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Abstract 

Deep learning-based medical image segmentation has made great progress 
over the past decades. Scholars have proposed many novel transformer-based 
segmentation networks to solve the problems of building long-range dependencies 
and global context connections in convolutional neural networks (CNNs). However, 
these methods usually replace the CNN-based blocks with improved transformer-
based structures, which leads to the lack of local feature extraction ability, and these 
structures require a huge number of data for training. Moreover, those methods did 
not pay attention to edge information, which is essential in medical image segmen-
tation. To address these problems, we proposed a new network structure, called 
P-TransUNet. This network structure combines the designed efficient P-Transformer 
and the fusion module, which extract distance-related long-range dependen-
cies and local information respectively and produce the fused features. Besides, we 
introduced edge loss into training to focus the attention of the network on the edge 
of the lesion area to improve segmentation performance. Extensive experiments 
across four tasks of medical image segmentation demonstrated the effectiveness 
of P-TransUNet, and showed that our network outperforms other state-of-the-art 
methods.

Keywords:  Medical image segmentation, Transformer, Self-attention, Axis attention, 
Channel attention

Introduction
Medical imaging, such as computed tomography (CT), magnetic resonance imaging 
(MRI), and gastroscopy, is greatly important for clinicians to make a preliminary diagno-
sis of the current condition of patients [1]. However, the huge number of medical images 
requires several experts to process. A computer-aided diagnosis system (CADS) helps 
clinicians by producing the suspected lesion area or organ boundaries to make full use of 
medical images [2]. As a computer vision task, image segmentation can classify images 
at the pixel level and is promising in the field of medical imaging [3]. In application, the 
structure extracts semantic features of input images through an automated process and 
then classifies the image at the pixel level, which provides a feature-based approach for 
pathological studies and increases the accuracy of diagnoses in clinical practice.
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With the development of deep learning, convolutional neural networks (CNNs) gradu-
ally dominate the field of image segmentation [4]. As the most classic network in medi-
cal imaging, U-Net [5] has proved its excellent performance on various types of image 
data. It consists of an encoder and a decoder, where the encoder extracts high-level fea-
tures through convolution and down-sampling layers, and the decoder generates the 
result through up-sampling with skip connections, which provide details of different 
granularities. Benefiting from the U-shaped architecture, many novel structures have 
been developed and proposed in recent studies, such as U-Net++ [6], Res-UNet [7], 
and Dense-U-Net [8]. These networks were adjusted to generate more specific features 
from images based on the characteristics of the concerned areas and achieved promis-
ing success. However, CNN-based structures have their disadvantages, which hinder the 
development of medical image segmentation. First, because of the definition of convo-
lution kernel, each convolution kernel can only focus on the local region of the image, 
which may lose global information and fail to establish the long-range relationship [9]. 
Second, the pooling layers may cause the network to lose critical details of the images 
and their inner relationship. Some studies have been conducted to collect the long-range 
dependency for convolutional networks, such as Atrous Spatial Pyramid Pooling (ASPP) 
[10] and attention [11]. Because of the unique characteristics of medical images, such 
limitations of the aforementioned models should be addressed to meet the requirements 
of medical tasks.

Transformers [12] were first proposed in natural language processing (NLP) and 
achieved great success in various tasks for its excellent ability to connect long-range 
dependency information. Furthermore, transformers were first introduced into com-
puter vision tasks to build the network named Vision Transformer (Vit) [13], which 
achieves comparable performance with other convolution-based methods. Transformer 
models are attention-based and their key component is self-attention (SA). SA can 
model correlations among all input tokens with equal weights instead of focusing on 
the local position like CNN-based models, which makes the long-range dependencies 
of transformer models to get distinguishable features. However, Vit has its drawbacks: 
first, it requires several images for training; however, these images are limited in the field 
of medical imaging [14]. Second, the SA of transformer models slows down the process-
ing speed of high-resolution images because of its quadratic computational complexity. 
Third, the calculation of SA reduces the attention weight of local features, which may 
lead to lost information on local details.

At present, many studies [9, 14–16] have combined CNN- and transformer-based 
models to propose novel structures. However, these studies mostly optimized the fea-
ture extraction ability in series, while ignoring the inherent influence of the structure 
on feature extraction. A common operation is to propose a new transformer-based 
structure to replace convolution layers for feature extraction or aggregation. Although 
such a replacement alleviates the inherent inductive biases of CNNs and enhances the 
ability to model global–local context information, the operation also weakens the abil-
ity to detail feature extraction because of the discard of CNNs in the encoder. In medi-
cal image segmentation, the detail texture feature plays a vital role in segmenting lesion 
areas [17], which can be well aggregated by convolution layers. Therefore, we proposed 
a new structure that integrates transformer- and CNN-based models to model detailed 



Page 3 of 17Chong et al. BMC Bioinformatics          (2023) 24:285 	

information and global relationships simultaneously. Studies have reported that encod-
ers based on the two structures can extract high-level features of images simultaneously 
[16], and there will be some repetitive information. Thus, we adjusted the transformer 
structure to pay more attention to long-range dependencies and ignore local informa-
tion to avoid extracting repetitive local information, which will only be extracted via the 
paralleled CNN model. Besides, the edge information [18] of the lesion area contains 
the comparison of the normal and diseased areas, which plays an important role in diag-
nosis. By introducing the supervision of region edges, we added edge information into 
the field of medical images for segmentation. The main contributions of our work are as 
follows:

We propose P-Transformer, an encoder structure, achieved by combining the designed 
transformer and convolution layers in parallel for feature extraction. The structure can 
integrate the advantages of both so that the network can effectively model local and 
global information and avoid the interference of repeated information.

To fuse the features, we propose an attention-based fusion module that integrates two 
types of features in the channel and spatial dimensions. Besides, we introduced edge 
information as supervision along the training process, which allows the network to focus 
on the edge details of the target area to improve performance in the medical imaging 
field.

We performed experiments on several medical image segmentation datasets to verify 
the effectiveness of our proposed network. The results showed that the proposed struc-
ture with edge loss had higher segmentation performance than previous transformer-
based networks, and the visualization effect also proved the effectiveness of our method.

Related work
In this section, we briefly summarize the current research on medical image segmenta-
tion. We first summarized the U-shaped network represented by U-Net, the most typical 
CNN method in medical image segmentation, and then introduced the application of 
visual transformers in the field of image segmentation, particularly in medical imaging 
tasks.

Medical image segmentation based on CNNs

Early medical image segmentation algorithms were mainly based on edge extraction 
operators of contour and machine learning algorithms. Owing to the development of 
deep convolutional networks, U-Net [5] was developed and proposed for medical image 
segmentation, and demonstrated excellent segmentation performance in the medical 
field. Benefiting from the U-shaped structure, U-Net uses an encoder and a decoder 
to extract image features and introduce a skip connection to retain details. Many novel 
architectures based on U-Net have been proposed to improve the performance of vision 
tasks. U-Net++ [6] introduced multilevel dense skipping connections to further model 
local details to reduce high-level semantic information gaps. Res-UNet [7] introduced a 
residual structure and combined attention mechanism to solve the problem of topologi-
cal structure and contrast in retinal vascular segmentation tasks. DoubleU-Net [19] is 
a combination of two U-Net architectures stacked on each other, and the first U-Net 
uses pretrained VGG-19 as the encoder, which can be easily transferred to another task. 
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Besides, ASPP [10] is adopted to collect context information on images. Note that these 
methods are based on CNN; therefore, the convolution layer has inherent inductive bias 
and missing global relationship information problems. Although these problems can be 
improved by adding adjusted attention modules, long-distance dependence information 
still cannot be effectively modeled.

Transformers in medical segmentation

Inspired by the excellent performance of transformers in NLP tasks, SA-based trans-
formers have been introduced into computer vision and made great progress. First, Vit 
[13] introduced the transformer structure to replace the CNN layers in the computer 
vision field and achieved better performance than previous popular deep convolution 
networks. It cuts the image into different tokens and adds a position offset to complete 
the mapping from the picture to the sequence, and then extracts long-distance depend-
ency features of the image to enhance semantic information. Swin-transformer [14] 
proposed a new hierarchical backbone structure that realized the linear computational 
complexity based on the self-attention of a sliding window and improved the segmenta-
tion performance based on reducing the calculation cost. DS-transUNet [20] proposed 
a new encoder–decoder-based transformer framework that combines the characteristics 
of Swin-transformer with multiscale visual transformers and effectively improves the 
standard U-shaped model structure of medical image segmentation. These structures 
replace the CNN structure with a transformer in encoders. Although this replacement 
strengthens the ability to model the long-dependency relationship of the network, it also 
produces a lack of detailed information and the requirements of the amount of training 
data. Inspired by these studies, we proposed a network that combines the structure of 
transformers and CNNs simultaneously, and adjusted its architecture, which not only 
retains the long-distance modeling ability but also reduces the calculation amount of the 
network to improve its trainability.

However, the aforementioned medical image segmentation models have low accuracy 
in medical image segmentation tasks in complex environments. The reason is that the 
spatial detail information of the lesion area is not fully used. Although the TransUnet 
model uses a transformer structure to fuse global features, it only focuses on semantic 
information and does not improve the acquisition process of texture features. Therefore, 
these models cannot fuse texture and global information simultaneously in the decoding 
process.

Inspired by these methods, we propose a U-shaped structure called P-TransUNet, 
which extracts weight in parallel by convolution and transformer, and performs feature 
enhancement. We believe that this parallel transformer-based structure is superior to 
previous serial structure models and optimizes medical image segmentation.

Methods
In this section, the overall architecture of the proposed P(parallel)-TransUNet is intro-
duced in detail, as shown in Fig. 1. We first compared the standard transformer and the 
improved P-Transformer (parallel transformer) in our work, including the axial weight 
and weight assignment mask. Then, we introduced the global–local fusing (GLF) mod-
ule for combining features produced by P-Transformer efficiently. Finally, we introduced 
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the loss function used in the experiments, which included edge supervision to focus on 
salient features.

Overview of the P‑TransUNet

As shown in Fig.  1, P-TransUNet consists of an improved encoder, a CNN-based 
decoder, and a skip connection. When getting an image as input, the encoder first uses 
the former part of Resnet-50 to extract low-level features and save the outputs of each 
part simultaneously to prepare for skip connections. The basic unit of the encoder is 
P-transformer and GLF. P-transformer comprises an improved transformer and a resid-
ual network in parallel, which model the long-dependence and local information of the 
feature map, respectively. The outputs are fused through a GLF attention module for 
subsequent processing. A standard transformer is added between the encoder and the 
decoder to integrate features after dimension reduction. The decoder adopts a standard 
convolution layer and bilinear up-sampling to decode features, and reconstruct image 
segmentation results with the information about skip connection inputs. The detailed 
structures of P-transformer and GLF are introduced in the following contents.

P‑transformer

Standard transformer

The standard transformer [13] consists of multiple identical blocks. Each block com-
prises Multi-head Self-Attention (MSA) and Multi-Layer Perceptron(MLP). Further-
more, there is a Layer Norm behind each MSA and MLP with a residual connection. The 
output  zl of the l-layer can be expressed as follows:

where xip represents the patches of input and z0 represents the sequence of the image.
The key part of the transformer is MSA, which produces an attention weight map 

for the relationship between each pixel in every channel head. However, the standard 

(1)
ẑl = MSA LN zl−1 + zl−1

zl = MLP LN ẑl + ẑl

Fig. 1  Illustration of proposed P-TransUnet and its details. a is the detailed diagram of improved-transformer, 
b is the detailed diagram of P-transformer, c is the detailed diagram of GLF modules, and d is the overall 
architecture of P-TransUnet
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MSA has two problems: first, the cost of computation to generate the attention weight 
map is quadratically related to the number of tokens, which represent the features of 
a certain area of the picture. For high-resolution medical images, several tokens will 
be generated, which will greatly increase the cost of computation. Second, when gen-
erating the attention weight map, the standard MSA does not involve the distance 
between two tokens. To address the aforementioned issues, axial attention and a 
weight mask are introduced to improve the network.

Axial attention

In a standard transformer, MSA generates the feature maps of Query (Q), Key (K), 
and Value (V) with the same dimensions by input and then decomposes them in 
the channel dimension according to the number of multi-heads. Finally, the atten-
tion map of each head is generated by Q × K and then multiplied by V. The operation 
includes the calculation of the correlation coefficient between each token, which will 
generate the quadratic computational complexity. Inspired by [21], in the P-trans-
former of this paper, Q and K are calculated separately according to H and W dimen-
sions, and each dimension calculates the correlation coefficient f̂H , f̂W  separately. The 
computational complexity is reduced, which can adapt to more tokens. Besides, the 
correlation matrix f̂  only involves one dimension and reveals the attention inside the 
dimension. For example, f̂H(i,j) represents the relation between the indexes i, j in the 
H dimension.

As shown in Fig. 2, the detailed operations are as follows: after the input is divided 
into different tokens, take the mean value in the two dimensions of H and W, respec-
tively, and then conduct the subsequent multi-head attention calculation. Before mul-
tiplying with V, the H and W dimensions are reconnected by matrix operation. The 
process can be represented by the following:

Fig. 2  The detailed illustration of axial mask attention in P-transformer on the input feature map
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where Avg represents the avg-pooling layer, f , f̂  represents the axial feature in the pro-
cess, and × represents matrix multiplication.

Attention weight mask

In a standard transformer, after obtaining the self-attention weight, MSA multiplies it 
with the V matrix for attention weighting. The self-attention feature map represents 
the relationship between every two tokens. The value of the activation is not concerned 
with the distance between tokens, indicating that the standard MSA will process all 
tokens equally; however, the correlation between tokens that are close or even adjacent 
can be better represented by the convolution layer. In this paper, we designed a paral-
lel feature extraction method on the feature map to model the long-distance and local 
feature relationships separately using Vit and CNN-based models simultaneously. We 
hope that MSA can pay more attention to the relationship between long-distance tokens 
and reduce the correlation activation of short-distance positions. Therefore, we added a 
mask in the operation of axial attention ( f̂H , f̂W  ) to suppress the correlation activation of 
short-distance positions through a function. Take f̂H(i,j) as an example; it represents the 
weight inside the H dimension and contains distance information in the i, j index, which 
can be represented as 

∣

∣i − j
∣

∣ . Attention to short distances should be weakened to reduce 
similarity with CNNs.
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ResBlock

In the parallel transformer structure proposed in this paper, another branch is the fea-
ture extraction network based on convolution. In our work, we chose Resnet-50 [22] as 

(2)

fH = AvgH (resize(zl))

fW = AvgW (resize(zl))

f̂H = MLPQ
(

fH
)

×MLPK
(

fH
)

f̂W = MLPQ
(

fW
)

×MLPK
(

fW
)

Q × K = flatten
(

f̂H

)

× flatten
(

f̂W

)

(3)
Maski,j =







1 i = j

k
��

�i − j
�

�

�2
− ka2 + 1 0 <

�

�i − j
�

� < a

1
�

�i − j
�

� ≥ a

Q × K = flatten
�

Mask · f̂H

�

× flatten
�

Mask · f̂W

�



Page 8 of 17Chong et al. BMC Bioinformatics          (2023) 24:285 

the backbone, which has five stages, and each stage is composed of multiple residual 
modules. Similar to TransUNet, which benefits from the excellent low-level feature 
extraction ability of the convolutional network, our network first performs a feature 
aggregation operation preliminarily on the input features through two stages for sub-
sequent processing. In our proposed P-Transformer, each branch of the convolutional 
model consists of a stage in Resnet-50 to extract local correlation features. Benefiting 
from the local receptive field of the convolutional network, this branch mainly extracts 
the context information between close-range tokens and complements another trans-
former-based branch. The two branches extract the feature maps at different scales on 
the same input token sequence and generate outputs as the inputs of the subsequent 
feature fusion module.

Global local fusing

After obtaining the two encoded features of different branches, we proposed a GLF 
module for efficient aggregation between features. We designed the GLF hoping that 
the global features extracted by the transform branch can strengthen or weaken the 
local features based on the CNN branch. Inspired by the Convolutional Block Atten-
tion Module(CBAM) [23], we first generated the spatial attention (SA) matrix by spatial 
average pooling and convolution layer of global features, and dot multiplying with the 
local features. We can filter and enhance the local features in the spatial dimension, and 
remove redundant information and noise simultaneously. Then, we generated the chan-
nel attention (CA) through channel average pooling and full connection layer in parallel, 
and filtered the local features on the channel dimension. In conclusion, the global fea-
tures are used to guide and enhance the local features to realize the interaction between 
features. Besides, the global features and the adjusted local features are compressed in 
the channel dimension through a CNN separately and concate the outputs to generate 
the final features. Finally, a CNN is used to produce the outputs.

where flocal , fglobal represents local and global features, respectively, cat indicates a stack 
operation, and Ac,As denote channel and spatial attention, respectively.

Edge information in loss function

During the training phase, P-TransUNet uses an end-to-end training method. We have 
used binary cross-entropy loss LBCE and dice loss LDice . The calculation formulas are as 
follows:

(4)

As = SpatialAttention
(

fglobal
)

Ac = ChannelAttention
(

fglobal
)

fout = conv
(

cat
(

conv
(

fglobal
)

, flocal · As · Ac

))

(5)

LBCE = −

n
∑

i=1

(yilog(pi)+ (1− yi)log(1− pi))

LDice = 1−

∑n
i=1 yipi + ε

∑n
i=1 (yi + pi)+ ε
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where n is the total number of pixels in each image, yi represents the ground-truth value 
of the ith pixel, and pi represents the confidence score of the ith pixel in the prediction 
results.

Many studies have indicated the importance of edge information for generating a clear 
prediction in segmentation tasks. Similarly, for medical images with fuzzy edges and 
similar shapes, we also introduced edge information, as shown in Fig. 1. For a sample 
mask, we first extracted its edge mask using the Canny operator with a large thresh-
old range to comprehensively extract edge information. Generally, the edge of the image 
only occupies a small part of the mask pixels, which leads to the imbalance of positive 
and negative samples. Therefore, we introduced Ohem loss[24] for edge masks, which 
only calculates the loss of part pixels. In detail, we first produced the loss of each pixel by 
prediction and ground truth, and chose some of the pixels with high loss to calculate the 
final loss. Ohem loss is more likely to collect these misclassified small samples for loss 
calculation, which is conducive to alleviating the problem of sample imbalance.

Except for the commonly used Dice and CE losses, the loss function used in training 
includes the introduced edge loss. The ground truth of the edge is produced by the mask 
image through the Canny operator in advance. Because of the imbalance of pixels in the 
edge mask, we introduced Ohem loss to reduce the impact of the imbalance of positive 
and negative samples. Therefore, the loss function finally used in this paper is as follows:

where α , β and γ are set to 0.5, 0.3, and 0.2, respectively; G,Gedge represent the ground 
truth of each image and its edge, respectively, and P,Pedge represents prediction of each 
image and its edge, respectively.

Experimental analysis
In this section, we conducted some experiments to compare our proposed model with 
SOTA methods in four segmentations datasets.

Description of datasets

Polyp segmentation

For the polyp segmentation task, we selected two public polyp datasets named Kva-
sir [25] and CVC-ClinicDB [26], which can be publicly accessed and downloaded. The 
Kvasir-SEG dataset collected 1,000 preprocessed polyp images, and the lesion mask 
was drawn by several medical experts. Each image in the Kvasir-SEG dataset can con-
tain multiple polyps. Similar to [27], we randomly split the dataset into the training, test, 
and validation sets at an 8:1:1 ratio. The CVC-ClinicDB dataset comprises 612 randomly 
selected video frames from colonoscopic videos provided by the Barcelona Hospital in 
Spain. Each image contains only one polyp and has been marked by experts. We still 
split them by the same ratio as Kvasir.

GLAnd Segmentation (GLAS) dataset

GLAS datasets come from a competition in 2015, which provides images of hematoxy-
lin and eosin (H&E)-stained slides to perform gland segmentation in histology images. 

(6)Ltotal = αLCE(G,P)+ βLDice(G,P)+ γLOhem
(

Gedge,Pedge
)
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GLAS contains 165 images with different resolutions. According to a study on GLAS 
[28], we classified 85 images as the training set and 80 images as the test set.

2018 data science bowl (DSB)

2018 DSB is from a segmentation challenge and is used to find the nuclei in divergence 
[29]. 2018 DSB contains 670 images, and we split the dataset into three groups—80% for 
training, 10% for validation, and 10% for testing—according to the settings in [30].

Evaluation metrics

To evaluate the proposed P-Transformer model, we used four standard evaluation met-
rics to compare with other SOTA methods. The evaluation metrics we used included 
Dice Coefficient (Dice or F1), Intersection over Union (IoU), Precision, and Recall, which 
are related to the confusion matrix values of the experimental results. There are four 
types of values in the confusion matrix, namely, true-positive (TP), true-negative (TN), 
false-positive (FP), and false-negative (FN) values. The calculated method of standard 
evaluation metrics is as follows:

Implementation details

All models are built using the PyTorch framework and trained on an NVIDIA 3090 with 
the memory of 24 GB. We used the SGD optimizer with an initial learning rate of 0.01, 
a momentum of 0.9, and a weight decay of 0.0001, with Cosine Annealing warm restart 
schedule for more effective training. During the training, we set the batch size to 4 and 
the max epochs to 150. Each training saved the best model for testing.

In the training process, we resized all images to 512 × 512 for the experiment and vari-
ous data enhancement technologies were introduced to expand the dataset. First, the 
images were processed using common sample enhancement techniques: random rota-
tion, random horizontal and vertical inversion, clipping, and random elastic deforma-
tion. Additionally, one of the following methods is randomly selected to generate the 
final inputs: cut out, course dropout, grid destruction, and grid dropout.

Results

Comparison on Kvasir‑SEG

In Table 1, which only involves the Kvasir dataset, we can see that our P-TransUNet 
outperforms other methods on mDice by 93.52% and Recall by 93.89%. On mIoU and 
Precision, our method ranked second with 88.93% and 93.79% behind FCBFormer. 
The results demonstrated that our method improved mDice and Recall by 1.17% and 
0.88%, which are valued to decrease the misdiagnosis rate in clinical practice. As 

(7)

Dice =
2× TP

2× TP + FP + FN

IoU =
TP

TP + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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shown in the visualization results (Fig.  3), our method can distinguish polyps with 
fuzzy edges, which have similar color and structure to normal tissue, which caused 
misdiagnosis using other methods.

Comparison on CVC‑ClinicDB

In Table 2, which only uses the CVC-ClinicDB dataset, the results showed that our 
P-TransUNet achieves SOTA on all metrics compared with other methods. Specifi-
cally, our method improved mDice, mIoU, Recall, and Precision by 1.32%, 1.22%, 
0.62%, and 1.25% compared with FCBFormer. The visualization in Fig. 3 demonstrates 
that P-TransUNet can segment a large area of polyps more accurately than the previ-
ous method.

Table 1  Comparisons with the state-of-the-art baselines on the Kvasir-SEG dataset

Terms: The “−” denotes that the corresponding result is not provided. For each column, the best results are highlighted

Method mDice mIou Recall Precision

DoubleU-Net [19] 0.8130 0.7330 0.8400 0.8610

ResUNet++  [31] 0.8133 0.7927 0.8774 0.7064

U-Net [5] 0.8180 0.7460 0.6306 0.9222

FCN [32] 0.8310 0.7370 0.8350 0.8820

DDANet [33] 0.8576 0.7800 0.8880 0.8643

FANet [34] 0.8803 0.8100 0.9060 0.9010

U-Net++  [6] 0.9032 0.8473 0.8923 0.8945

TransUNet [15] 0.9130 0.8570 – –

DS-TransUNet [20] 0.9130 0.8592 0.9360 0.9164

MSRF-Net [35] 0.9217 0.8914 0.9198 0.9666
FCBFormer [36] 0.9235 0.8757 0.9301 0.9306

Our method 0.9352 0.8893 0.9389 0.9379

Fig. 3  Qualitative results of P-TransUNet on four medical image segmentation datasets compared with other 
methods from [20]. From top to bottom: Kvasir, CVC-ClinicDB, GLAS, DSB
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Comparison on 2018 data science bowl

The quantitative result of our network on 2018 DSB is shown in Table 3. The results 
showed that our proposed network P-TransUNet outperformed other SOTA meth-
ods on all metrics. Compared with FCBFormer, P-TransUNet improved mDice by 
1.18%, mIoU by 1.48%, Recall by 0.84%, and Precision by 1.54%. From the qualitative 
results in Table 3, we can conclude that our P-TransUNet could find the position of 
cell nuclei more accurately and generate a clearer segmentation prediction on small 
samples.

Comparison on GLAS

Based on the results on GLAS in Table 4, we can observe that the proposed P-Tran-
sUNet achieved better performance than previous SOTA methods on all metrics. Our 
model produced 89.22% on mDice, 81.24% on mIoU, 89.33% on Recall, and 89.57% 
on Precision with an improvement of 0.85%, 1.16%, 0.14%, and 1.08% compared with 
the leading SOTA method TransAttUnet. As shown in Fig. 3, the visualization result 

Table 2  Comparisons with the state-of-the-art baselines on the CVC-clinicDB dataset

Terms. The “−” denotes that the corresponding result is not provided. For each column, the best results are highlighted

Method mDice mIou Recall Precision

U-Net [5] 0.8781 0.7881 0.7865 0.9329

Deeplabv3+  [37] 0.8897 0.8706 0.9251 0.9366

PraNet [30] 0.8990 0.8490 – –

U-Net++  [6] 0.9035 0.8637 0.9175 0.8564

ResUNet++  [31] 0.9199 0.8892 0.9391 0.8445

TransUNet [15] 0.9350 0.8870 – –

FANet [34] 0.9355 0.8937 0.9339 0.9401

DS-TransUNet [20] 0.9422 0.8939 0.9500 0.9369

FCBFormer [36] 0.9461 0.9020 0.9502 0.9412

Our method 0.9593 0.9142 0.9564 0.9537

Table 3  Comparisons with the state-of-the-art baselines on the 2018 data science bowl (DSB) 
dataset

 Terms: The “–” denotes that the corresponding result is not provided. For each column, the best results are highlighted

Method mDice mIou Recall Precision

U-Net [5] 0.7573 0.9077 – –

PraNet [30] 0.8103 0.7108 0.8062 0.8231

Deeplabv3 [37] 0.8857 0.8367 0.9141 0.9081

U-Net +  +  [6] 0.8853 0.8906 0.8862 0.8628

ResUNet [38] 0.8991 0.8244 0.9000 0.9084

Attention U-Net [11] 0.9083 0.9103 – 0.9161

TransUNet [15] 0.9178 0.8648 0.9023 0.8936

TransAttUnet [39] 0.9162 0.8498 0.9185 0.9193

DS-TransUNet [20] 0.9219 0.8612 0.9378 0.9124

MSRF-Net [35] 0.9224 0.8534 0.9402 0.9022

FCBFormer [36] 0.9245 0.8727 0.9379 0.9083

Our method 0.9363 0.8875 0.9463 0.9237
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proved that our method can generate smoother segmentation results, particularly for 
samples with a vague edge.

Generalization and discussion
In medical imaging, generalization ability refers to the robustness of the algorithm 
on different datasets. This paper used Kvasir-SEG for model training and then CVC-
ClinicDB for tests. Similarly, we also exchanged datasets for research, that is, model 
training on CVC-ClinicDB and testing on Kvasir-SEG. Tables 5 and 6 show the results 
of the generalization experiments. Furthermore, we conducted ablation studies to 
explore the effectiveness of the proposed modules.

Table 4  Comparisons with the state-of-the-art baselines on the GLAS dataset

Terms: The “–” denotes that the corresponding result is not provided. For each column, the best results are highlighted

Method mDice mIou Recall Precision

U-Net [5] 0.7976 0.6763 – –

ResUNet [38] 0.8088 0.6911 0.8511 0.8001

MedT [9] 0.8102 0.6961 – –

U-Net++  [6] 0.8245 0.7023 0.8324 0.8179

Attention U-Net [11] 0.8159 0.7006 – –

TransUNet [15] 0.8634 0.7736 0.8573 0.8268

DS-TransUNet [20] 0.8719 0.7845 – –

TransAttUnet [39] 0.8837 0.8008 0.8919 0.8849

FCBFormer [36] 0.8745 0.7903 0.8786 0.8523

Our method 0.8922 0.8124 0.8933 0.8957

Table 5  Generalizability results of the models trained on Kvasir-SEG and tested on CVC-clinicDB

Method mDice mIoU Recall Precision

U-Net [5] 0.6302 0.5015 0.5612 0.8249

U-Net++  [6] 0.4267 0.3623 0.4337 0.6877

Deeplabv3 + Xception [37] 0.6509 0.5385 0.6251 0.7947

Deeplabv3 + Mobile [37] 0.6303 0.4825 0.5957 0.7173

HRNetSmallv2 [40] 0.6428 0.5513 0.6811 0.7253

HRNet [40] 0.7901 0.6953 0.8796 0.7694

MSRF-Net [35] 0.7921 0.6498 0.9001 0.7000

Our method 0.8462 0.7584 0.8364 0.8681

Table 6  Generalizability results of the models trained on CVC-clinicDB and tested on Kvasir-SEG

Method mDice mIou Recall Pre Flop

Base(resblock) 0.8713 0.8056 0.8964 0.8665 18.8G

Base + T 0.9061 0.8376 0.9272 0.8993 47.6G

Base + P-transformer 0.9253 0.8652 0.9354 0.9190 35.4G

Base + T + GLF 0.9161 0.8479 0.9304 0.9129 50.8G

Base + T + edge 0.9123 0.8474 0.9296 0.9045 49.8G

Base + P-trans-
former + GLF + edge

0.9352 0.8893 0.9389 0.9379 42.6G
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Generalizability results

To study the generalization performance of our model in different datasets of the same 
type, we performed generalization experiments on two gastric polyp datasets, as shown 
in Tables 5 and 6. According to the split of experiments, we trained with the Kvasir and 
CVC training sets, respectively, and then tested on the CVC and Kvasir test sets instead. 
Compared with previous studies, our P-TransUNet model achieved better performance 
in two generalization experiments on mDice and mIoU, but has a deficiency in Recall 
and Precision. The results showed that our model could extract more descriptive fea-
tures at a high level and had a stronger ability to generalize image data of the same types.

Ablation study

To explore the impact of each proposed module in this paper, we conducted an ablation 
study on the Kvasir dataset. Specifically, we used ResBlock to build the encoder as the 
baseline and then added a transformer to verify the effectiveness of the parallel struc-
ture. In the experimental part, we added the proposed P-Transformer, GLF, and edge 
loss to perform experiments with quantitative analysis. As shown in Table 7, the results 
indicated that the model with three improvements performed best on four indicators.

Effects of P-transformer: To solve the training problem of the standard transformer, 
we proposed an improved version that includes axial attention and an attention weight 
mask. Experiments were conducted to evaluate the effectiveness of the module. The 
experimental results showed that the adjusted P-transformer can improve the perfor-
mance of all evaluation indexes, particularly on mDice and mIoU, by 1.92% and 2.76%, 
respectively. It was proven that the P-transformer can effectively guide parallel branches 
to extract global and local information, and reduce information redundancy. Simulta-
neously, compared with the direct introduction of the P-transformer, the module can 
reduce the computational complexity from 47.6 G to 35.4 G, approximately 25% reduc-
tion, and obtain greater performance improvement due to the division of labor in feature 
modeling. Our proposed model also benefits from this structure, which further improves 
the identification ability of the network under the premise of reducing parameters.

Effects of GLF: For the fusion of features extracted from the double-branch structure, 
we proposed a GLF module to fuse global and local features. We added this module to 
the baseline and achieved a performance improvement of 1% on mDice, 1.03% on mIoU, 
and 1.36% on Precision. From the quantitative results, we can conclude that the GLF 

Table 7  Ablation study of P-TransUNet on the Kvasir-SEG dataset for each column

The best results are highlighted. (T means transformer)

Method mDice mIoU Recall Precision

U-Net [5] 0.5621 0.405 0.4364 0.8466

U-Net++  [6] 0.6783 0.5494 0.7311 0.6885

HRNet-Smallv2 [40] 0.2107 0.1363 0.2038 0.3347

HRNet [40] 0.2349 0.2461 0.3372 0.1523

Deeplabv3 + Xception [37] 0.6746 0.5327 0.6296 0.7757

Deeplabv3 + Mobile [37] 0.6474 0.5098 0.6632 0.6878

MSRF-Net [35] 0.7575 0.6337 0.7197 0.8414
Our method 0.7911 0.6876 0.8409 0.7825
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module can effectively fuse the long-distance and local feature information, and improve 
the feature modeling ability of the model. A unique capability of GLF is feature fusing, 
and additional supervision information is required to guide the feature extraction.

Effects of edge loss: To solve the problem of lacking edge information in the medical 
imaging field, we introduced edge loss into the model to guide the network to focus on 
the edge of the regions of interest. We added edge loss to the network and conducted 
experiments. The baseline added with edge loss achieved performance improvement 
by 0.62% and 0.98% on mDice and mIoU, respectively. The quantitative analysis of the 
experimental results showed that the guidance edge information is conducive to the net-
work to extract the distinguishing features to improve segmentation performance.

Model visualization

This section visualizes the output of the encoder stage of the model and the basic model 
(ResBlock + T) to show its aggregation ability on global information. As shown in Fig. 4, 
columns 2 and 4 are the output features of the first and second encoder layers, respec-
tively, and columns 3 and 5 are the outputs of the encoder layer corresponding to the 
basic network. By comparing the visualization results, it was found that our model can 
effectively aggregate global and local information, and strengthen the attention of the 
network to the lesion area. Furthermore, because of the aggregation of multiscale com-
prehensive information, the high magic heart can also smoothen the activation of the 
lesion area, reduce the misjudgment of the internal small range, and better conform to 
the common shape characteristics of the lesion. In comparison, the P-TransUNet pro-
posed in this paper can better mine the significant features of the lesion area at different 
scales.

Conclusion
In this work, we proposed the P-TransUNet that is based on the U-shaped encoder–
decoder framework for medical image segmentation tasks. Our P-TransUNet uses 
P-Transformer blocks to obtain the global and local features of images in parallel. Fur-
thermore, we improved the standard structure of the transformer by axial attention and 
an attention weight mask to extract long-range features. Then, an attention-based GLF 
module is used for feature fusion. The GLF module adjusts the attention weight on the 

Fig. 4  Feature visualization diagram on Kvasir dataset. Where a is the input image, b and d are the output of 
the encoder GLF layer of the proposed model, c and e are the output of the corresponding layer of the basic 
network, and f is the groundtruth
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channel and spatial dimensions, and uses the residual module to fuse the features. Fur-
thermore, we introduced edge loss in the training process to guide the network focus on 
the edge of the area of interest so that the model can learn the discriminating informa-
tion between the target and the background area. The experiments on four datasets of 
multiple medical image segmentation tasks showed that our P-TransUNet outperforms 
other SOTA methods, and ablation experiments also proved the effectiveness of each 
module. In the future, we will focus on designing a more lightweight structure based on 
the transformer for embedded devices in the clinic and on building a larger video dataset 
in the medical field for further research.
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