
Causal discovery approach 
with reinforcement learning for risk factors 
of type II diabetes mellitus
Xiu‑E. Gao1, Jian‑Gang Hu2, Bo Chen3*, Yun‑Ming Wang2 and Sheng‑Bin zhou1 

Introduction
Quality-of-life improvements and lifestyle changes have increased the proportion of 
diabetic patients worldwide annually. Diabetes has become an epidemic disease that 
seriously threatens human health [1–3], The risk factors of diabetes are of significant 
interest to medical professionals and researchers. These risk factors must be analyzed 
effectively. Currently, the related studies worldwide primarily focus on two issues: the 
discovery of new risk factors and the analysis of the relationships between risk factors.

Discovery of new risk factors

In studies pertaining to different populations and ethnicities, many risk factors of diabe-
tes have been identified. Studies [4, 5] confirmed the clinical value of glycated albumin 
through the diagnosis of diabetes mellitus. Tatsukawa et al. [6] discovered that the risk 
of diabetes in Asian populations presents a significant negative correlation with trunk fat 
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and leg fat. Park et al. [7] identified body fat percentage (BF%) as a risk factor for type II 
diabetes mellitus (T2DM) in Koreans and discovered that an increasing BF% amplifies 
the risk of T2DM. Chen et al. [8]recognized “has_circ_CCNB1” and “has_circ_0009024” 
as potential risk factors of T2DM. Karamzad et al. [9] learned that the iron-regulating 
hormone/ferritin ratio is a highly predictive risk factor for T2DM. Ke et al. [10]demon-
strated the positive correlation between maternal body mass gain during pregnancy and 
the risk of developing gestational diabetes mellitus. Shuping Zhang et al. [11] proved the 
positive correlation between the visceral adiposity index and T2DM occurrence among 
Chinese. The discovery of new risk factors can result in the early prevention of diabetes.

Analysis of relationships between risk factors

The relationships between risk factors of diabetes have been primarily investigated via 
correlation analysis and causality analysis. Huang et  al. [12] examined the interaction 
between biochemical markers in the development of diabetes. Zhu et  al. [13] demon-
strated that glycated hemoglobin is affected by visceral fat, total fat, total lean body mass, 
and the lean body mass of trunk and limbs. Bilal et al. [14] identified severe depression 
(SD) and perceived ethnic discrimination (PED) as risk factors for T2DM in sub-Saharan 
African migrants and reported that both SD and PED are positively associated with fast-
ing blood glucose level. Wang et al. [15] constructed a causal prediction model for diabe-
tes and studied the correlation among various risk factors, but did not reveal the causal 
relationship among risk factors. Wang et al. [16] revealed a potential causal relationship 
between abdominal obesity and hyperglycemia. Liu et al. [17] revealed the causal rela-
tionship between nonalcoholic fatty liver disease and central obesity. Previous analysis 
of the relationships among diabetes risk factors provides insight into the etiology and 
progression of diabetes.

The study of diabetes risk factors not only enhances the understanding of the patho-
physiology of diabetes but also facilitates medical professionals in prescribing the 
appropriate medicine and reducing the side effects of medicines. Currently, statistical 
correlation analysis is the most typically used approach to investigate T2DM risk factors. 
However, this approach cannot readily reveal the causal relationships among risk fac-
tors and does not provide clinical decision-makers with the necessary causal knowledge. 
Moreover, the existing causal studies only elaborate the causal links between variables, 
i.e., intuitive descriptions and comprehensive analysis of their causal relationships are 
not provided.

Hence, a causal discovery approach with reinforcement learning for T2DM risk factors 
is proposed herein; the structure of the approach is illustrated in Fig. 1. The proposed 
approach yields the final causal structure of risk factors in two stages, namely, causal 
discovery and causal strength calculation [18, 19]. The skeleton of the causal structure 
is established using the causal discovery algorithm with reinforcement learning. Spe-
cifically, a directed graph is generated using an encoder–decoder model. Subsequently, 
the score function and two constraints of the graph are combined into a reward term to 
reinforce the acyclicity of the graph and to output the best return graph. Based on the 
skeleton of the causal structure, the causal strength is calculated as follows: the strength 
of each causal relationship is computed, and the complete causal structure is regarded as 
the final output. The proposed approach allows a more detailed description of the causal 
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relationships between risk factors to be obtained and facilitates diabetes prevention and 
control research.

The contributions of this study are as follows:

(1) A reinforcement learning model for T2DM risk factors is constructed.
(2) A causal discovery algorithm for T2DM risk factors is designed.
(3) Several experiments are designed using different diabetes datasets to verify the pro-

posed causal discovery approach for T2DM risk factors.
(4) The causal discovery results on different datasets are analyzed, and the causal rela-

tionships obtained using the proposed algorithm are shown to be reasonable.

The potential of our approach in mining the causal relationships between T2DM risk 
factors is confirmed based on a causal discovery model with reinforcement learning for 
risk factors, the process design of the causal discovery algorithm, and an experimental 
verification of the algorithm.

The remainder of this paper is organized as follows: “Methods” Section presents the 
causal discovery model with reinforcement learning for T2DM risk factors and the pro-
cess involved in the causal discovery algorithm with reinforcement learning for T2DM 
risk factors. “Experiments” Section provides an analysis of the causal discovery algo-
rithm for T2DM risk factors. “Discussion” Section discusses the experimental results 
based on the proposed causal approach. “Conclusions” Section provides a summary of 
the current research and recommendations for future research directions.

Methods
Algorithm principle

As shown in Fig. 1, the proposed model comprises two stages, namely, causal discovery 
with reinforcement learning, and calculation of inverse information entropy (IIE) causal 
strength. The model input is the observed dataset X = {x1, x2, x3, . . . , xi} , where xi rep-
resents the dimension of the input observation data, and the model output is the causal 

Fig. 1 Structure of the proposed causal discovery approach with reinforcement learning for T2DM risk factors
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structure composed of a causal graph G and causal strengths. Figure 2 shows the causal 
structure simulated by the observed data O = {G, S} , where S denotes the strength of a 
causal relationship in graph G.

The model employs an encoder–decoder model to generate a directed graph. The 
encoder, which is the same as that in the original model [20], is composed of six identi-
cal encoding layers comprising two sublayers each. The first sublayer is a multi-headed 
self-attention network, and the second sublayer is a fully connected feedforward net-
work arranged based on position. The sublayers are connected via residual connections. 
Finally, the output of each sublayer is normalized as follows:

where Sublayer(x) is a function realized by the sublayer. To ensure connectivity, the 
outputs of all sublayers and embedding layers in the model are of the same dimension 
dmodel = 512.

Considering the connection between different variables, a single-layer decoder is used.

where W1,W2 ∈ R
dh×dn and u ∈ R

dh×1 are trainable parameters, dh is the number of hid-
den layers associated with the decoder and dn is the dimension of the encoder output 
encs. To generate the adjacency matrix, each item is input to the sigmoid function and 
then sampled based on a Bernoulli distribution with probability σ(g) , which represents 
the probability of edges between variables.

At the same time, in order to avoid self-circulation of variables, the (i, i)th item in the 
adjacency matrix will be directly marked. When the encoder information of all variables 
is cyclically input, a complete directed graph adjacency matrix can be obtained.

The score function uses the Bayesian information criterion (BIC). Since the BIC score 
is uniquely decomposable, the penalty term can be adjusted when applying this score. 
The BIC score function on graph G can be expressed as follows:

(1)Layer Norm(x + Sublayer(x))

(2)g(W1,W2,u) = uT tanh(W1enci +W2encj)

(3)M ∼ Ber(σ (g))

Fig. 2 Causal structure simulated using observed data
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where 
∧

L is the maximum likelihood estimation, dL is the dimension of parameter L and 
m is the amount of data X.

To ensure that a directed acyclic graph is created, a score function and two acyclic 
constraints are incorporated into the reward and penalty terms.

where I(·) is the indicator function, �1, �2 are hyperparameters in model training, 
A ∈ {0, 1}d×d and h(A) is a function proposed by Zhang et al [21]. The binary adjacency 
matrix of a directed graph G is acyclic if and only if the following holds true:

where eA is the matrix exponent of A.
The expected return on training can be expressed as follows:

where π(·|s) and ϕ are the strategy and neural network parameters for graph generation, 
respectively. During training, the input is constructed by obtaining random samples 
from the observed dataset X. The output of the encoder is imported to the critic, which 
is a simple two-layer feedforward neural network with the tanh function. The critic 
solves the mean squared error between the predicted and actual rewards and penalties, 
and is trained using the Adam optimizer.

Based on [19], the IIE causal strength can be expressed as follows:

where S(px1) and S(px2) are the information entropies of variables x1 and x2 , respectively. 
For a finite point set, the entropy of the probability distribution for the risk factors can 
be estimated using the entropy estimator [22, 23] as follows:

where ψ(n) is the double gamma function and n is the dimension of the variable diabetes 
data X.

Based on Eq. (8), the IIE causal strength is calculated using raw data. However, the 
calculated causal strength may deviate from the actual value owing to the dimensionality 
difference between variables in the raw data. Thus, the IIE causal strength of the normal-
ized data is expressed as follows:

(4)SBIC(G) = −2 log p(X;
∧

L;G)+ dL logm

(5)reward = −[SBIC(G)+ �1I(G /∈ DAGs)+ �2h(A)]

(6)h(A) = trace(eA)− d = 0

(7)J (ϕ|s) = EA∼π(·|s){−[SBIC(G)+ �1I(G /∈ DAGs)+ �2h(A)]}

(8)T =
1

|S(pX2)− S(pX1)|

(9)
∧

S(X) = ψ(n)− ψ(1)+
1

n− 1

n−1

i

log |xi+1 − xi|

(10)TN =
1

|S(pX2,N )− S(pX1,N )|
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Algorithm flow

The proposed causal discovery approach with reinforcement learning for T2DM risk 
factors comprises three stages, namely, data processing, causal discovery, and causal 
strength calculation.

As shown in Fig. 3, the proposed approach comprises the following steps:
Step 1 Enter and normalize the observed data pertaining to diabetes risk factors.
Step 2 Set hyperparameters such as number of iterations, model training device, 

and scoring function.
Step 3 Import the normalized data to the encoder for encoding.
Step 4 Import the outputs of the encoder and the critic to the decoder, which per-

forms calculation using Eq. (2) and obtains samples based on a Bernoulli distribution 
with probability.

Step 5 Rate the output directed graph using Eq. (3), return the rewards and penal-
ties to the critic, and save the maximum reward and penalty.

Step 6 Assess if the preset number of iterations is reached. If yes, output the directed 
graph of the maximum score; otherwise, return to Step 3.

Step 7 Based on the output directed graph from Step 6, calculate the causal strength 
using the normalized data and remove redundant or wrong edges with causal strength 
of less than 0.5.

Step 8 Output the final causal structure.

Fig. 3 Process of proposed approach
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Experiments
In order to verify the effectiveness of the reinforcement learning causal discovery 
method for T2DM risk factors proposed in this paper, two real data causal discov-
ery simulations are designed in the experimental part. Through the experiment, the 
causal structure of the corresponding data can be clearly displayed, which is conveni-
ent for comparative analysis of the correctness of the generated causal structure.

Experimental data

The experimental data were obtained from two sources: (1) Two Pima Indian diabetes 
datasets, which contained 768 [24] and 2000 [25] samples, separately (Note: All sam-
ples are female), The data comes from the Kaggle platform; (2) A diabetes dataset was 
synthetized from search results on the website of the National Health and Nutrition 
Examination Survey (NHANES) [26]. The acquisition process of the NHANES data 
set is briefly described as follows: First, the data from 2011 to 2020 were counted, 
and the data before 2011 were different from the current human body data, which 
was not representative, so the data before 2011 were excluded; at the same time, Due 
to the impact of the new coronavirus, there are many missing data after 2020, so the 
data after 2020 are also excluded; secondly, 16 kinds of physiological data that may be 
related to diabetes are downloaded, such as blood sugar concentration, glycosylated 
hemoglobin and BMI, etc.; again, according to the investigator number (SEQN), the 
data of the same person were integrated; finally, the data containing null and invalid 
values were deleted, and finally the NHANES data set with a sample size of 13921 was 
generated.

The Pima Indian diabetes datasets comprised eight variables: gravidity X1 , 2-h glu-
cose level X2 , diastolic blood pressure (mm Hg) X3 , triceps skin fold thickness (mm) 
X4 , 2-h insulin level (mu U/mL) X5 , body mass index (BMI) X6 , diabetes pedigree 
function X7 , and age X8 . Among them, the diabetes pedigree function contained 
genetic information regarding the subject’s family history of diabetes.

The NHANES dataset included 13 variables: age X1 , race X2 , diastolic blood 
pressure X3 , body weight X4 , BMI X5 , albumin in urine X6 , creatinine in urine X7 , 
high-density lipoprotein X8 , triglycerides X9 , low-density lipoprotein X10 , glycated 
hemoglobin X11 , insulin X12 , and fasting glucose X13.

Experimental analysis

Pima Indian diabetes datasets

Figures 4 and 5 show the causal structures of risk factors in the two Pima Indian dia-
betes datasets, which contained 768 and 2000 samples, separately. The structures 
were obtained via the proposed approach, which normalizes the raw data in the first 
step. One identical causal relationship, i.e., X5 → X2 , was shown in the two figures, 
which indicates that a change in the insulin level alters the plasma glucose level. 
Figure  5 shows an additional causal relationship, i.e., X8 → X3 , which shows that a 
change in age alters the diastolic blood pressure. Furthermore, Figs.  4 and 5 show 
that two causal relationships between risk factors are changed: (1) the relationship 
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between triceps skin fold thickness X4 and BMI X6 ; (2) the relationship between gra-
vidity X1 and age X8 . In addition, the diabetes pedigree function does not indicate a 
causal relationship with other variables.

Comparing the causal strengths in Figs. 4 and 5, the causal structure of the set contain-
ing 2000 samples generally exhibits a higher causal strength than that of the set contain-
ing 768 samples. This implies that a larger sample size stabilizes the causal structure of 
the risk factors more effectively. Moreover, the causal strength between a pair of vari-
ables tends to increase as the sample size increases from 768 to 2000. Thus, the causal 
relationships are more convincing in larger datasets.

To reveal the manner by which data normalization affects the causal discovery 
approach for risk factors, the same causal discovery experiment of risk factors was per-
formed using the raw data. Figures 6 and 7 show the causal structures of risk factors in 
the two Pima Indian diabetes datasets, which contained 768 and 2000 samples, respec-
tively. This time, the raw data were used directly without normalization.

Compared with Figs. 4 and 6 shows an additional causal relationship, i.e., X8 → X2 , 
which suggests that age alters the blood glucose level. However, this is not confirmed 

Fig. 4 Causal structure of risk factors for 768 samples (normalized data)

Fig. 5 Causal structure of risk factors for 2000 samples (normalized data)
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theoretically. The two factors do not affect the diagnosis of diabetes. For children, 
adults, and senior citizens, the same criterion applies: the glucose level in blood is nor-
mal [27] when the fasting blood glucose level remains below 7.0  mmol/L. Therefore, 
the new causal relationship is incorrect. The other new causal relationship is X2 → X5 , 
which indicates that an increase in the blood glucose level will alter the insulin level: the 
lower the blood glucose level, the higher is the insulin level. However, this trend is based 
entirely the regulation of the human body. Furthermore, the causal strength of X5 → X2 
in Fig. 4 is 5.57, whereas that of X2 → X5 in Fig. 6 is 3.328. Thus, X5 → X2 is believed to 
be more accurate.

Similarly, X8 → X2 and X2 → X5 are indicated in Fig. 7 and indicate the same change 
laws as above, as compared with Fig. 5. Thus, X8 → X2 is deemed incorrect. Addition-
ally, the causal strength of X5 → X2 is greater than that of X2 → X5 . In addition, new 
relationships are indicated in Fig.  7, such as X6 → X2 and X6 → X5 . Between them, 

Fig. 6 Causal structure of risk factors for 768 samples (raw data)

Fig. 7 Causal structure of risk factors for 2000 samples (raw data)
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X6 → X2 indicates that BMI affects the blood glucose level; however, this causal rela-
tionship has no scientific basis. As stated above, the same criterion for diabetes diag-
nosis based on blood glucose level applies to different groups of people. Hence, 
X6 → X2 is considered an incorrect causal relationship. Meanwhile, X6 → X5 suggests 
that BMI results in insulin changes. Some studies [28, 29] indicated a significant cor-
relation between insulin resistance and obesity; however, the causality must be further 
investigated.

Based on the analysis above, the causal structures in the raw datasets contain numer-
ous incorrect and unknown relationships, whereas those in the normalized datasets con-
tain more causal relationships with higher accuracies. Therefore, the accuracy of causal 
discovery can be effectively improved by normalizing the raw dataset in advance.

NHANES dataset

Figure 8 shows the causal structure of risk factors in the NHANES dataset. The structure 
was obtained using the proposed approach, which normalizes the raw data in the first 
step. Six causal relationships are shown in in Fig. 8. X4 → X5 , X4 → X7 , and X4 → X8 
imply that body weight results in changes in BMI, creatinine in urine, and high-density 
lipoprotein, respectively; X5 → X7 indicates that BMI results in changes in creatinine in 
urine, X9 → X8 indicates that triglycerides result in changes in high-density lipoprotein, 
and X13 → X11 indicates that fasting glucose results in changes in glycated hemoglobin.

Figure 9 presents the causal structure of risk factors in the NHANES dataset without 
normalization. The causal strengths are summarized in Table 1. Compared with Figs. 8 
and 9 shows a few wrong relationships, in addition to the causal relationships mentioned 
in the preceding paragraph. For example, X5 → X1 indicates that BMI causes a change 
in age, which is neither sensible nor supported by any previous research. Additionally, 
X5 → X4 implies that BMI causes a change in weight. The correct causal relationship 
should be the opposite, i.e., a change in weight causes a change in BMI. The reason is 
straightforward: BMI, which is a function of body height and weight, cannot determine 
a person’s weight.

Fig. 8 Causal structure of NHANES dataset (normalized data)
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In general, when the raw data of the NHANES dataset were utilized, the causal struc-
ture obtained via causal discovery showed incorrect causal relationships. After perform-
ing data normalization, the causal structure became significantly simplified, and the 
correct rate improved considerably. Similarly, this proves that the accuracy of causal dis-
covery can be effectively improved by normalizing the raw dataset in advance.

Discussion
The discussion part will demonstrate in detail each pair of causal relationship in the 
causal structure, explain the meaning of causal relationship, and analyze the relevant lit-
erature to discuss the correctness of causal relationship.

Pima Indian diabetes datasets

An identical causal relationship is indicated in Figs.  4 and 5, namely, X5 → X2 . This 
relationship is well known to the public, and studies have also shown [30, 31] insulin is 
a hormone that controls blood sugar in the human body and affects changes in blood 
sugar concentration. This causal relationship is clearly established.

Fig. 9 Causal structure of NHANES dataset (raw data)

Table 1 Causal strengths of NHANES raw data

Causal relationship Causal strength Causal relationship Causal strength

X1 → X7 7.957 X5 → X8 9.262

X1 → X9 10.349 X5 → X9 49.522

X2 → X9 8.986 X8 → X9 11.393

X3 → X9 10.593 X11 → X6 1.77

X4 → X7 3.318 X11 → X7 8.226

X5 → X1 8.56 X11 → X9 10.809

X5 → X4 3.223 X11 → X13 19.142

X5 → X6 112.842
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Compared with Fig. 4 and 5 shows two causal relationships with a change in direction: 
X6 → X4 and X8 → X1 . Between them, X6 → X4 indicates that the change in BMI results 
in a change in the skin fold thickness of triceps (subcutaneous fat thickness).Studies have 
shown [32, 33] that there is a significant correlation between the thickness of the triceps 
skin fold and BMI. When the BMI value increases, the weight change increases, and the 
subcutaneous fat thickness increases, so the causality is reasonable. X8 → X1 suggests that 
a change in age results in changes in gravidity. Based on common perception, more preg-
nancies are likely to occur in older people. By contrast, X1 → X8 in Fig. 4 indicates that 
gravidity affects age. Study [34] has shown that more pregnancies increase the physiological 
age and causes the cells to age faster. However, the age variable in the datasets is the actual 
age, not the physiological age. Although X1 → X8 presents a certain degree of reasonabil-
ity, is more consistent with the real-world causal relationship, after considering the causal 
strength.

Figure 5 presents an additional causal relationship compared with Fig. 4, i.e., X8 → X3 . 
This relationship indicates that a change in age alters the diastolic blood pressure, which 
is consistent with the medical law [35, 36] that blood pressure in general increases with 
age, since blood vessels become less elastic with age. Therefore, this causal relationship is 
reasonable.

NHANES dataset

First, X4 → X5 implies that weight affects BMI. This is reasonable, as a change in weight 
alters the BMI because the latter is calculated based on height and weight. Thus, this causal 
relationship is correct.

Second, X4 → X7 and X5 → X7 indicate that creatinine in urine may vary with body 
weight and BMI, respectively. When a person gains weight, his/her muscle metabolism 
increases. This implies that an obese person may experience elevated creatinine.It was also 
shown [37] that urinary creatinine was a significant covariate of urine pH, which was nega-
tively correlated with body weight in patients with stones. Therefore, these two causal rela-
tionships may be valid.

Third, X4 → X8 and X9 → X8 signify that high-density lipoprotein may vary with body 
weight and triglyceride level, respectively. Abnormalities in lipid metabolism caused by 
obesity are primarily manifested [38, 39] as hypertriglyceridemia, reduced high-density 
lipoprotein cholesterol, and increased small and dense low-density lipoprotein cholesterol. 
Hence, weight may cause abnormal changes in lipid metabolism, although further medical 
verification is necessitated.

Fourth, X13 → X11 indicates that fasting blood glucose affects glycated hemoglobin, 
which is the product [40, 41] of a non-enzymatic reaction combining hemoglobin with 
blood glucose. When a patient’s fasting glucose or postprandial glucose is not controlled 
well, the glycated hemoglobin will not satisfy the standard, which is manifested by an 
increase in his/her fasting blood glucose. This is generally accompanied by a significant 
increase in glycated hemoglobin. Therefore, this causal relationship is correct.
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Conclusions
In this study, a causal discovery approach with reinforcement learning for T2DM risk 
factors was proposed, through reinforcement learning model construction, design of 
causal discovery algorithm process and experimental verification analysis, the effec-
tiveness and adaptability of this method are confirmed, and it has great potential in 
causal discovery of disease risk factors, it can provide a new attempt for diabetes 
prevention and research. The reinforcement learning model shall be improved in the 
future, which will include more clinical data analysis such that the ability of the pro-
posed algorithm in mining and intuitively analyzing causal relationships can be fur-
ther enhanced.

Abbreviations
T2DM  Type 2 diabetes mellitus
SD  Severe depression
PED  Perceived ethnic discrimination
IIE  Inverse information entropy
BIC  Bayesian information criterion
NHANES  National Health and Nutrition Examination Survey
BMI  Body mass index
HbA1c  Glycosylated hemoglobin

Acknowledgements
Not applicable

Author contributions
XEG conceived the idea; JGH conducted the analyses; BC, YMW and SBZ provided the data; all authors contributed to the 
writing and revisions.

Funding
This study was funded by the Natural Science Foundation of Guangdong Province (grant No. 2214050004060; 
grant No. 1914050003355) and the Special for key areas of Guangdong Provincial Department of Education (grant 
No.2021ZDZX1021).

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the [github] repository, [https:// github. 
com/ JGcuz me/ RL].

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 3 March 2023   Accepted: 6 July 2023

References
 1. Strelitz J, Ahern AL, Long GH, Hare MJL, Irving G, Boothby CE, Wareham NJ, Griffin SJ. Moderate weight change 

following diabetes diagnosis and 10 year incidence of cardiovascular disease and mortality. Diabetologia. 
2019;62(8):1391–402.

 2. Huang X, Chen YQ, Xu GL, Peng SH. DNA methylation in adipose tissue and the development of diabetes and 
obesity. Yi chuan = Hereditas. 2019;41(2):98–110.

 3. Taylor SI, Yazdi ZS, Beitelshees AL. Pharmacological treatment of hyperglycemia in type 2 diabetes. J Clin Investig. 
2021. https:// doi. org/ 10. 1172/ JCI14 2243.

 4. Liu X, Wu N, Al‑Mureish A. A review on research progress in the application of glycosylated hemoglobin and gly‑
cated albumin in the screening and monitoring of gestational diabetes. Int J Gener Med. 2021;14:1155–65.

https://github.com/JGcuzme/RL
https://github.com/JGcuzme/RL
https://doi.org/10.1172/JCI142243


Page 14 of 15Gao et al. BMC Bioinformatics          (2023) 24:296 

 5. Ahmed E, Bokhary FEZS, Ismail S, AbdElHameed WM. Predictive value of the glycated albumin versus glycosylated 
hemoglobin in follow‑up of glucose homeostasis in hemodialysis‑maintained type‑2 diabetic patients. Endocr 
Regul. 2022;56(1):10–21.

 6. Tatsukawa Y, Misumi M, Kim YM, Yamada M, Ohishi W, Fujiwara S, Nakanishi S, Yoneda M. Body composition and 
development of diabetes: a 15‑year follow‑up study in a Japanese population. Eur J Clin Nutr. 2018;72(3):374–80.

 7. Park SK, Ryoo J‑H, Oh C‑M, Choi J‑M, Jung JY. Longitudinally evaluated the relationship between body fat percent‑
age and the risk for type 2 diabetes mellitus: Korean Genome and Epidemiology Study (KoGES). Eur J Endocrinol. 
2018;178(5):513–21.

 8. Chen X, Yin J, Zhang F, Xiao T, Zhao M. has_circ_CCNB1 and has_circ_0009024 function as potential biomarkers for 
the diagnosis of type 2 diabetes mellitus. J Clin Lab Anal. 2020;34(10): e23439.

 9. Karamzad N, Eftekhari A, Ashrafi‑Asgarabad A, Sullman MJM, Sahebkar A, Safiri S. Serum hepcidin, the hepcidin/ferri‑
tin ratio and the risk of type 2 diabetes: a systematic review and meta‑analysis. Curr Med Chem. 2021;28(6):1224–33.

 10. Ke D, Wang D, Wang Y, Li X, Zhen L. A study on the correlation between the increase of body mass during 
pregnancy and the occurrence of gestational diabetes mellitus in 112 pregnant women. Chin J Prev Med. 
2020;21(06):688–91.

 11. Zhang S, Zhang X, Wang Z, Zeng C. Correlation between the incidence of type 2 diabetes mellitus to Chinese 
visceral adiposity index in a community population of Chongqing City. Med J PLA. 2020;45(07):725–9.

 12. Huang T, Glass K, Zeleznik OA, Kang JH, Ivey KL, Sonawane AR, Birmann BM, Hersh CP, Hu FB, Tworoger SS. A network 
analysis of biomarkers for type 2 diabetes. Diabetes. 2019;68(2):281–90.

 13. Zhu N, Liu X, Wang S, Geng R, Liu Y, Li D. Association between glycemic control and body composition in type 2 
diabetes. Chin J Diabetes. 2019;27(3):194–7.

 14. Bilal PI, Chan CKY, Somerset SM. Depression mediates association between perceived ethnic discrimination 
and elevated blood glucose levels among Sub‑Saharan African migrants in Australia. J Immigr Minor Health. 
2021;23(2):199–206.

 15. Wang Y, Zhang WS, Hao YT, Jiang CQ, Jin YL, Cheng KK, Lam TH, Xu L. A Bayesian network model of new‑onset 
diabetes in older Chinese: the Guangzhou biobank cohort study. Front Endocrinol. 2022;13: 916851.

 16. Wang T, Zhang R, Ma X, Wang S, He Z, Huang Y, Xu B, Li Y, Zhang H, Jiang F, et al. Causal association of overall obesity 
and abdominal obesity with type 2 diabetes: a Mendelian randomization analysis. Obesity (Silver Spring, Md). 
2018;26(5):934–42.

 17. Liu Z, Zhang Y, Graham S, Wang X, Cai D, Huang M, Pique‑Regi R, Dong XC, Chen YE, Willer C, et al. Causal 
relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. J Hepatol. 
2020;73(2):263–76.

 18. Zhu S, Ng I, Chen Z. Causal Discovery with Reinforcement Learning. ArXiv 2019, arXiv: 1906. 04477.
 19. Mu G, Chen Q, Liu H, An J, Wang C. The inverse information entropy causal reasoning method to reveal causality in 

power system operation data. Chin J Electr Eng. 2022;42(15):5406–17.
 20. Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is All you Need. 

ArXiv 2017, arXiv: 1706. 03762.
 21. Zheng X, Aragam B, Ravikumar P, Xing EP. DAGs with NO TEARS: Continuous Optimization for Structure Learning. 

Neural Inf Process Syst. 2018.
 22. Daniusis P, Janzing D, Mooij JM, Zscheischler J, Steudel B, Zhang K, Schölkopf B. Inferring deterministic causal rela‑

tions. ArXiv 2010, arXiv: 1203. 3475.
 23. Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E Stat Nonlinear Soft Matt Phys. 

2004;69(6 Pt 2): 066138.
 24. Kaggle, Pima Indians Diabetes Database. https:// www. kaggle. com/ datas ets/ uciml/ pima‑ india ns‑ diabe tes‑ datab ase.
 25. Kaggle, Pima Indians Diabetes Database. https:// www. kaggle. com/ code/ chira g9073/ diabe tes‑ using‑ deep‑ learn ing/ 

input.
 26. NHANES, National Health and Nutrition Examination Survey (NHANES). (2011–2020). https:// wwwn. cdc. gov/ nchs/ 

nhanes/ Defau lt. aspx.
 27. Qie LY, Sun JP, Ning F, Pang ZC, Gao WG, Ren J, Nan HR, Zhang L, Qiao Q. Qingdao Diabet Survey G: cardiovascular 

risk profiles in relation to newly diagnosed Type 2 diabetes diagnosed by either glucose or HbA(1c) criteria in Chi‑
nese adults in Qingdao. China Diabetic Med. 2014;31(8):920–6.

 28. Tong Y, Xu S, Huang LL, Chen C. Obesity and insulin resistance: pathophysiology and treatment. Drug Discov Today. 
2022;27(3):822–30.

 29. Barazzoni R, Cappellari GG, Ragni M, Nisoli E. Insulin resistance in obesity: an overview of fundamental alterations. 
Eat Weight Disord‑Stud Anorex Bulim Obes. 2018;23(2):149–57.

 30. Stolzenberg‑Solomon RZ, Graubard BI, Chari S, Limburg P, Taylor PR, Virtamo J, Albanes D. Insulin, glucose, insulin 
resistance, and pancreatic cancer in male smokers. Jama. 2005;294(22):2872–8.

 31. Tolić IM, Mosekilde E, Sturis J. Modeling the insulin‑glucose feedback system: the significance of pulsatile insulin 
secretion. J Theor Biol. 2000;207(3):361–75.

 32. Dewi R, Rosdiana N, Ramayani OR, Siregar R, Siregar B. Waist circumference, body mass index, and skinfold thickness 
as potential risk factors for high blood pressure in adolescents. Paediatr Indones. 2019;59(2):79–86.

 33. Mukkamala N, Patel P, Shankar G, Soni J, Parmar L. Relationship between body mass index and skin fold thickness in 
young females. J Pharm Res Int. 2021;33(35B):188–93.

 34. Ryan CP, Hayes MG, Lee NR, McDade TW, Jones MJ, Kobor MS, Kuzawa CW, Eisenberg DTA. Reproduction predicts 
shorter telomeres and epigenetic age acceleration among young adult women. Sci Rep. 2018;8(1):11100.

 35. Pinto E. Blood pressure and ageing. Postgrad Med J. 2007;83(976):109–14.
 36. Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ, Paciorek CJ, Singh G, Hajifathalian K, Bennett JE, et al. 

Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population‑based measurement 
studies with 19.1 million participants. Lancet. 2017;389(10064):37–55.

 37. Maalouf NM, Sakhaee K, Parks JH, Coe FL, Adams‑Huet B, Pak CY. Association of urinary pH with body weight in 
nephrolithiasis. Kidney Int. 2004;65(4):1422–5.

http://arxiv.org/abs/1906.04477
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1203.3475
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/code/chirag9073/diabetes-using-deep-learning/input
https://www.kaggle.com/code/chirag9073/diabetes-using-deep-learning/input
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx


Page 15 of 15Gao et al. BMC Bioinformatics          (2023) 24:296  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 38. adults CJCftRoGftPaTodi. Guidelines for Prevention and Treatment of dyslipidemia in Adults in China (Revised Edi‑
tion 2016). Chin J Cardiovasc Dis 2016(10):833–853.

 39. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99–109c.
 40. Geva M, Shlomai G, Berkovich A, Maor E, Leibowitz A, Tenenbaum A, Grossman E. The association between fasting 

plasma glucose and glycated hemoglobin in the prediabetes range and future development of hypertension. 
Cardiovascu Diabetol. 2019;18(1):53.

 41. Das RK, Nessa A, Hossain MA, Siddiqui NI, Hussain MA. Fasting serum glucose and glycosylated hemoglobin level in 
obesity. Mymensingh Med J: MMJ. 2014;23(2):221–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Causal discovery approach with reinforcement learning for risk factors of type II diabetes mellitus
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Discovery of new risk factors
	Analysis of relationships between risk factors

	Methods
	Algorithm principle
	Algorithm flow

	Experiments
	Experimental data
	Experimental analysis
	Pima Indian diabetes datasets
	NHANES dataset


	Discussion
	Pima Indian diabetes datasets
	NHANES dataset

	Conclusions
	Acknowledgements
	References


