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Abstract 

Background: Next‑generation sequencing technologies yield large numbers 
of genetic alterations, of which a subset are missense variants that alter an amino acid 
in the protein product. These variants can have a potentially destabilizing effect leading 
to an increased risk of misfolding and aggregation. Multiple software tools exist to pre‑
dict the effect of single‑nucleotide variants on proteins, however, a pipeline integrating 
these tools while starting from an NGS data output list of variants is lacking.

Results: The previous version SNPeffect 4.0 (De Baets in Nucleic Acids Res 
40(D1):D935–D939, 2011) provided an online database containing pre‑calculated vari‑
ant effects and low‑throughput custom variant analysis. Here, we built an automated 
and parallelized pipeline that analyzes the impact of missense variants on the aggre‑
gation propensity and structural stability of proteins starting from the Variant Call 
Format as input. The pipeline incorporates the AlphaFold Protein Structure Database 
to achieve high coverage for structural stability analyses using the FoldX force field. The 
effect on aggregation‑propensity is analyzed using the established predictors TANGO 
and WALTZ. The pipeline focuses solely on the human proteome and can be used 
to analyze proteome stability/damage in a given sample based on sequencing results.

Conclusion: We provide a bioinformatics pipeline that allows structural phenotyp‑
ing from sequencing data using established stability and aggregation predictors 
including FoldX, TANGO, and WALTZ; and structural proteome coverage provided 
by the AlphaFold database. The pipeline and installation guide are freely available 
for academic users on https:// github. com/ vibbi ts/ snpeff ect and requires a computer 
cluster.
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Background
Most proteins contain short amino acid stretches that trigger aggregation when becom-
ing solvent-exposed, hence called Aggregation-Prone Regions (APRs) [2, 3]. The pres-
ence of a structurally destabilizing mutation can lead to protein unfolding or misfolding 
and exposure of the APRs. In multi-domain proteins, the exposure of APRs (thus aggre-
gation risk) depends on the convergence of a strong APR with a destabilizing mutation 
in a specific domain [4]. In addition, mutations can alter the APR strength in a protein, 
thereby affecting the intrinsic aggregation propensity of a protein.

Next-generation sequencing technologies can identify hundreds to millions of variants 
depending on the sample. These include coding missense variants, a class of DNA poly-
morphisms that play an important role as drivers of phenotypic variation and disease. 
This is particularly true in cancer, where specific driver mutations have been identified 
that facilitate tumor growth. In addition to driver mutations, cancer cells accumulate 
many other so-called passenger mutations that are often considered harmless [5]. These 
can include structurally destabilizing protein mutations with an unknown or unimpor-
tant role. The accumulation of many of these variants may impact proteome stability and 
lead to proteotoxic stress [6]. A recent study showed that cancers with deficient DNA 
mismatch repair have an increased burden of misfolded protein aggregates, which can 
be leveraged for immunogenic cell death with immunotherapy [7]. Here, we built an 
automated bioinformatics pipeline that integrates stability and aggregation predictors 
for bulk analysis of such variants in a given sample.

Implementation
Running SNPeffect 5.0

Input file

The pipeline uses the Variant Call Format (VCF) file as input. This standardized text for-
mat is used to store variant data, usually acquired by high-throughput sequencing tech-
niques [8].

Starting a run

The instructions on how to perform an analysis are described in the README file on 
the GitHub repository (https:// github. com/ vibbi ts/ snpeff ect). In short, create a working 
folder that contains the input file (as in.vcf ) and then execute the master script (mas-
terscript.pl) to start an analysis. Note that the standard genome used for the pipeline is 
hg38.

Prerequisites

The current pipeline is designed to run on a computer cluster or supercomputer to 
allow for parallelization since some of the underlying tools require a high computational 
power (such as FoldX). The software currently only supports the Sun Grid Engine queu-
ing system. However, the master script (masterscript.pl) can be edited to match other 
cluster configurations.

https://github.com/vibbits/snpeffect
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Pipeline overview

Mapping human variants using SnpEff

A schematic overview of the pipeline is shown in Fig. 1. Starting from a VCF file, the 
pipeline uses the SnpEff (v5.0) [9] tool for variant annotation and filters for coding mis-
sense variants. SnpEff provides all known transcripts for a protein, including differ-
ent splicing isoforms. Thus, to avoid redundancy, only the transcripts whose sequence 
matches the UniProt standard reference sequence are kept. FASTA files containing the 
reference and variant protein sequence are generated. Note that if the user wants to 
include all the transcripts, this can be adjusted in the master script.

Structural stability prediction using FoldX and AlphaFold

The pipeline uses the FoldX (v3.0) [10] force field to predict the variant impact on struc-
tural stability. FoldX calculates the free-energy change upon mutation (ΔΔG) using a 
protein structure as input. The AlphaFold [11, 12] Protein Structure Database is used 
to provide high structural coverage of the human proteome. Nevertheless, if a BLAST 
database is provided, the pipeline can also work with experimentally derived PDBs (see 
documentation). The best matching structure is retrieved by doing a BLAST search of 
the wild-type sequence against the database. If a protein sequence has more than one 
perfect match structure, they are all retained. This is the case for AlphaFold structures 
of very large proteins (> 2700 AA), for which AlphaFold provides overlapping fragments 
of 1400 AA. AlphaFold produces a per-residue score of its confidence (predicted local 
distance difference test, pLDDT), which is included in the output file. It is recommended 
only to consider regions with pLDDT > 70 for reliable structural stability impact predic-
tions. For proteins with more than one structural model, we recommend conducting 
further analyses using the structure with the highest pLDDT score for the reported vari-
ant. In addition, performing energy minimization of the side chains of each PDB struc-
ture is highly recommended before modeling with FoldX (see documentation).

Domain information (CATH‑Gene3D, TMHMM)

Domain information is provided by CATH-Gene3D (v4.3) [13] to allow assessment of 
the local variant impact on stability and aggregation. It is reported if a variant is present 
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Fig. 1 SNPeffect 5.0. Schematic overview of SNPeffect 5.0
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in a specific domain. This is especially useful for multi-domain proteins. The presence 
of transmembrane regions is predicted using TMHMM (v2.0) [14]. Transmembrane 
regions are typically rich in hydrophobic residues and are often wrongfully predicted 
as aggregation-prone regions. The TMHMM annotation allows the filtering of these 
regions.

Aggregation propensity (TANGO and WALTZ)

The next core feature of the pipeline is the prediction of impact on aggregation and amy-
loid formation tendency using the established predictors TANGO [15] and WALTZ [16], 
respectively. These tools allow the identification of proteins with high intrinsic aggrega-
tion propensity and potential variant impact. The aggregation predictions are reported 
on the whole protein as well as the specific domain that harbors the amino acid variant.

Sequence‑based impact predictors (PROVEAN, SIFT)

The sequence-based variant impact predictors PROVEAN (v1.1.5) [17] and SIFT (v6.2) 
[18] supplement the structure-based stability predictors, which is especially useful for 
those variants with a low pLDDT score.

Output files

The pipeline generates multiple output files including 1) intermediate files that list rea-
sons why particular variants were withheld at a specific step in the analysis and 2) report 
files that contain the output from the software tools. A detailed description of all output 
files can be found in the GitHub documentation. In short, the main output files are the 
SEQANAL and FoldX reports. The SEQANAL report contains all information regarding 
sequence-based predictors and the FoldX report provides an extensive overview of the 
variant impact on structural stability. Finally, the ‘finalreport.txt’ gives an overall view 
of the number of variants that could be mapped and the number of matched structures.

Pipeline testing

After installation, the user can run the input VCF file from the SHP-77 carcinoma cell 
line as a test case to verify the correct installation of the software. The input file, inter-
mediate and output files of the test case are provided as a supplement, and the test case 
is presented in the next section.

Results and discussion
All versions of SNPeffect have been developed with the specific goal of mapping the 
effect of missense variants to the protein homeostasis landscape, i.e., the ability of the 
cell to maintain an appropriate balance of correctly folded proteins. The current ver-
sion has three significant upgrades that bring it closer to this goal: (1) it allows for 
high-throughput analysis of variants, (2) it uses AlphaFold structures for high struc-
tural coverage of the human proteome, and (3) it provides domain-specific aggregation 
propensities.
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Case study 1: analysis of all missense variants in dbSNP

To illustrate these three novel aspects of SNPeffect 5.0, we analyzed all missense variants 
in the dbSNP database that have a defined clinical effect [19]. Since the pipeline requires 
a VCF file, we manually arranged the variant information to be in VCF format. In total, 
277,870 unique missense variants were successfully run with the pipeline starting from 
the same VCF file (Additional file 1), highlighting its high-throughput capability. In con-
trast, the previous version of the tool could only analyze one variant at a time, making 
the study of large datasets impracticable.

To date, less than half of all human proteins have an experimentally solved structure, 
and in most cases, it only covers a small fraction of the sequence [20]. In fact, just 33% 
of the analyzed dbSNP variants can be mapped to a high-resolution experimentally 
solved structure (Fig. 2A). Thus, using AlphaFold structures, we can obtain nearly com-
plete structural coverage for all variants in dbSNP. The use of FoldX on AlphaFold struc-
tures for variant effect prediction was recently shown to provide accurate results [21]. 
In short, in this study, more than 100,000 mutations from deep mutational experimen-
tal measurements were compared with predicted changes in stability for mutations on 
the AlphaFold structures. The observed correlations are typically as good or better as 
those obtained with experimentally derived structures when mutants are in regions with 
a high confidence score (pLDDT score >  = 70). In our example, 67% of all variants are in 
a region predicted with high confidence, greatly expanding the coverage obtained using 
experimentally solved structures (Fig.  2A). For regions with a low confidence score, 
FoldX stability predictions are not reliable [21]. Instead, the output of the sequence-
based predictors PROVEAN and SIFT can be used to determine the impact of a variant.

A new feature of SNPeffect 5.0 is the analysis of variants in the context of their struc-
tural domains (Fig.  2B). Most proteins contain multiple structural domains that usu-
ally fold independently from each other. Therefore, a destabilizing mutation will be, in 
general, more severe in the domain in which the mutant is located. If the domain con-
tains an APR, the destabilizing mutation will more likely expose it to the solvent and 
drive protein aggregation [4]. On the other hand, a severe structural destabilization in a 
domain that does not contain any APRs will generally not result in an aggregation risk 
to the protein, despite leading to its loss-of-function. Around 51% of analyzed dbSNP 
variants are mapped to a structural domain by the pipeline. However, variants that are 
not mapped to domains commonly have low pLDDT scores (Fig. 2C), as they are within 
linkers. Since these regions are exposed and unstructured [22], variants outside domains 
are typically not predicted to destabilize or impact the protein’s function, agreeing with 
their actual clinical phenotype (Fig. 2D–G).

The principles behind structure-based stability predictors, such as FoldX, are very dif-
ferent from sequenced-based predictors, such as PROVEAN or EVE [23]; which might 
translate into different predicted outcomes for some variants (Fig. 2H). Sequence-based 
predictors usually rely on a combination of multiple-sequence alignments to estimate 
the pathogenicity of mutations. However, they do not provide any information on the 
possible molecular mechanisms of diseases. On the other hand, FoldX uses an empirical 
force field to determine the change in Gibbs free energy (ΔΔG) of folding upon muta-
tions. Therefore, pathogenic mutations that are mild at the structural level, such as 
gain-of-function mutations, would not be predicted as destabilizing by FoldX [24]. This 
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distinction is essential, as destabilization can lead to protein unfolding/misfolding and 
aggregation.

Case study 2: full exome sequencing of SHP‑77 cell line

In this section, we emphasize one of the major strengths of the pipeline, which is 
the capability to analyze all variants present in a sample directly as obtained from 
next-generation sequencing. This is particularly important in cancer, as the decline 
in sequencing costs is rapidly moving cancer genomic profiling into routine clinical 
practice [25]. As an example, we ran the pipeline to all variants identified in the small 
cell lung carcinoma cell line SHP-77 (downloaded from COSMIC [26]). The output file 
containing the results can be found in Additional file 2. Out of 499 unique missense 
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variants in this cell line, 450 were successfully run with the pipeline (Fig. 3A). From 
this, around 45% are within high confidence domains (pLDDT >  = 70) and were used 
to generate a variant impact plot (Fig. 3B). This plot visualizes the impact on protein 
stability and convergence with the highest domain TANGO score of all variants in the 
cell line. Variants that have a destabilizing effect in a protein with a domain contain-
ing a strong APR can be found in the upper right quadrant of the plot and can poten-
tially have an additional contribution to proteotoxic stress. SHP-77 cell line contains 
two variants in known driver proteins with a relatively strong APR (TANGO > 75), 
KRAS and p53 (Tier 1 Cancer Gene Census [27]) (Fig. 3B, C). A condensed version of 
the SNPeffect output for the SHP-77 cell line highlighting the specific output of p53 
and KRAS is shown in Fig. 3C. Both proteins have a relatively strong APR in the same 
domain as the variant residue (the highest TANGO score in a domain is 78.9 and 79.1 
for KRAS and p53, respectively. In comparison, the oncoprotein (gain-of-function 
variant) KRAS has a neutral impact on stability (ΔΔG = − 0.12) while tumor suppres-
sor (loss-of-function variant) p53 is severely destabilized (ΔΔG = 8.5) and at risk of 
misfolding and subsequent aggregation. Despite having a neutral impact on stabil-
ity, the variant affecting KRAS is predicted by PROVEAN to be deleterious (− 7.35) 

Fig. 3 SNPeffect analysis of carcinoma cell line SHP‑77. A Number of different mutation types in the small 
cell lung carcinoma cell line SHP‑77. The impact of 90% of all missense variants was defined with SNPeffect 
5.0. B Variant impact plot for the small cell lung carcinoma cell line SHP‑77. The APR TANGO score and FoldX 
scores (maxed at ΔΔG = 5 in the plot) are plotted for all variants in a high‑confidence domain. The two 
variants in known driver proteins, KRAS and p53, are highlighted in the plot. For variants that were matched 
to more than one PDB structure, only one structure (highest pLDDT) was used to avoid redundancy. C 
Condensed input and output files of cell line SHP‑77 focusing on KRAS and p53. The FoldX report contains 
the calculated impact on structural stability (ΔΔG), information about the used structure, and the residue 
pLDDT score. The SEQANAL report presents the variant‑containing domain, identification of APRs in that 
domain, and variant‑impact prediction by established tools such as PROVEAN. Dotted columns represent 
extra data that can be found in the complete output files (Additional file 2)
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since KRAS G12V is a known oncogenic mutation [28]. Again, this underlines the 
main difference between using FoldX and a sequence-based variant predictor such as 
PROVEAN.

The total computational run time for this sample was around 4  h using 25 cores 
(Intel Xeon Gold 6258R CPU @ 2.70  GHz). In comparison, the computational run 
time on the same machine with only one core was over 70 h, highlighting the perfor-
mance increase due to parallelization.

Conclusions
SNPeffect 5.0 is a novel bioinformatics pipeline for structural phenotyping missense var-
iants directly from sequencing data using stability and aggregation predictors. It offers 
several major updates to our previous tool versions, including high-throughput analysis, 
high structural coverage due to the implementation of AlphaFold, and domain-specific-
ity; bringing SNPeffect into the era of high-throughput structural modeling.
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PDB  Protein Data Bank
VCF  Variant Call Format
pLDDT  Predicted local distance difference test
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