (and standard deviations)

* indicates that MOKPE significantly outperforms this method with p < 0.05 using Mann–Whitney test. The highest result in 
each column is bolded and the second best is underlined

Methods Data set

NR GPCR IC E

Nearest profile 0.762* (0.013) 0.771* (0.004) 0.623* (0.010) 0.715* (0.012)

Weighted profile 0.768* (0.016) 0.813* (0.005) 0.765* (0.007) 0.783* (0.013)

LapRLS 0.760* (0.019) 0.810* (0.005) 0.752* (0.007) 0.774*(0.013)

DLapRLS 0.826 (0.015) 0.807* (0.011) 0.755* (0.012) 0.754* (0.011)

RLS-WNN 0.856 (0.015) 0.870 (0.006) 0.808 (0.009) 0.800* (0.012)

KBMF2K 0.798* (0.012) 0.810* (0.009) 0.792 (0.009) 0.724* (0.013)

CMF 0.806* (0.018) 0.807* (0.009) 0.767* (0.011) 0.795* (0.010)

WGRMF 0.874 (0.013) 0.878 (0.006) 0.801 (0.009) 0.822 (0.009)

GRGMF 0.874 (0.011) 0.879 (0.005) 0.814 (0.009) 0.825 (0.015)
HGBI 0.777* (0.013) 0.813* (0.004) 0.718* (0.008) 0.809 (0.014)

MOKPE 0.850 (0.015) 0.878 (0.005) 0.800 (0.007) 0.824 (0.010)

Table 3 Average AUPRC results (and standard deviations)

* indicates that MOKPE significantly outperforms this method with p < 0.05 using Mann–Whitney test. The highest result in 
each column is bolded and the second best is underlined

Methods Data set

NR GPCR IC E

Nearest Profile 0.427* (0.017) 0.275* (0.017) 0.209* (0.014) 0.225* (0.023)

Weighted Profile 0.380* (0.022) 0.231* (0.006) 0.193* (0.007) 0.116* (0.003)

LapRLS 0.367* (0.026) 0.219* (0.006) 0.177* (0.007) 0.110* (0.002)

DLapRLS 0.415* (0.026) 0.386 (0.008) 0.320 (0.017) 0.365 (0.018)

RLS-WNN 0.558 (0.023) 0.369 (0.012) 0.342 (0.019) 0.380 (0.022)

KBMF2K 0.491* (0.020) 0.380 (0.010) 0.316 (0.016) 0.249 (0.017)

CMF 0.528* (0.019) 0.400 (0.008) 0.355 (0.018) 0.391 (0.016)

WGRMF 0.592 (0.018) 0.420 (0.011) 0.378 (0.022) 0.409 (0.019)
GRGMF 0.506* (0.015) 0.367 (0.009) 0.366 (0.023) 0.363 (0.026)

HGBI 0.275* (0.024) 0.204* (0.011) 0.115* (0.009) 0.107* (0.006)

MOKPE 0.578 (0.023) 0.374 (0.008) 0.321 (0.015) 0.244 (0.016)
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interactions via WKNKN (weighted k-nearest known neighbors) algorithm to estimate 
the associations for the unseen drugs using drug–drug similarity matrix and improve 
their performance. We also note that RLS-WNN is a faster algorithm among the best 
performing algorithms. Matrix factorization methods are slower, although they are rel-
atively better in predicting DTIs. MOKPE is slower against its competitors, however, 
the implementation of the objective and gradient functions in C++ would yield with a 
faster performance as the ManifoldOptim developers noted [38]. The possible effects 
of newer algorithm developments, performance and quality improvements in manifold 
optimization algorithms will also be seen easily in our framework.

Validation of newly predicted drug–target interactions

To show the effectiveness of our method, we also look for the prediction of new 
DTIs that are unknown in the original data sets. The data sets we used [11] were 
developed over a decade ago, and many novel DTIs were discovered after the com-
pilation of original data sets. In these second set of experiments, we use the entire 
data set as a training set, and project drugs and proteins into a two-dimensional 
embedding space (i.e. subspace dimensionality R is equal to 2) for the data sets NR 
and GPCR, ten-dimensional and fifty-dimensional embedding spaces for the data 

Fig. 3 Boxplots to illustrate the prediction performance of MOKPE and compared algorithms on the NR, 
GPCR, IC and E data sets. Each point shows the evaluation of a test set in terms of AUROC value
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Fig. 4 Boxplots to illustrate the prediction performance of MOKPE and compared algorithms on the NR, 
GPCR, IC and E data sets. Each point shows the evaluation of a test set in terms of AUPRC value

Fig. 5 The classification performance of MOKPE with increasing number of iterations in terms of average 
AUROC values
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sets IC and Enzyme, respectively. The algorithm is terminated when the improve-
ment over the objective function value of the training loss is smaller than 10−6 for 
two consecutive outer iterations. For the inner iterations, the default parameter val-
ues are used for all data sets when calling the manifold optimization library. We 
rank the novel predictions according to their Euclidean distances in the embedding 
space and list the top twenty-five ranked interactions for the above mentioned data 
sets. We check the novel interactions using updated curated databases KEGG [15, 
51, 52], DrugBank [53], Comparative Toxicogenomics Database (CTD) [54], Guide 
to Pharmacology (GtP) [55], the Drug-Gene Interaction Database (DGIdb) [56], and 
Drug Target Commons (DTC) [57] to validate our results. Tables 4, 5, 6 and 7 lists 
the top twenty-five interactions for NR, GPCR, IC, and Enzyme data sets, and it 
can be seen that 27 out of 100 novel DTIs are validated by the sources. It should 
be noted that the invalidations for DTIs are rarely reported [58], and the absence 
of a validation does not necessarily mean a false positive. We also illustrate and 
publish two-dimensional embeddings for all four data sets (e.g., Fig. 7), along with 
the corresponding embedding coordinates and the top twenty-five ranked predic-
tions, which can be seen and downloaded at https:// ocbin atli. shiny apps. io/ embed 
ding_ netwo rks.

Conclusions
Identifying drug–target interactions is crucial for drug development and repur-
posing. Therefore, predicting drug–target interactions with in silico applications 
have received extensive interest due to its importance in human biology. We have 

Fig. 6 The classification performance of MOKPE with increasing number of iterations in terms of average 
AUPRC values

https://ocbinatli.shinyapps.io/embedding_networks
https://ocbinatli.shinyapps.io/embedding_networks
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Table 4 Top-25 ranked novel DTIs predicted on the NR data set by MOKPE

Drug ID Drug name Target ID Target name Validation source

Data Set: NR (R=2)

 D00462 Oxandrolone hsa4306 NR3C2 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 2)

None

 D00348 Isotretinoin hsa6096 RORB (RAR Related Orphan 
Receptor B)

None

 D00690 Mometasone furoate hsa2908 NR3C1 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 1)

KEGG & DRUGBANK

 D00075 Testosterone hsa5241 PGR (Progesterone Receptor) CTD

 D00088 Hydrocortisone hsa5241 PGR (Progesterone Receptor) None

 D00962 Clomiphene citrate hsa2101 ESRRA (Estrogen Related 
Receptor Alpha)

None

 D00898 Dienestrol hsa2101 ESRRA (Estrogen Related 
Receptor Alpha)

None

 D00348 Isotretinoin hsa5915 RARB (Retinoic Acid Recep-
tor Beta)

KEGG & CTD

 D00956 Nandrolone phenpropionate hsa4306 NR3C2 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 2)

None

 D00348 Isotretinoin hsa5916 RARG (Retinoic Acid Recep-
tor Gamma)

KEGG & DRUGBANK & CTD

 D00443 Spironolactone hsa2908 NR3C1 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 1)

DRUGBANK

 D00348 Isotretinoin hsa6097 RORC (RAR Related Orphan 
Receptor C)

None

 D00956 Nandrolone phenpropionate hsa5241 PGR (Progesterone Receptor) None

 D00956 Nandrolone phenpropionate hsa2908 NR3C1 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 1)

None

 D00962 Clomiphene citrate hsa2104 ESRRG (Estrogen Related 
Receptor Gamma)

None

 D00898 Dienestrol hsa2104 ESRRG (Estrogen Related 
Receptor Gamma)

None

 D00962 Clomiphene citrate hsa2103 ESRRB (Estrogen Related 
Receptor Beta)

None

 D00316 Etretinate hsa6096 RORB (RAR Related Orphan 
Receptor B)

None

 D00962 Clomiphene citrate hsa2100 ESR2 (Estrogen Receptor 2) KEGG

 D00951 Medroxyprogesterone 
acetate

hsa2908 NR3C1 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 1)

CTD

 D00898 Dienestrol hsa2103 ESRRB (Estrogen Related 
Receptor Beta)

None

 D00898 Dienestrol hsa2100 ESR2 (Estrogen Receptor 2) KEGG

 D00075 Testosterone hsa2908 NR3C1 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 1)

DTC & CTD

 D00075 Testosterone hsa4306 NR3C2 (Nuclear Recep-
tor Subfamily 3 Group C 
Member 2)

DRUGBANK & CTD

 D00327 Fluoxymesterone hsa5241 PGR (Progesterone Receptor) None
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Table 5 Top-25 ranked novel DTIs predicted on the GPCR data set by MOKPE

Drug ID Drug name Target ID Target name Validation source

Data Set: GPCR (R=2)

 D01692 Alfuzosin hydrochloride hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

None

 D00613 Fenoldopam mesylate hsa11255 HRH3 (Histamine Recep-
tor H3)

None

 D00613 Fenoldopam mesylate hsa59340 HRH4 (Histamine Recep-
tor H4)

None

 D00965 Nilutamide hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

None

 D04375 Guanabenz hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

KEGG & GtP

 D00318 Famotidine hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

None

 D00380 Tolbutamide hsa134 ADORA1 (Adenosine A1 
Receptor)

None

 D00514 Dexmedetomidine hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

KEGG & GtP

 D02327 Doxylamine succinate hsa1131 CHRM3 (Cholinergic Recep-
tor Muscarinic 3)

None

 D02234 Cyproheptadine hydro-
chloride

hsa11255 HRH3 (Histamine Recep-
tor H3)

None

 D02327 Doxylamine succinate hsa1133 CHRM5 (Cholinergic Recep-
tor Muscarinic 5)

None

 D02340 Loxapine hsa1129 CHRM2 (Cholinergic Recep-
tor Muscarinic 2)

DRUGBANK

 D01965 Silodosin hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

None

 D01973 Eletriptan hydrobromide hsa3356 HTR2A (5-Hydroxy-
tryptamine Receptor 2A)

None

 D00079 Dinoprostone hsa5731 PTGER1 (Prostaglandin E 
Receptor 1)

DRUGBANK & DTC & CTD 
& GtP

 D02357 Methysergide hsa3360 HTR4 (5-Hydroxytryptamine 
Receptor 4)

None

 D02340 Loxapine hsa1128 CHRM1 (Cholinergic Recep-
tor Muscarinic 1)

DRUGBANK

 D02349 Dipivefrin hsa3274 HRH2 (Histamine Recep-
tor H2)

None

 D02327 Doxylamine succinate hsa1132 CHRM4 (Cholinergic Recep-
tor Muscarinic 4)

None

 D01020 Methoxamine hydrochloride hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

None

 D00437 Nifedipine hsa3274 HRH2 (Histamine Recep-
tor H2)

None

 D02349 Dipivefrin hsa152 ADRA2C (Adrenoceptor 
Alpha 2C)

KEGG

 D02327 Doxylamine succinate hsa1814 DRD3 (Dopamine Receptor 
D3)

None

 D01164 Aripiprazole hsa1129 CHRM2 (Cholinergic Recep-
tor Muscarinic 2)

DRUGBANK

 D01297 Pirenzepine hydrochloride hsa1131 CHRM3 (Cholinergic Recep-
tor Muscarinic 3)

KEGG
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Table 6 Top-25 ranked novel DTIs predicted on the IC data set by MOKPE

Drug ID Drug name Target ID Target name Validation source

Data Set: IC (R=10)

 D00349 Isradipine hsa773 CACNA1A (Calcium Voltage-
Gated Channel Subunit 
Alpha1 A)

None

 D00349 Isradipine hsa777 CACNA1E (Calcium Voltage-
Gated Channel Subunit 
Alpha1 E)

CTD

 D00638 Flecainide acetate hsa8645 KCNK5 (Potassium Two Pore 
Domain Channel Subfamily 
K Member 5)

None

 D00349 Isradipine hsa774 CACNA1B (Calcium Voltage-
Gated Channel Subunit 
Alpha1 B)

None

 D03991 Encainide hydrochloride hsa8645 KCNK5 (Potassium Two Pore 
Domain Channel Subfamily 
K Member 5)

None

 D00349 Isradipine hsa5310 PKD1 (Polycystin 1, Transient 
Receptor Potential Channel 
Interacting)

None

 D00438 Nimodipine hsa773 CACNA1A (Calcium Voltage-
Gated Channel Subunit 
Alpha1 A)

None

 D00619 Verapamil hydrochloride hsa3739 KCNA4 (Potassium Voltage-
Gated Channel Subfamily A 
Member 4)

None

 D03365 Nicotine hsa1137 CHRNA4 (Cholinergic 
Receptor Nicotinic Alpha 4 
Subunit)

KEGG & DRUGBANK & DTC 
& GtP

 D00438 Nimodipine hsa781 CACNA2D1 (Calcium 
Voltage-Gated Channel 
Auxiliary Subunit Alpha2d-
elta 1)

None

 D00349 Isradipine hsa782 CACNB1 (Calcium Voltage-
Gated Channel Auxiliary 
Subunit Beta 1)

None

 D00438 Nimodipine hsa779 CACNA1S (Calcium Voltage-
Gated Channel Subunit 
Alpha1 S)

KEGG & DRUGBANK & GtP

 D05024 Mibefradil dihydrochloride hsa5310 PKD1 (Polycystin 1, Transient 
Receptor Potential Channel 
Interacting)

None

 D05024 Mibefradil dihydrochloride hsa774 CACNA1B (Calcium Voltage-
Gated Channel Subunit 
Alpha1 B)

None

 D00647 Dofetilide hsa9424 KCNK6 (Potassium Two Pore 
Domain Channel Subfamily 
K Member 6)

None

 D00364 Loratadine hsa3737 KCNA2 (Potassium Voltage-
Gated Channel Subfamily A 
Member 2)

None

 D00615 Amlodipine besylate hsa774 CACNA1B (Calcium Voltage-
Gated Channel Subunit 
Alpha1 B)

None

 D00640 Propafenone hydrochloride hsa3743 KCNA7 (Potassium Voltage-
Gated Channel Subfamily A 
Member 7)

None

 D00619 Verapamil hydrochloride hsa3741 KCNA5 (Potassium Voltage-
Gated Channel Subfamily A 
Member 5)

None
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introduced a drug–target interaction prediction framework, called manifold opti-
mization based kernel preserving embedding, which can also be used for modeling 
other types of biological interaction networks or cross-domain information retrieval 
tasks. Our method maps objects from different domains (i.e., drugs and targets) into 
a unified embedding space by preserving both cross-domain interactions and within-
domain similarities, which are approximated with Gaussian kernels. Our framework 
is able to transfer local neighborhood information from the provided interactions and 
similarities, and to conduct out-of-sample embedding via using the non-linear ker-
nels in the embedding space. Experimental results against state-of-the-art methods 
using AUROC and AUPRC evaluation metrics, and predicting novel DTIs that are 
validated with newer databases, show the success of our method.

The future direction of DTI prediction is expected to focus on improving the accu-
racy of predictions by incorporating more data sources (e.g., side-effects, biologi-
cal functions, etc.) and developing more combined machine learning methods [59]. 
Our method can be extended to integrate multiple related data sources. Although 
most targets are proteins, recent studies show that it is also important to consider 
the interactions between drugs and small molecules (e.g., microRNAs, non-coding 
RNAs), and exploring the potential associations between these small molecules and 
diseases is crucial in the drug development process to improve the treatment of com-
plex diseases [60]. Our method can also be used in this line of research (e.g., [61, 62]) 
for the predictions within this new class of drug-targets.

Employing a manifold optimization library for the optimization steps provides 
a flexible, easy-to-update framework. Another advantage of MOKPE is, it does not 
require complex hyper-parameter selection, therefore, it is simple to use and valu-
able in many real-life applications. Although our method demonstrates a significant 
performance for the gold standard data sets, further investigations of drug–tar-
get networks with larger sizes, or other large-size heterogeneous networks that are 

Table 6 (continued)

Drug ID Drug name Target ID Target name Validation source

 D00616 Diltiazem hydrochloride hsa3739 KCNA4 (Potassium Voltage-
Gated Channel Subfamily A 
Member 4)

None

 D01969 Gallopamil hydrochloride hsa778 CACNA1F (Calcium Voltage-
Gated Channel Subunit 
Alpha1 F)

KEGG

 D00364 Loratadine hsa3746 KCNC1 (Potassium Voltage-
Gated Channel Subfamily C 
Member 1)

None

 D00619 Verapamil hydrochloride hsa3746 KCNC1 (Potassium Voltage-
Gated Channel Subfamily C 
Member 1)

None

 D00647 Dofetilide hsa3756 KCNH1 (Potassium Voltage-
Gated Channel Subfamily H 
Member 1)

GtP

 D00619 Verapamil hydrochloride hsa3737 KCNA2 (Potassium Voltage-
Gated Channel Subfamily A 
Member 2)

None
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Table 7 Top-25 ranked novel DTIs predicted on the Enzyme data set by MOKPE

Drug ID Drug name Target ID Target name Validation source

Data Set: E (R=50)

 D00542 Halothane hsa1571 CYP2E1 (Cytochrome 
P450 Family 2 Subfamily E 
Member 1)

KEGG & DRUGBANK & CTD

 D00377 Mesalamine hsa246 ALOX15 (Arachidonate 
15-Lipoxygenase)

None

 D00377 Mesalamine hsa239 ALOX12 (Arachidonate 
12-Lipoxygenase, 12S Type)

None

 D00377 Mesalamine hsa242 ALOX12B (Arachidonate 
12-Lipoxygenase, 12R Type)

None

 D00377 Mesalamine hsa4048 LTA4H (Leukotriene A4 
Hydrolase)

None

 D00377 Mesalamine hsa247 ALOX15B (Arachidonate 
15-Lipoxygenase Type B)

None

 D00574 Aminoglutethimide hsa1589 CYP21A2 (Cytochrome 
P450 Family 21 Subfamily A 
Member 2)

None

 D00960 Anastrozole hsa1586 CYP17A1 (Cytochrome 
P450 Family 17 Subfamily A 
Member 1)

None

 D01425 Lopinavir hsa1586 CYP17A1 (Cytochrome 
P450 Family 17 Subfamily A 
Member 1)

None

 D00437 Nifedipine hsa1585 CYP11B2 (Cytochrome 
P450 Family 11 Subfamily B 
Member 2)

CTD

 D03778 Fadrozole hydrochloride 
hydrate

hsa1586 CYP17A1 (Cytochrome 
P450 Family 17 Subfamily A 
Member 1)

None

 D00964 Letrozole hsa1586 CYP17A1 (Cytochrome 
P450 Family 17 Subfamily A 
Member 1)

CTD

 D02451 Fadrozole hydrochloride hsa1586 CYP17A1 (Cytochrome 
P450 Family 17 Subfamily A 
Member 1)

None

 D00139 Methoxsalen hsa1543 CYP1A1 (Cytochrome 
P450 Family 1 Subfamily A 
Member 1)

DRUGBANK & CTD

 D00691 Dyphylline hsa5152 PDE9A (Phosphodiesterase 
9A)

None

 D03781 Liarozole fumarate hsa1589 CYP21A2 (Cytochrome 
P450 Family 21 Subfamily A 
Member 2)

None

 D00960 Anastrozole hsa1589 CYP21A2 (Cytochrome 
P450 Family 21 Subfamily A 
Member 2)

None

 D03781 Liarozole fumarate hsa284541 CYP4A22 (Cytochrome 
P450 Family 4 Subfamily A 
Member 22)

None

 D03784 Liarozole hydrochloride hsa1589 CYP21A2 (Cytochrome 
P450 Family 21 Subfamily A 
Member 2)

None

 D00960 Anastrozole hsa284541 CYP4A22 (Cytochrome 
P450 Family 4 Subfamily A 
Member 22)

None

 D03781 Liarozole fumarate hsa8529 CYP4F2 (Cytochrome 
P450 Family 4 Subfamily F 
Member 2)

None
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tangential to the DTI prediction evaluation (i.e., drug–disease networks) will be pos-
sible with further improvements in terms of computational cost.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05401-1.

Additional file 1. Chap. S1. The detailed mathematical modeling and pseudo-code of MOKPE. Chap. S2. A compari-
son of MOKPE against the Steepest Descent Method. Chap. S3. The hyper-parameter settings that are used in the 
compared methods.

Table 7 (continued)

Drug ID Drug name Target ID Target name Validation source

 D00960 Anastrozole hsa8529 CYP4F2 (Cytochrome 
P450 Family 4 Subfamily F 
Member 2)

None

 D03781 Liarozole fumarate hsa4051 CYP4F3 (Cytochrome 
P450 Family 4 Subfamily F 
Member 3)

None

 D00964 Letrozole hsa1589 CYP21A2 (Cytochrome 
P450 Family 21 Subfamily A 
Member 2)

None

 D00960 Anastrozole hsa4051 CYP4F3 (Cytochrome 
P450 Family 4 Subfamily F 
Member 3)

None

Fig. 7 The two-dimensional embeddings on the GPCR data set. Orange and purple points denote drugs and 
targets, respectively

https://doi.org/10.1186/s12859-023-05401-1
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