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Abstract 

Background: Identifying variants associated with diseases is a challenging task 
in medical genetics research. Current studies that prioritize variants within individual 
genomes generally rely on known variants, evidence from literature and genomes, 
and patient symptoms and clinical signs. The functionalities of the existing tools, 
which rank variants based on given patient symptoms and clinical signs, are restricted 
to the coverage of ontologies such as the Human Phenotype Ontology (HPO). How-
ever, most clinicians do not limit themselves to HPO while describing patient symp-
toms/signs and their associated variants/genes. There is thus a need for an automated 
tool that can prioritize variants based on freely expressed patient symptoms and clini-
cal signs.

Results: STARVar is a Symptom-based Tool for Automatic Ranking of Variants using 
evidence from literature and genomes. STARVar uses patient symptoms and clinical 
signs, either linked to HPO or expressed in free text format. It returns a ranked list of var-
iants based on a combined score from two classifiers utilizing evidence from genomics 
and literature. STARVar improves over related tools on a set of synthetic patients. In 
addition, we demonstrated its distinct contribution to the domain on another syn-
thetic dataset covering publicly available clinical genotype–phenotype associations 
by using symptoms and clinical signs expressed in free text format.

Conclusions: STARVar stands as a unique and efficient tool that has the advantage 
of ranking variants with flexibly expressed patient symptoms in free-form text. There-
fore, STARVar can be easily integrated into bioinformatics workflows designed to ana-
lyze disease-associated genomes.

Availability: STARVar is freely available from https:// github. com/ bio- ontol ogy- resea 
rch- group/ STARV ar.
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Background
In the European Union, a condition is defined as rare if it affects fewer than 1 in 2000 
people [1]. There are many different rare diseases. Although each of these diseases is 
rare individually, collectively, they represent a significant component of overall morbid-
ity. Rare diseases contribute to mortality worldwide with estimates ranging from 3.5 to 
5.9% of the world’s population [2]. The majority are thought to be caused by inherited 
genetic variants or occur randomly (de novo) in a person who is the first to express phe-
notypes in an otherwise healthy family. Significant improvements and cost reduction in 
next-generation sequencing (NGS) technologies, especially over the last decade, have 
enabled scientists to use them increasingly to study and diagnose rare diseases. Exome 
and genome sequencing reveals thousands to millions of genetic variants in a typical 
individual. The main challenge is to identify the tiny subset of variants (typically one or a 
few) that cause a disease’s phenotype.

While many software methods and tools prioritize variants based on biochemical 
and genomic features such as conserved regions, allele segregation, and population fre-
quency characteristics, only a few of them, including Exomiser  [3] and DeepPVP  [4], 
take into account patient phenotypes and their similarities to phenotypes observed in 
genetic animal models as well as evidence from the literature. For example, to predict 
the impact of a missense variant SIFT [5] uses the degree of protein sequence conserva-
tion and PolyPhen-2 [6] uses protein sequence and structure. On the other hand, Deep-
PVP [4] and Exomiser [3] are examples of phenotype-driven methods utilizing semantic 
similarity between the known gene–phenotypes and patient–phenotypes, while AME-
LIE [7] prioritizes candidate disease associated genes by utilizing the patient’s genotype 
as well as the phenotypic similarity between her/his phenotypes and the phenotypes 
mentioned in the primary literature.

Ontologies are used in the biomedical domain to analyze relations between the bio-
entities, such as genotype–phenotype and environment–phenotype relations. Because 
the ontologies are open and interoperable resources describing concepts such as human 
phenotypes and diseases and gene function, existing ontology-based variant prior-
itization tools rely on information in the form of concept identifiers (IDs). For exam-
ple, Exomiser accepts phenotypes in the form of HPO codes and diseases in the form 
of OMIM codes as input. However, as research areas evolve over time, ontologies are 
inherently incomplete [8] and will not cover all the concepts described in the literature. 
For these cases, ontology-based variant prioritization tools cannot be used accurately. 
For example, “retinal ischemia”, entirely missing in HPO, returns 1775 hits in PubMed 
(search performed on 24 February 2022 and restricted to Titles/Abstracts). Although, 
several related phenotypes can be found in HPO, including “retinal arterial occlu-
sion” (HP:0025326) and “retinal vein occlusion” (HP:0012636), and “tissue ischemia” 
(HP:0033401); “retinal ischemia” cannot be coded with any of these concepts. The inabil-
ity of ontology-driven tools to use arbitrary terms to prioritize variants means they can-
not benefit from the full potential of existing evidence from the literature. To fill this gap, 
we propose a new method, STARVar, which relies on symptoms and clinical signs—both 
in the form of HPO codes and as flexibly expressed terms—and prioritizes variants by 
combining a classifier using evidence from the biomedical literature and another using 
evidence from genomes.
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Implementation
Dataset used to develop and test the literature evidence‑based classifier

To develop the literature evidence-based classifier, we generated a training and test data-
set by using the known variants from ClinVar (release: Apr-04-2021) [9] and their known 
phenotypes from the HPO database  [10], where the phenotypes are mapped to their 
HPO codes [11]. For the Protein–Protein Interaction (PPI) data, we used a total num-
ber of 841,068 pairs from STRING  [12] with high confidence only (STRING score>=

700). We pre-processed the literature to calculate the association strength by using Jac-
card similarity coefficient between the publication records of a set of symptoms and a 
variant, its associated gene, and PPIs. We collected literature evidence about the variants 
from 32,923,095 PubMed abstracts [13] (downloaded on Dec-15-2021). We indexed the 
abstracts using Elasticsearch  [14] for variant and gene mentions. We used 57,730,618 
gene–abstract pairs [15] and 3,590,328 variant–abstract [16] pairs provided by a widely 
used resource, PubTator  [17]. In addition, we gathered and used a total number of 
1,419,508 known variant–abstract pairs from ClinVar.

To generate the training and test dataset, we selected the positive samples from the 
pathogenic and likely pathogenic variants that are present in ClinVar and associated with 
phenotypes in the HPO database [10] and linked to a disease in OMIM [18]. We obtained 
a total number of 89,203 pathogenic or likely pathogenic variants with their phenotypes 
linked to HPO and associated genes linked to HUGO Gene Nomenclature Committee 
(HGNC). We selected the negative samples among the benign variants of the same genes 
as the pathogenic/likely pathogenic variants. Therefore, we aim to allow the model to 
learn to identify the harmful variants even if its associated gene presents another variant 
that is benign. Benign variants in ClinVar are identified based on the ACMG Standards 
and Guidelines [19]. The standards classify a variant with high confidence as benign if its 
minor allele frequency (MAF) are too high for the disorder, its observation in controls is 
inconsistent with the disease penetrance, if the well-established functional studies show 
no deleterious effect, or if it is not segregated with the disease (i.e. in the affected indi-
viduals). We obtained a total number of 267,779 benign variants (regardless of the link 
to phenotypes through OMIM) from ClinVar. We randomly sampled an equal number of 
positive ( 90K) and negative ( 90K) samples from these variants. Among those, we ran-
domly selected 70% of the samples to train the classifier and the remaining 20% and 10% 
are used for validation and testing. During the feature generation, any missing values are 
imputed with zero.

Generation of synthetic patient datasets

We generated two datasets of synthetic patients to evaluate STARVar. The first dataset 
(PAVS-synthetic dataset) covers clinically validated variants from an in-house database 
containing variants observed in Saudi individuals, the Phenotype-Associated Variants 
in Saudi Arabia (PAVS)  [20]. PAVS is a database that combines a set of clinically vali-
dated pathogenic variants with a set of manually curated pathogenic variants observed 
in the Saudi population and their associated phenotypes. These phenotypes are mapped 
to their HPO codes. Therefore, this dataset was used as a benchmark to compare STAR-
Var against the other phenotype-based variant prioritization tools that can only work 
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with HPO-codes. The second dataset (GPCards-synthetic dataset) covers the variants 
from a public, manually curated database of genotype–phenotype associations, called 
GPCards [21]. The phenotypes in GPCards are expressed as terms without relying on a 
structured vocabulary or ontology. Therefore, we used this dataset to demonstrate the 
novel and distinct contribution of STARVar.

Figure 1 depicts our synthetic patient generation process. We used the NIST-Ashkena-
zim Trio samples [22] to provide the sequence data of the synthetic patients and the cor-
responding curated genotype–phenotype associations for the variants associated with 
the diseases. We first filtered the autosomal recessive variants of the affected son. Then, 
we selected the rare variants, with Minor Allele Frequency (MAF)≤ 1% in all of the popu-
lations from gnomAD [23], resulting in 1,094 variants.

We selected 136 clinically validated homozygous variants from PAVS which do not 
exist in Clinvar (release: Apr-04-2021) and randomly 50 homozygous variants from 
GPCards and combined them with the 1,094 filtered variants from the NIST-Ash-
kenazim Trio samples to generate synthetic patients for the datasets. Both PAVS and 
GP-Cards contain variants other than homozygous. As we filtered the NIST sample’s 
variants based on the autosomal recessive mode of inheritance, we selected only the 
homozygous variants from these datasets. Preparation of the GPCards-synthetic data-
set involved some semi-automated work. In particular, we identified the genomic loca-
tions of the variants provided with their HGVS codes [24] based on genome assembly 
GRCh38 by using TransVar  [25]. We also represented the phenotypes in a common 
format, as this was not the case in GPCards. Therefore, we limited this dataset to 50 
patients, which is a size that we were able to manage to handle semi-automatically. Both 

Fig. 1 Synthetic patient generation Synthetic patients are generated by using the NIST-Ashkenazi Trio 
samples, filtered based on the autosomal recessive mode of inheritance and MAF values. We add the 
reported disease-associated variants either from GPCards (a public database covering manually curated 
genotype-phenotype associations) or PAVS (a database that covering clinically validated pathogenic variants 
and their associated phenotypes observed in the Saudi population) to the VCF file to form the synthetic 
patients
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synthetic datasets are available from https:// github. com/ bio- ontol ogy- resea rch- group/ 
STARV ar.

Variant annotation

We used VEP [26] to annotate variants with an extensive set of information, including 
the rsIDs of variants (Reference SNP ID assigned by dbSNP), their genomic locations 
and associated gene symbols (from HGNC), canonical transcript availability, variant 
consequences  [27], SIFT deleteriousness score, PolyPhen-2 pathogenicity score, PPIs 
from STRING, genotype–phenotype annotations from PAVS. SIFT [5] uses sequence 
similarity from multiple sequence alignments to predict whether an amino acid sub-
stitution affects protein function. PolyPhen-2 (Polymorphism Phenotyping V2)[6] pre-
dicts the probability of a missense mutation being damaging by using a naïve Bayesian 
approach. To determine the variant consequence, VEP first maps each variant to the 
reference genome and then identifies all overlapping Ensembl [28] transcripts. It then 
applies a rule-based approach to predict each allele’s effects on each transcript. The 
complete set of variant consequences (36 in total) ordered by their severity is available 
from VEP’s website [27]. Ensembl identifies a single representative transcript as canon-
ical for every locus  [29]. Hierarchically, it looks for: (1) the longest Coding Sequence 
(CDS) translation with no stop codons, (2) the longest Ensembl/Havana merged transla-
tion with no stop codons, (3) the longest translation with no stop codons, and if there 
is no translation, (4) the longest non-protein-coding transcript. STARVar operates only 
on those canonical transcripts. PPIs are not covered by the VEP’s default annotations. 
Therefore, we gathered PPIs from STRING and generated a custom dataset to use with 
the VEP workflow. Similarly, we generated custom data for our in-house PAVS dataset. 
We made our VEP annotation workflow, along with the custom datasets, publicly avail-
able via GitHub, providing an automated annotation of any VCF file for the known vari-
ants included in PAVS.

Processing patient samples

We tested STARVar on a family presented at King Saud University Hospital (KSU) in 
Riyadh. The causative variant of the affected individual is not included in PAVS.

We constructed DNA libraries with QIAGEN QIAseq FX DNA Library kit. We 
sequenced each individual on Illumina NovaSeq6000 with a 30X coverage. We used 
the bcbio-nextgen tool kit [30] to align the genomes to the GRCh38 human reference 
genome and to call variants (we used GATK Haplotype caller). After the variant calling, 
we first filtered the variants for a MAF <1% by using Slivar [31] and retained the autoso-
mal recessive ones.

We then annotated the remaining variants by using VEP, including variant rsID, gene 
name, canonical transcript availability, variant consequence, PPIs from STRING, SIFT 
deleteriousness score, PolyPhen-2 pathogenicity score, and genotype–phenotype anno-
tations of the Saudi population from PAVS. Finally, we used the patient’s clinical signs 
and symptoms observed and reported by the clinician and ranked the canonical variants 
with STARVar. We used the phenotypes in the free text form and variant consequences 
as genomics evidence in STARVar.

https://github.com/bio-ontology-research-group/STARVar
https://github.com/bio-ontology-research-group/STARVar
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Results
STARVar combines literature and genomics evidence to rank variants

We developed STARVar as a novel tool that takes as input a VCF file annotated by 
VEP, ideally filtered for the candidate variants, and a list of patient symptoms (either 
as HPO codes or as arbitrary terms) and combines predictions from two different 
classifiers to prioritize the variants. Figure 2 depicts the overall system overview. One 
of the classifiers uses evidence from the literature to measure the association strength 
between a variant and a list of patient symptoms. The other classifier relies on genom-
ics evidence. STARVar provides three options as genomics evidence; SIFT, Poly-
phen-2, and Variant Consequence (see Materials and Methods).

We trained another classifier by using the logistic regression algorithm to com-
bine the evidence from the literature and genetic evidence. We used the scikit-learn 
python package to developed the logistic regression classifiers [32]. We trained all the 
models by using the default parameters from this package (Inverse of regularization 
strength set to 1, penalty as L2 norm, and solver is L-BFGS). To train the literature 
evidence-based classifier, we used three features ( F1 , F2 , and F3 ) representing the lit-
erature-based association strengths between a given set of patient symptoms and a 
variant, its associated gene, and PPIs. We used Jaccard indices to measure the asso-
ciation strengths as follows:

Let t = {t1,t2 , t3 , ...,tN } represent a set of phenotype terms (either as HPO codes or 
as text). Sx denotes the set of articles containing x, x being a phenotype, a variant, or 
a gene.

The association strength between a variant v and a set of terms t is calculated based 
on Jaccard index as follows:

Fig. 2 STARVar System Overview. STARVar takes a VCF file annotated by VEP and a list of patient symptoms 
and combines predictions from two different classifiers to rank the variants
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The association strength between a gene g and a set of terms t is calculated based on Jac-
card index as follows:

The association strength between PPIs of a gene g { g1,g2 , g3 , ...,gM } and a set of terms t is 
calculated as follows:

We stored PubMed IDs of abstracts relevant to the known variants, genes, and HPO 
codes. If a patient’s phenotype is provided as an HPO ID, STARVar looks up for stored 
PubMed abstracts IDs to calculate the Jaccard Indices. If a symptom is provided directly 
as a term, STARVar finds the relevant PubMed IDs by searching the indexed titles and 
abstracts for the provided symptom as a phrase (searching the complete expression 
within the quotes), then dynamically downloads the relevant PubMed IDs and calculates 
Jaccard Indices accordingly.

STARVar obtains the final prediction scores by combining the individual prediction 
scores from the literature evidence-based classifier and the genomics evidence-based 
classifier. The literature evidence-based classifier, which relies on the logistic regression 
algorithm, assigns prediction scores between 0 and 1 to a variant. For the variant conse-
quences genomics evidence, we assigned weights to the consequence terms between 1 
and 36 based on their severity defined by VEP [27]. In the case that SIFT/Polyphen-2 is 
used as the genomics evidence, the classifier assigns a score between 0 and 1. To com-
bine the evidence scores from the two classifiers, STARVar uses another logistic regres-
sion based classifier that utilise the scores from the two classifiers. The final prediction 
scores from this classifier are used to rank variants. Figure 3 depicts STARVar’s variant 
ranking process and results on a synthetic patient having the ALDOB:c.324+1 G>A 
variant from the GPCards-synthetic dataset with clinically observed symptoms cover-
ing “Hepatomegaly”, “Liver dysfunction”, “Developmental delay”, “Abnormal transferrin”. 
STARVar ranks this particular disease-associated variant at the top when variant conse-
quence is used as genomics evidence.

Evaluation of STARVar on the test dataset

The feature coefficients of the logistic regression-based classifier were 2.32, 51.96 and 
40.31 for the literature-derived features F1 , F2 , and F3 , respectively. The result shows that 
the classifier assigns more weight to the genes ( F2 ) than to the PPIs ( F3 ) and the variants 
( F1).

The literature evidence-based classifier achieved an accuracy (i.e., the overall propor-
tion of true predictions, positive and negative) of 0.75 on the test set.

F1 =

N
i=1

Sv∩Sti
Sv∪Sti

N

F2 =

∑N
i=1

Sg∩Sti
Sg∪Sti

N

F3 =

∑M
j=1

∑N
i=1

Sgj∩Sti
Sgj∪Sti

N .M
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Table 1 presents the results on the test set in terms of precision, recall and F-score for 
positive and negative classes separately. The classifier achieved respectively F-scores of 
0.79 and 0.68 on the negative and positive variants.

The feature coefficients of the logistic regression based classifier were 0.24 and 40.47 
for the literature-based classifier and the genetic features (Variant Consequence) respec-
tively. The results show that the classifier assigns more weight to the genetic feature. The 
classifier achieved an accuracy of 0.95 on the test set and an F-score of 0.95 on both, 
negative and positive variants (Table 1).

Performance comparison on synthetic patients

We compared the performance of STARVar against several other phenotype-based 
variant prioritization tools on the PAVS-synthetic dataset that comprises pheno-
types mapped to HPO. Table 2 shows the results for the disease-associated variants 
ranked at the top and within the top 5 and 10. STARVar achieved its best perfor-
mance when we used Variant consequence from VEP as genomics evidence. It 
ranked the disease-associated variant at the top for 66 out of 136 patients and within 
the top 5 and top 10 for 120 and 132 out of 136, respectively. STARVar’s literature 
evidence-based classifier ranked the disease-associated variant at the top for 30 out 

Fig. 3 Variant ranking with STARVar. This figure depicts STARVar’s ranking process on a sample, synthetic 
patient having 1095 variants and a causative variant in ALDOB. STARVar runs on the VCF file covering variants 
annotated with the custom data by using VEP and utilises user-provided symptom list to rank the variants

Table 1 Decoupled logistic regression classifier’s performance evaluation on the test set (ClinVar)

Classifier Class Precision Recall F‑score

Literature Negative 0.66 0.99 0.79

Literature Positive 0.98 0.52 0.68

Literature and variant consequence Negative 0.92 0.99 0.95

Literature and variant consequence Positive 0.99 0.92 0.95
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of 136 patients and within the top 5 and top 10 for 44 and 50 out of 136, respectively. 
The genomic evidence-based classifier ranked the disease-associated variant at the 
top for 55, 49 and 32 patients and within the top 5 and top 10 for 100 and 132 of 
them when used with SIFT, PolyPhen-2 and Variant Consequence. STARVar ranked 
the disease-associated variant at the top in 49 and 43 and within the top 10 for 107 
and 84 cases when used with PolyPhen-2 and SIFT. We compared STARVar’s perfor-
mance against Exomiser [3] and AMELIE [7], two well-known phenotype-based var-
iant prioritization tools. Exomiser ranked the disease-associated variant at the top 
for 76 patients and within the top 5 and 10 for 90 and 96 of them, respectively. AME-
LIE ranked the disease-associated variant at the top for only 34 patients but within 
to top 5 and top 10 in 83 and 101 cases, respectively. Altogether, results show that 
Exomiser narrowly performs better than STARVar with Variant Consequences from 
VEP for ranking the disease-associated variant at the top. However, STARVar out-
performed all the other classifiers for ranking the disease-associated variant within 
the top 5 and top 10.

Performance evaluation on synthetic patients with textual phenotypes

We evaluated STARVar on the GPCards-synthetic dataset using their phenotypes 
which are listed as terms without reference to a controlled vocabulary. As shown in 
Table 3, STARVar achieves the best performance when Variant Consequence is used 
as genomics evidence. It ranked 38 out of 50 disease-associated variants at the top 
against 24 and 21 when Polyphen-2 and Sift are used as genomics evidence. Further-
more, it ranked 48 out of 50 disease-associated variants within the top 10 when Vari-
ant Consequence is used as genomics evidence.

Table 2 Performance comparison on the PAVS-synthetic dataset

Classifier Hits@1 Hits@5 Hits@10

STARVar (Literature+Variant Consequences) 66 120 132

STARVar (Literature+SIFT) 43 76 84

STARVar (Literature+ PolyPhen-2) 49 98 107

STARVar (Literature) 30 44 50

STARVar (Variant Consequence) 32 32 132

SIFT 55 100 100

PolyPhen-2 49 100 100

AMELIE 34 83 101

Exomiser 76 90 96

Table 3 Evaluation of STARVar on the GPCards-synthetic dataset

Classifier Hits@1 Hits@5 Hits@10

STARVar (Literature+Variant Consequences) 38 46 48

STARVar (Literature+SIFT) 21 37 41

STARVar (Literature+ PolyPhen-2) 24 33 40
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Ablation study of the literature‑based features

An ablation study helps to study the performance of a machine learning-based system 
by eliminating certain input components to understand which components are signif-
icant to the output. We conducted an ablation study on the literature-based features; 
F1 (Jaccard index of a variant and a patient symptom list), F2 (Jaccard index of a gene 
and a patient symptom list), and F3 (Jaccard index of a set of PPIs and a patient symp-
tom list). We evaluated performances on the PAVS-synthetic dataset (see Table  4). 
Using F1 , the classifier ranked the disease-associated variant at the top for 34 patients 
and in the top 10 for 51 patients. Using F2 , the classifier ranked the disease-associated 
variant at the top for 48 patients and within the top 10 for 74 of them. Using F3 , the 
classifier ranked the disease-associated variant at the top for 12 patients and within 
the top 10 for 26. Our ablation study shows that F2 is the most significantly contribut-
ing feature to the classifier’s performance.

Analysis of performance based on the gene presentation in literature

Our literature-based classifier relies on the information in the PubMed abstracts. 
We conducted several experiments to better understand how the number of publica-
tions that mention a variant or gene affects STARVar’s performance; we compare with 
AMELIE, which uses literature information, but do not include Exomiser in this com-
parison as it does not rely on literature.

Figure 4  shows the performance of AMELIE and STARVar on the test set that we 
gathered from ClinVar (17,841 samples). We generated three bins, each covering 
almost an equal number of samples (around 5970). Each sample is linked to a num-
ber of publications ranging between 1 and  250,000. Our results show that STARVar 
achieves the lowest accuracy of 0.70 and 0.91 on the genes appearing least frequently 
in the literature (1–987 publication)] when literature evidence and literature com-
bined with genetic evidence are used. The accuracy improves to 0.74 and 0.97 on the 
genes having a number of linked publications in the range of (988–3,889) when litera-
ture and literature combined with genetic evidence are used. STARVar achieves the 
highest accuracy of 0.80 and 0.98 on the cases that are well studied and reported in 
the literature (3890–250,000).

AMELIE’s accuracy, on the other hand, drops from 0.73 to 0.64 and then to 0.59 
as the number of publications linked to genes increased. This opposite trend can be 
explained by the different way in which AMELIE utilizes literature information, i.e., as 
it ranks articles for a given gene individually and does not rely on the entire literature.

Table 4 Feature ablation results on the PAVS-synthetic dataset

F1 , F2 and F3 represents Jaccard index of a patient symptom list and a variant, a gene and a set of PPIs respectively

Feature Hits@1 Hits@5 Hits@10

F1 34 51 51

F2 48 65 74

F3 12 21 26
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Application of STARVar to a clinical case

The consanguineous family is a trio consisting of a mother and a father and their 
affected child. Figure  5 depicts the family pedigree. The affected child presented to 
the clinic with “joint contracture”, “subcutaneous nodules”, and “osteolytic lesion on 
the skeletal survey”. By following the analysis procedure described in the Process-
ing patient samples subsection, we obtained a total of 795 variants. We ranked the 
variants with STARVar and manually analyzed the top-ranking variants. We identi-
fied a plausible frameshift variant MMP2:c.1289del p.. Contextual string 
embeddings for sequence labeling.(Asn430Thrfs*68).

The frameshift introduces a new stop codon downstream of the variant.

Fig. 4 Figure: Performance analysis of AMELIE and STARVar based on the number of publications associated 
with genes. The x-axis represents the ranges for the number of publications, while the y-axis denotes the 
accuracy. The graph shows how the accuracy of AMELIE (in yellow) and STARVar varies across different ranges 
of publication counts, using the literature only in orange and in addition to the variant consequence in green

Fig. 5 Family Pedigree of the use case with an affected female. This pedigree illustrates the family structure 
and genetic history of the case study, focusing on an affected female individual (indicated by the shaded 
circle). Squares represent male individuals, circles represent female individuals, shaded symbols indicate 
affected individuals, and the numbers represent the ages. Lines connect parents to their children
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The MMP2 gene is linked to the “Multicentric osteolysis, nodulosis, and arthropathy” 
disease in OMIM (OMIM:259600), a disease that covers the phenotypes observed in 
the patient. STARVar ranked this variant in the first rank when the variant consequence 
is used as genomics evidence. The variant segregated well within the family and has been 
previously confirmed by using Sanger sequencing. It is classified as likely pathogenic 
(class 2) according to the recommendations of ACMG [19]. Furthermore, the variant 
had been previously reported as “pathogenic” in ClinVar [33].

However, the frameshift MMP2 variant is the only variant with severe functional con-
sequences among the 795 variants. To make the problem more challenging, we removed 
the genomic evidence and ranked variants using only literature components of STARVar. 
STARVar using only literature evidence as input still ranks the MMP2 variant at the first 
rank. This example illustrates that STARVar can rank variants based on clinical pheno-
types, and that the literature component provides information about genotype–pheno-
type relations, in addition to the genomic evidence.

Discussion
To the best of our knowledge, STARVar is the first symptom or sign based variant pri-
oritization tool whose functionality is not restricted to phenotypes present in HPO 
(AMELIE and Exomiser), OMIM (Exomiser), Mammalian Phenotype Ontology (PVP 
[34], Phevor [35]), Gene Ontology, or Uberon (Phevor). It can operate with a list of phe-
notypes provided either directly as terms or in the form of HPO codes. Because clini-
cians do not necessarily express symptoms as HPO codes and HPO does not cover all 
the possible phenotypes, STARVar offers a unique advantage compared to the other 
existing phenotype-based tools, being capable of exploiting most of the relevant evi-
dence, particularly from the literature. We compared STARVar’s performance against 
two well-known phenotype-based variant prioritization tools, AMELIE and Exomiser, 
on a dataset of clinically validated variants from PAVS. While Exomiser utilizes curated 
gene–phenotype associations, AMELIE takes into account evidence from the literature 
during its prediction process. The AMELIE logistic regression-based classifier combines 
27 different features to rank all articles in the AMELIE knowledgebase for their ability to 
explain patient phenotypes. Two of these features are the Phrank [36] phenotype simi-
larity scores of a patient’s phenotypes with the phenotypes mentioned in the article.

Exomiser comprises a set of algorithms for ranking variants by using random-walk 
analysis of protein interaction networks, clinical relevance, and cross-species phenotype 
comparisons, in addition to several other computational filters for variant frequency, 
predicted pathogenicity, and pedigree analysis. Users are required to supply patient 
phenotypes as HPO codes or OMIM identifiers for Exomiser and HPO codes for AME-
LIE. Exomiser achieved the best performance for ranking the disease-associated vari-
ant at the top, while AMELIE achieved the worst on the 136 individuals selected from 
PAVS. On the other hand, STARVar outperformed all the other classifiers when ranking 
the disease-associated variant within the top 10 (see Table 2). As computational tools 
might not identify the disease-associated variant always at the top, one would consider 
a wider range of a ranked list while interpreting variants. Therefore, STARVar is advan-
tageous for variant prioritization. We also evaluated STARVar on another set of syn-
thetic patients whose observed phenotypes were expressed textually (GPCards-synthetic 
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dataset). STARVar ranked 48 out of 50 disease-associated variants within the top 10 (and 
in the first position for 38/50 patients). One could envision converting the symptoms 
and clinical signs to HPO codes and using one of the existing phenotype-based tools 
for variant prioritization. Although this would be possible to an extent, as demonstrated 
by the previous efforts such as ClinPhen [37] and Doc2HPO [38], this would not allow 
using all the clinical observations. For example, the GPCards-synthetic dataset covered 
248 distinct phenotypes in total. There was no exact match in HPO for 83 of the 248 
phenotypes. Those 83 phenotypes cover both potential synonyms of existing HPO con-
cepts and new concepts such as “sleep benefit” which we found in 70 relevant articles in 
PubMed where 4 of these co-mention the phenotype with the disease-associated gene 
“PINK1” (searched on 13 March 2022). However, STARVar can directly and automati-
cally use those 83 phenotypes.

We further tested STARVar on a single consanguineous family for which clinical and 
genetic data was available to us. STARVar was able to find the plausible variant in the 
first position when both literature and genomics evidence was used as well as when 
considering only literature evidence. However, while this example demonstrates that 
STARVar works on real patient samples and succeeds in identifying disease-associated 
variants, a single example is not sufficient to draw general conclusions about how well 
STARVar works on patient data across different clinical settings, disease types, family 
pedigrees, or sequencing technologies. While we have made every effort to make our 
experiments and comparison using synthetic data as realistic as possible, additional clin-
ical samples will need to be analyzed in the future to strengthen the evidence of the util-
ity of STARVar on clinical samples.

STARVar presents limitations due to its dependence on literature, text mining (Pub-
Tator), SIFT/PolyPhen-2/VEP, sequencing data as well as test data (PAVS in our case). 
STARVar obtains final predictions by combining predictions from a literature evidence-
based classifier and a genomic evidence-based classifier (PolyPhen-2/SIFT/Variant Con-
sequence). In some specific cases, STARVar may fail to identify the disease-associated 
variant in the top ranks, especially when there are weak or no signals in the literature 
regarding the association between a variant and a list of patient symptoms, and no or 
misleading signals from SIFT, PolyPhen-2, or Variant Consequence regarding the func-
tional effect of a mutation or variant consequences. Weak or no evidence in the lit-
erature might be explained by the biomedical literature not guaranteed to contain the 
complete set of queried patient phenotypes, the phenotypes provided by the user not 
using the consensus terminology used by authors for describing phenotypes in arti-
cles, and PubTator failing to identify some of the mutations or gene names accurately. 
For example, PAVS contains a disease-associated variant of the CEP152 gene known as 
NM_014985.3:c.2148-17  G>A and reported with “Encephalopathy” (HP:0001298). 
STARVar ranks this disease-associated variant at the  86th position when VEP’s variant 
consequence is used as genomic evidence. Searching “CEP152 AND Encephalopathy ” 
for the relevant titles or abstracts in PubMed returns zero hits (search performed on 
25 April 2022). In addition, VEP identified the variant consequence as “intron vari-
ant”, which has a modifier impact (i.e., usually non-coding variants or variants affecting 
non-coding genes, for which predictions are difficult or there is no evidence of impact). 
STARVar also fails in the case of ambiguous data in the test data. For example, PAVS 
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contains a disease-associated variant of the COX15 gene (cc.750+85A>G), reported for 
a patient and responsible for a set of phenotypes including “Amblyopia”, “Bilateral basal 
ganglia lesions”, “Generalized hypotonia” and “Global developmental delay”. This spe-
cific case is annotated as “ambiguous” by the clinician meaning that the variant does not 
explain the phenotypes. STARVar ranks this disease-associated variant at the 233rd posi-
tion when VEP’s variant consequence is used as genomic evidence. VEP identified this 
particular variant’s consequence as “intron variant” and our search in PubMed for the 
relevant abstracts returns no signal for the variant. More specifically, querying the genes 
COX15, with the aforementioned phenotypes returned zero hits (search performed on 
17 April 2022). Altogether, weak or no signal from the literature or VEP, or ambiguous 
cases in the test data, lead STARVar to miss some disease-associated variants.

We conducted several experiments to reveal the overall picture on the effect of the 
number of publications linked to the gene on the STARVar’s performance. We found 
that, both the literature-based model and the literature plus variant consequence achieve 
their lowest performance on the genes which least frequently appear in the literature 
and the performance reaches to the highest on the ones which present highly in the 
literature. One would expect this behaviour, as STARVar utilise literature evidence for 
ranking the variants; more articles lead to more reliable evidence from literature and 
this leads to higher accuracy. Nevertheless, incorporating genetic features helps not only 
to improve the accuracy but also shrinks the performance gap between the highly pre-
sented genes and the less frequently presented ones.

Conclusion
This study presents STARVar, a tool based on flexibly expressed symptoms and clini-
cal signs for automatically ranking variants in a patient genome. STARVar combines 
evidence from literature and patient genomes for variant prioritization. To the best of 
our knowledge, STARVar is the first variant prioritization tool that can use symptoms 
and clinical signs expressed as arbitrary terms and is not limited to specific controlled 
vocabularies. STARVar performs similarly to other tools on a synthetic patient-derived 
dataset but is more general as it can operate with flexibly expressed phenotypes. We 
demonstrated STARVar’s unique functionality on another synthetic dataset with flexibly 
expressed patient phenotypes and showed that it could identify 48 out of 50 disease-
associated variants within the top 10 hits. STARVar is freely available (see Supplemen-
tary Information, Additional File 1) and provides an automated variant prioritization 
workflow that can be used to analyze research and clinical data.

Availability and requirements

• Project name: STARVar
• Project home page: https:// github. com/ bio- ontol ogy- resea rch- group/ STARV ar
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: none
• License: 4-clause BSD-style license

https://github.com/bio-ontology-research-group/STARVar
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