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Abstract 

Background:  The growing recognition of the microbiome’s impact on human 
health and well-being has prompted extensive research into discovering the links 
between microbiome dysbiosis and disease (healthy) states. However, this valuable 
information is scattered in unstructured form within biomedical literature. The struc-
tured extraction and qualification of microbe-disease interactions are important. In 
parallel, recent advancements in deep-learning-based natural language processing 
algorithms have revolutionized language-related tasks such as ours. This study aims 
to leverage state-of-the-art deep-learning language models to extract microbe-disease 
relationships from biomedical literature.

Results:  In this study, we first evaluate multiple pre-trained large language models 
within a zero-shot or few-shot learning context. In this setting, the models performed 
poorly out of the box, emphasizing the need for domain-specific fine-tuning of these 
language models. Subsequently, we fine-tune multiple language models (specifi-
cally, GPT-3, BioGPT, BioMedLM, BERT, BioMegatron, PubMedBERT, BioClinicalBERT, 
and BioLinkBERT) using labeled training data and evaluate their performance. Our 
experimental results demonstrate the state-of-the-art performance of these fine-tuned 
models ( specifically GPT-3, BioMedLM, and BioLinkBERT), achieving an average F1 
score, precision, and recall of over > 0.8 compared to the previous best of  0.74.

Conclusion:  Overall, this study establishes that pre-trained language models excel 
as transfer learners when fine-tuned with domain and problem-specific data, enabling 
them to achieve state-of-the-art results even with limited training data for extracting 
microbiome-disease interactions from scientific publications.

Keywords:  Microbe-disease relationship extraction, Language models, Fine-tuning, 
Deep-learning, Transfer learning, Biomedical informatics, Natural language processing

Introduction
Microorganisms, in the trillions, are housed and sheltered in the human body. These 
microorganisms take up residence in various organs, including the gastrointesti-
nal tract, mouth, stomach, skin, urogenital tract, and others. Their presence plays a 
crucial role in maintaining the host’s health and well-being [1]. Collectively, these 
microbes form what is known as the microbiome. Recent technological advancements 
have enabled us to study and quantify the microorganisms within our bodies. As a 
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result, we can now establish both correlational and causal relationships between dys-
biosis of the microbiome and disease states [2].

Structured knowledge representing the relationship between microorganisms and 
diseases can greatly contribute in deepening the development of microbiome-based 
preventive and therapeutic measures. Knowledge repositories that encompass collec-
tive information on microbiome-disease associations is usually constructed based on 
evidence from scientific publications. These manually curated knowledge bases are 
frequently utilized for downstream analysis and discovery. Several endeavors, such as 
Amadis [3], Disbiome [4], MicroPhenoDB [5], The Virtual Metabolic Human database 
[6], MADET [7], gutMDisorder [8, 9], HMDAD [10], mBodyMap [11], have focused 
on at cataloging and organizing this information. While these knowledge bases are of 
high quality, their construction is a labor-intensive and expensive process due to the 
substantial manual effort required for curation. Furthermore, keeping these databases 
up-to-date poses significant challenges, particularly given the rapid pace of micro-
biome research and the continuous accumulation of new findings. To provide per-
spective, a search for the keyword “microbiome” on PubMed returns over 140,  000 
abstracts, with more than 27, 000 abstracts published in 2022 alone.

Natural Language Processing (NLP) techniques have emerged as a promising 
approach to effectively handle the vast amount of scientific literature. These methods 
enable automated analysis of extensive scientific texts and the extraction of relevant 
information, which can then be stored in knowledge bases. In recent years, the field of 
NLP has witnessed substantial advancements owing to the emergence of Large Lan-
guage Models (LLMs) and Generative AI models [12]. Consequently, there has been a 
growing interest in leveraging these techniques to tackle problems in the microbiome 
field as well [13, 14]. Of particular significance is the work presented by Badal et al. 
[13], which highlights the key challenges that must be addressed to establish mean-
ingful knowledge bases for the microbiome disease problem. This research provides 
valuable insights into the nuances and intricacies of the problems in this subdomain 
and serves as a foundation for our work too.

To address the specific challenge of extracting associations between diseases and 
the microbiome using NLP techniques, the solution skeleton is usually a combination 
of the following steps:

•	 Identifying disease and microbe mentioned in scientific texts. This step typically 
involves utilizing algorithms such as Named Entity Recognizers (NERs), linguis-
tic taggers, and dictionaries to locate disease and microbe references within each 
document or sentence.

•	 Establishing the existence of a relationship or association between pairs of dis-
eases and microbes. Relationship extraction algorithms are commonly employed 
for this task. Extensive research has been conducted in this area, with notable 
contributions so far [10, 15–19].

•	 Once the presence of a relationship is established, determining the nature of the 
relationship. For example, investigating whether the presence of a specific bac-
terium is positively correlated with a particular disease. Specialized relationship 



Page 3 of 19Karkera et al. BMC Bioinformatics          (2023) 24:290 	

extraction algorithms are employed to address this, which is also the primary 
focus of this paper.

Related work

At its core, the current problem is that of relation extraction which has decades of prior 
work in the Bio-NLP domain [20, 21]. However, the traditional models for relation 
extraction are now being surpassed by deep learning based NLP models [22] which are 
shown to be superior in their performance.

In terms of related work to the disease-microbiome extraction task, two main works 
are related to ours. First, Park et al. [23], proposed an ensemble model for this problem. 
Their approach involves two steps: first, a relation detection model based on Hierarchi-
cal Long Short-Term Memory (LSTM) networks to determine the presence of a disease-
microbe relationship. Second, they extract the specific relation type by employing a 
substantial collection of rule sets or patterns, amounting to around 1000. However, this 
approach has limitations as it requires manual maintenance of the rule list for relation 
extraction, making it impractical for large-scale efforts.

Next is the work by Wu et  al[24] that focuses on a deep-learning strategy for solv-
ing this problem. Their approach first involves preparing training datasets. For this, 
they start by collecting a large corpus of text from PubMed related to microbiome and 
diseases and subsequently employ Named Entity Recognition (NER) tools to identify 
microbe and disease entities within the text. Next, they manually create two corpora for 
microbe-disease interactions: a high-quality gold-standard corpus (GSC) and a silver-
standard corpus (SSC) that is known to contain errors. These corpora are then used as 
training data. Subsequently, they utilize a deep-learning-based relation extraction algo-
rithm [25] to train a deep-learning model using the GSC data which did not yield the 
best results. Subsequently, they implement a 2-step learning process, where the model is 
first trained on the error-prone SSC corpus and then fine-tuned using transfer learning 
on the GSC corpus. The authors report that this 2-step approach significantly improves 
the accuracy of relationship extraction, achieving an F-score of 0.7381. For our problem 
statement, this result represents the current state-of-the-art as reported in the scientific 
literature. While the approach holds interest, we theorized that the expensive training 
of deep-learning models could be avoided by directly fine-tuning pre-trained models, in 
addition to improved accuracy gains.

Our contribution

Our paper offers multiple contributions. Firstly, we recognize the significant 
advancements in the field of large language models such as GPT-3 [26], BERT [27] 
etc. Leveraging the power of these models, we utilize them in our task to achieve 
state-of-the-art results. The utilization of deep learning and transformer models 
allows us to effectively capture complex patterns and relationships within the lit-
erature. Secondly, our approach highlights the relevance of deep learning and trans-
former models in reducing the requirement for large amounts of training data. 
In contrast to the study by [24] or other deep learning models, our method ben-
efits from transfer learning and task-specific fine-tuning. This advantage enables 
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us to achieve excellent results with a smaller amount of training data, making our 
approach efficient and practical. Furthermore, our approach can handle cases where 
disease-microbe relationships span multiple sentences. Deep learning and trans-
former models have the capacity to capture long-range dependencies and contextual 
information, allowing us to effectively address the complexity of such relationships.

To tackle the task of relationship extraction, we adopt two solution strategies. 
First, we treat it as a classification (discriminative) task. Here, the model receives 
the evidence describing the relationship between a disease and a microbe as input, 
along with a question probing their relationship. The model’s output is expected to 
provide the answer from one of the four labels: positive, negative, relate, or NA. This 
approach enables us to utilize the discriminative power of deep learning and trans-
former models.

Next, we reformulate the task as a generative text task. In this setup, we pro-
vide the model with evidence describing the relationship between a disease and a 
microbe, as well as a question as a prompt. The model is then tasked with generating 
the correct label. This generative approach leverages the expressive nature of deep 
learning and transformer models to generate informative and accurate labels.

For further details on our methodology and experimental setups, we provide com-
prehensive information in the subsequent sections of our paper, highlighting the 
specific ways in which deep learning and transformer models contribute to the suc-
cess of our approach.

To establish baselines, we employ various state-of-the-art models, both domain-
independent and domain-specific. Initially, we explore the potential of pre-trained 
language models as zero-shot and few-shot learners, without fine-tuning, potentially 
eliminating the need for training data or specialized retraining and fine-tuning. Sub-
sequently, we fine-tune these models using curated training data, obtained from 
[24], to further enhance their capabilities.

Firstly, among the generative models, BioGPT [28], BioMedLM [29] and GPT-3 
[26] were considered. These models are designed to generate/complete the response 
based on the given question and context(prompt). They were a natural choice for 
our task, as they are known to perform well in zero-shot or few-shot learning sce-
narios. Additionally, we incorporated the following language models in the discrimi-
native setting: BERT [30], ClinicalBERT [31], PubMedBERT [32], BioMegatron [33] 
and BioLinkBERT [34]. With these models, the objective was for the model to clas-
sify the input into one of the four predefined labels. Details of our study and the 
summary of the outcomes are shown in Fig. 1.

Our experiments show that these models fall short in the zero-shot or few-shot 
setup, highlighting the need for domain-specific fine-tuning and task-specific train-
ing data. After fine-tuning, among the generative models, GPT-3 performed well. 
However, we observed that these models sometimes produced varying outputs 
for the same prompt, owing to their generative nature, which can pose challenges. 
Among the discriminative models, the model fine-tuned on BioLinkBERT consist-
ently yielded the best results among the tested models. The next section formally 
introduces the problem and the solution strategy.
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Problem formulation and models considered
Our objective is to extract and determine the relationships between disease and 
microbe terms from natural language text. Formally, given a scientific text T and a 
pair of entities (e1, e2) occurring in T, where e1 ∈ D and e2 ∈ M , with D and M repre-
senting the sets of all disease and microbe names, respectively, the task is to predict a 
label y that represents the relationship between e1 and e2. The label y belongs to the 
set {positive, negative, relate,NA}.

One approach to mathematically formulate this problem is by using a supervised 
learning method. In this approach, the model is trained on a dataset consisting of 
labeled sentences and entities. The model learns a function f that maps the scientific 
text and entity pair (T,  e1,  e2) to a predicted label y, such that y = f (T , e1, e2) . The 
function f can be realized using various machine-learning techniques and models.

In the context of microbe-disease relationships, the following labels are defined 
[24]:

•	 (positive): This label indicates a positive correlation between the microbe and the 
disease. It implies that the microbe can worsen the disease or that its presence 
increases when the disease occurs.

•	 (negative): This label indicates a negative correlation between the microbe and the 
disease. It suggests that the microbe can act as a treatment for the disease or that 
its presence decreases when the disease occurs.

•	 (relate): This label indicates a relationship between the microbe and the disease 
without additional information about whether it was positive or negative. It signi-
fies that they appear to be associated with each other. In a sense, this label can be 
considered a super-set of positive and negative labels.

•	 (NA): This label indicates that the microbe and the disease mentioned in the text 
are not related to each other.

Fig. 1  Our contributions and study design for extracting disease-microbiome relationships
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In our case, given the same scientific text T and entities of interest (e1, e2), and a ques-
tion posed as follows: “What is the relationship between e1 and e2?” our models are 
expected to provide an answer from the set positive, negative, relate, NA. The problem 
formulation in our setting is illustrated in Fig. 2.

Pre‑trained language models considered

Now, we describe the various pre-trained models that were leveraged for fine-tuning in 
this study. The choice of models was based on best-in-class for biomedical domain spe-
cific tasks.

Generative setting

BioMedLM 2.7B [29] is a large language model trained on a dataset of biomedical lit-
erature and is based on GPT-2 model. It has 2.7 billion parameters. It is effective for a 
variety of tasks, including natural language inference, question answering, and text sum-
marization. BioMedLM 2.7B is a valuable tool for researchers and clinicians who need to 
access and process biomedical information.

BioGPT [28] is a domain-specific generative pre-trained transformer language model 
for biomedical text generation and mining. It is trained on 15 million PubMed abstracts 
and has 1.5 billion parameters. It was developed by Microsoft Research and is based on 
the GPT-2 language model.

GPT-3 [26], or Generative Pre-trained Transformer 3, is a state-of-the-art language 
model developed by OpenAI. With 175 billion parameters, it exhibits remarkable profi-
ciency in generating coherent and contextually relevant text across various domains. The 
most competent model available in OpenAI is “text-davinci-003,” while there are other 
models as well. The prompt used for this experiment is detailed in the supplementary 
website [see Additional file 1]. For all experiments, we changed the Temperature param-
eter to 0 making the outputs less random.

Fig. 2  Problem formulation for inferring microbe-disease relationship
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Discriminative setting

BERT(Bidirectional Encoder Representations from Transformers) model [27] is 
among the most well-known and early LLMs based on transformer architectures. It 
was specifically trained on Wikipedia and Google’s BooksCorpus. BERT is known to 
be a very good general-purpose model that works well for most language tasks. In 
our case, we used BERT first to see if generic models could perform well for our task 
before resorting to domain-specific adaptations. For our experiments, we used the 
“Bert-base-uncased” model from the Hugging Face library [35].

PubMedBERT is a BERT-based model pre-trained from scratch using 14 million 
abstracts from PubMed. It consistently outperforms all the other BERT models in 
most biomedical NLP tasks, often by a significant margin as reported in [32]. Specifi-
cally, microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext is the pre-
trained model that was utilized.

BioMegatron models are pre-trained from scratch on the PubMed dataset. A large 
biomedical language model pre-trained on a large literature corpus is an excellent 
starting point for identifying the microbiome-disease relation type. The pre-training 
of this model takes PubMed abstracts and full-text commercial-collection (CC) that 
are free of copyrights. When compared to the prior state-of-the-art (SOTA), BioMeg-
atron significantly outperformed across a variety of tasks. In contrast to models pre-
trained on wide domain datasets, [33] demonstrates that language models specialized 
for a particular domain perform at their best.

BioLINK-BERT model is trained on abstract data, similar to PubMedBERT, but with 
the addition of citation links between articles [34]. Unlike previous works, which only 
use their raw text for pre-training, academic papers have extensive dependencies on 
one another through citations (references). Incorporating citation links assists lan-
guage models in learning the dependencies between papers and the knowledge that 
spans them.

BioClinicalBERT [36] is a BERT-based language model that has been pre-trained 
on a dataset of 880 million words of biomedical and clinical text which allows it to 
better understand and generate text from both domains. It is a further development 
of BioBERT. BioClinicalBERT is available through the Hugging Face Transformers 
library. It is designed to improve the performance of biomedical natural language 
processing (NLP) tasks, such as named entity recognition, and relation extraction.

Poor performance in zero‑shot and few‑shot setting
We first investigated the performance of generative language models in a zero-shot 
and few-shot learning setting. We evaluated all three models, the details of the 
prompts used are detailed in the supplementary website [see Additional file 1].

Zero-shot learning allows the model to extract relationships between disease and 
microbiome without requiring specific training dataset for those relationships. By 
leveraging the pre-trained knowledge and semantic understanding encoded within 
the language model, the model can generalize and infer relationships based on the 
provided input. This approach is particularly valuable when dealing with unseen 
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relationship types, as it enables the model to make predictions even for relationships 
it has not encountered during training.

On the other hand, few-shot learning extends the capabilities of zero-shot learning by 
enabling the model to learn from a limited number of labeled examples for a specific 
relationship. Rather than relying solely on pre-encoded knowledge, few-shot learning 
allows the model to adapt and make accurate predictions using the additional labeled 
data. By leveraging both the pre-trained knowledge and the limited labeled examples, 
few-shot learning enhances the model’s ability to generalize and extract relationships, 
even in scenarios where labeled data is scarce or new relationship types are introduced. 
We use a “two-shot-learning” setup to infer the microbe-disease relationship. More spe-
cifically, two examples of scientific text per class along with its annotation were provided 
for each of the labels as shown in Fig. 3. A natural language description is also provided 
along with the prompt for the model to learn about the task as this often improves the 
model’s performance (See [26, 37].

Experimental results

In summary, for the zero-shot setting, we found that the performance of the models was 
poor as shown in Table 1. For GPT-3, the outputs are generated within the four labels, 
but they don’t follow the same casing for every predicted label. It achieved a f1-score of 
0.5 with low precision. A detailed analysis of the results showed that the model performs 

Fig. 3  Zero-shot and few-shot learning setup for inferring microbe-disease relationship using GPT-3. The 
Ground truth for this example is “negative”. However GPT-3 returns “relate” in zero-shot and “positive” in 
few-shot setting

Table 1  Performance metrics of the GPT-3 model in the zero-shot and few-shot setting

Model Accuracy F1 score Precision Recall

GPT-3 (zero-shot) 0.48 0.50 0.58 0.48

GPT-3 (few-shot) 0.57 0.56 0.57 0.57
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poorly for the “NA” class. Details can be found in the supplementary website [see Addi-
tional file  1]. Surprisingly, BioMedLM and BioGPT did not even produce sensible 
outputs.

Even in the few-shot setting, we noticed that there were only marginal improvements 
in the results with GPT-3 (f1-score of 0.56), while no tangible outputs were generated 
for BioMedLM and BioGPT as shown in Table 1. It was clear that despite the general 
observation that generative models provide good outcomes in zero or few-shot learning 
settings, performance still depends on the task-specific domain. Similar outcomes have 
been established previously [38]. For our problem, using models out of the box was of 
limited utility, this could also be due to the counterintuitive definition of positive and 
negative labels. For all experiments in this section, default model parameters were used.

Dataset for fine‑tuning: considerations for improved accuracy
To fine-tune the various language models for our task, we utilized the human-annotated 
gold-standard corpus (GSC) from [24]. This dataset consists of 1100 sentence instances 
that describe interactions between the microbiome and diseases, along with correspond-
ing labels of “positive,” “negative,” “relate,” and “NA.” These sentences were selected by 
employing a semi-automated pipeline to identify diseases and microbes mentioned in 
articles from PubMed and PubMed Central using the keyword “microbe”. Expert anno-
tators then reviewed each sentence and assigned them to one of the four categories. For 
a comprehensive understanding of how the GSC dataset was constructed, we refer inter-
ested readers to [24]. Out of the 1100 sentences, the distribution of classes is depicted in 
shown in Fig. 4. This dataset served as the basis for fine-tuning our pipeline.

Interestingly, we identified a significant number of labeling errors in the GSC data-
set, particularly for the “NA” category. To address this issue, we re-annotated the state-
ments with two postdoctoral-level researchers who re-labeled all the sentences initially 
marked as “NA”. The annotation process was facilitated using the Doccanno tool [39]. 

Fig. 4  Distribution of relation types for GSC after correcting for issues in “NA” relation
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Each researcher independently re-annotated all the “NA” labels, followed by a collabo-
rative review of each other’s annotations. Through consensus, a final label was agreed 
upon for each sentence.

Our analysis revealed that out of the original 258 sentences labeled as “NA” in the GSC 
dataset, 178 sentences were found to be mislabeled. In the supplementary website [see 
Additional file 1], we provide illustrative examples and a comprehensive list of the re-
annotated data. As depicted in Fig. 4, there was a substantial decrease in the number of 
training data points for the “NA” category, accompanied by an increase in samples for 
the negative, positive, and relate categories. All further fine-tuning was performed on 
the corrected dataset. This dataset is available for review in the supplementary website 
[see Additional file 1].

Domain specific fine‑tuning of different language models
We fine-tune all the models using the dataset outlined in the preceding section for the 
task at hand. Notably, the methodology employed by [24] involved a two-step approach. 
In the first step, an error-prone silver training corpus was utilized to train a rela-
tion extraction algorithm [25]. Subsequently, the model trained in the initial step was 
employed in conjunction with transfer learning techniques for fine-tuning with the GSC 
dataset. The authors demonstrated that this two-step transfer learning process yielded 
state-of-the-art (SOTA) results. Although this approach is interesting, we hypothesized 
the costly training of deep-learning models could be circumvented by directly fine-tun-
ing pre-trained models. In essence, our strategy is to take models that were previously 
trained on extensive generic or domain-specific free text as the foundation, and subse-
quently fine-tune them specifically for the targeted problem using a minimal quantity of 
high-quality training data (in our case, GSC).

Methodology

Figure 5 shows the mechanism in which the evidence-question are taken in pairs for the 
fine-tuning purpose for the discriminative class of models namely BERT [30], BioMega-
tron [33], PubMedBERT [32], BioClinicalBERT [28] and BioLinkBERT [34]. For this, we 
resort to a typical tokenizing procedure of the evidence-question pair to produce token 
IDs and the attention mask. A maximum sequence length of 512 is maintained, as this is 
what BERT-based models are limited to. For all base models considered, during the fine-
tuning process, a learning rate of 5e − 5 , a weight decay of 0.01, number of epochs=7, 
and Adam’s optimizer with a layer-wise learning rate decay of 0.9 was applied. All mod-
els were trained using an NVIDIA GeForce RTX 2080 Ti with 12GB memory, 16 CPUs, 
and 64GB memory. The fine-tuning process took about 30 min for each model.

Among the generative models, GPT-3 model was fine-tuned using the OpenAI API 
of the GPT-3 davinci model. Details of the fine-tuning process are available on the 
OpenAI website (link: https://​openai.​com/​api/). The inference parameters for the fine-
tuned model are t=0.0, top_p=1, max_tokens=1 with other parameters with its default 
settings. BioMedLM’s stanford-crfm/BioMedLM model was fine-tuned on an A40 
GPU instance with deepspeed setting for efficiency. This helped in training the model 
with  18GB GPU memory utilization. The model was trained for 20 epochs with batch_
size=2, gradient_accumulation_steps=2, learning_rate=2e-06 with other parameters 

https://openai.com/api/
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kept the same as their default settings. It took around 7hrs to complete 20 epochs. Simi-
larly, BioGPT was fine-tuned on a single NVIDIA GeForce RTX 2080 Ti with 12GB 
memory. The model was trained using parameters similar to DDI (Drug-Drug Interac-
tion) experiment in BioGPT [28] for Relation extraction purposes.

Data preparation for fine‑tuning

This section provides details of the data processing and prompt design for the fine-tun-
ing process of different models.

Discriminative models

The training data format for fine-tuning these models follows a simple structure. Each 
example consists of an input and an output. The input is represented by two strings, 
an Evidence String and a Question String, separated by a delimiter. For example, the 
Evidence string can be “Additionally, some members of the phylum such as Faecalibac-
terium prausnitzii, a member of the Clostridiales-Ruminococcaceae lineage have been 
shown to have anti-inflammatory effects due to the production of the short-chain fatty 
acid butyrate and have been negatively correlated with inflammatory bowel disease.” 
and Question as “What is the relationship between inflammatory bowel disease and 
Clostridiales ?”. The output corresponds to the target label associated with the given 
input as shown below.

Fig. 5  Illustration and mapping of the evidence and question tokens into the models for our discriminative 
class of models
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This training data format allows for a straightforward mapping between the input evi-
dence and question, and the corresponding output label. By fine-tuning the pre-trained 
models on the GSC dataset encoded as above, the model can learn to effectively under-
stand the relationship between the evidence and question, and generate accurate labels 
or predictions based on the input provided.

Generative models

The training data format for GPT-3 model consists of a collection of examples, each rep-
resented by a prompt and a completion string that corresponds to the label.

The “prompt” key corresponds to the text that serves as the input or context for the 
model. It contains evidence related to the microbiome and disease relationship. In this 
format, the prompt text is structured as the evidence string followed by a question 
string, separated by a line break (“\n”). The evidence string provides the background or 
supporting information, while the question string represents the specific question to be 
answered by the model. For example, a prompt can be:

 “Evidence: Additionally, some members of the phylum such as Faecalibacterium praus-
nitzii, a member of the Clostridiales-Ruminococcaceae lineage have been shown to have 
anti-inflammatory effects due to production of the short-chain fatty acid butyrate and 
have been negatively correlated with inflammatory bowel disease107.\n Question: What 
is the relationship between inflammatory bowel disease107 and Clostridiales ?\n\n####\
n\n”.  Here, the ending string “\n\n####\n\n” acts as a fixed separator to the model. For 
inference, the prompts are designed in the same format as the training dataset including 
the same separator with the same stop sequence to properly truncate the completion. 

The training data format allows for multiple examples to be included, each following 
the same key-value structure. The detailed prompts for BioMedLM and BioGPT which 
are very similar to the GPT-3 prompts can be found on the supplementary website [see 
Additional file 1].

Results

To mitigate the risk of overfitting, model performance was evaluated using a 5-fold 
cross-validation strategy. The curated dataset was divided into five equal parts, referred 
to as folds. In each iteration, the models were fine-tuned using four folds for training 
and evaluated on the remaining fold. This process was repeated five times, with each 
fold serving as the test set once. The average of the five test scores was calculated to 
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provide the final metrics of the model. We assessed the performance using several met-
rics, including Accuracy, Weighted Average F1 score, Precision, and Recall, which align 
with those reported in [24]. The detailed results are presented in Table 2. The results of 
the study by [24] are shown in the table using the notation BERETL(MDI) . The reported 
f1-score reached a peak value of 0.738 along with closely aligned precision and recall 
scores. These results serve as our baseline.

Coming to the performance of the discriminative fine-tuned models, we observed 
significant improvements across the entire spectrum. Notably, the model trained 
on BioLinkBERT-base yielded the best results, achieving an average F1-score of 
0.804 ± 0.0362 in a 5-fold cross-validation setup. Detailed information regarding all the 
models and the fine-tuning parameters can be found on our supplementary website (see 
Additional file 1). Further, to understand the characteristics of the classifier better, we 
plotted the precision-recall curves as shown in Fig. 6. Notably, the area under the curve 
for BioLinkBERT-finetuned outperformed others, reaching 0.85, indicating the best 
performance.

Among the generative class of models, we found that the fine-tuned GPT-3 model 
yielded the best overall results, as shown in Table  2. However, in terms of precision, 
the model fine-tuned on BioMedLM performed well as shown in Table  2. However, 
we noticed a few observations regarding the use of these generative models. Firstly, we 
sometimes noticed variability in the results with each run of the model depending on the 
parameters used. There were also instances where the model produced empty outputs. 
Additionally, since these models are generative in nature, the outputs and probabilities 
generated by the model do not always align with well-defined class labels. This aspect 
further hinders our comprehension of how these models operate and raises concerns 
about the reliability of their outputs. Due to these limitations, we were unable to gener-
ate a precision-recall curve for GPT-3.

To gain deeper insights into the performance of the classifier and generative model, 
we analyzed the per-class performance metrics for both the fine-tuned generative 
models (GPT-3) and the discriminative models (BioLinkBERT model). As expected, 
the metrics for the negative, positive, and relate classes exhibited satisfactory 
results. However, we observed poor performance in the NA class for both the fine-
tuned GPT-3 (refer to Table 4) model and the BioLinkBERT model (refer to Table 3). 
This deficiency in performance also accounts for the lower overall classification 

Table 2  Performance metrics different fine-tuned language models

Bold indicates the performance of the models which gave the best performance

Model Accuracy F1 score Precision Recall

Baseline BERE_TL(MDI) NA 0.738 0.736 0.740

Our models 
(fine-tuned)

Bert-base-uncased 0.733± 0.018 0.731± 0.015 0.742± 0.02 0.733± 0.018

BioMegatron 0.778± 0.008 0.769± 0.013 0.771± 0.013 0.778± 0.008

PubMedBERT 0.782± 0.022 0.778± 0.019 0.783± 0.021 0.782± 0.022

BioClinicalBERT 0.729± 0.032 0.724± 0.029 0.731± 0.032 0.729± 0.032

BioLinkBERT-base 0.811± 0.029 0.804± 0.036 0.813± 0.034 0.811± 0.028

BioMedLM 0.806± 0.028 0.804± 0.028 0.822± 0.030 0.806± 0.028

BioGPT 0.732± 0.017 0.726± 0.017 0.732± 0.025 0.736± 0.016

GPT-3 0.814± 0.021 0.810± 0.025 0.810± 0.021 0.814± 0.021
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performance. There are two possible reasons for this outcome. Firstly, as previously 
discussed, the distribution of data in the dataset is imbalanced, with a smaller number 
of NA samples. Secondly, there may be inherent challenges in defining the classes in 
the original problem, which could necessitate further investigation and deliberation. 
However, exploring these concerns is beyond the scope of this paper.

Fig. 6  Precision recall curve for the various fine-tuned pre-trained models used in discriminative setting

Table 3  Per class metrics for BioLinkBERT fine-tuned model

Class Precision Recall F1-score

NA 0.556± 0.131 0.447± 0.186 0.457± 0.096

Negative 0.827± 0.022 0.894± 0.043 0.859± 0.025

Positive 0.831± 0.015 0.854± 0.048 0.841± 0.027

Relate 0.829± 0.040 0.798± 0.053 0.811± 0.025

Table 4  Per class metrics for GPT-3 fine-tuned model

Class Precision Recall F1-score

NA 0.570± 0.112 0.366± 0.108 0.431± 0.089

Negative 0.847± 0.047 0.881± 0.042 0.863± 0.041

Positive 0.819± 0.045 0.866± 0.034 0.841± 0.022

Relate 0.820± 0.027 0.815± 0.022 0.817± 0.015
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Comparison of outputs of our approach using a web‑based solution

In the study [24], the authors utilized their best-performing model ( BERETL ) on a large 
corpus of text to extract disease-microbiome relationships, which they subsequently 
released as the MDIDB database.

We aimed to compare the outputs generated by our model with those in the MDIDB 
database. To accomplish this, we devised a straightforward graph and visualization strat-
egy, as illustrated in the first panel of Fig. 7. The process involved running both models 
on the original set of evidence statements used in MDIDB and comparing the resulting 
graphs. In our graph representation, nodes correspond to diseases or microbes, while 
edges represent established relationships between them. Nodes are colored green when 
both algorithms agree on the nature of the relationship, and red when they disagree. We 
also developed a web application for this which is accessible on our supplementary web-
site [see Additional file 1]. The user interface of the tool allows users to select the num-
ber of edges they wish to visualize from the larger graph. After specifying, for example, 
50 edges in the provided text box, users can click the “generate knowledge graph” button 
to display the corresponding knowledge graph. Zooming and hovering over the edges of 
the graph provide information on the differences in predictions between the two mod-
els, including evidence text, for both red and green nodes (as depicted in Fig. 7). This 
approach aims to provide expert researchers with a more comprehensive understanding 
of the performance of the different models.

Discussions
In this paper, we address several crucial aspects concerning the utility of pre-trained lan-
guage models and their applicability to relevant challenges in the biomedical domain. 
Specifically, we focus on the task of extracting disease-microbe relationships from 
scientific publications. To approach this problem, we frame it as a relation extraction 
task, enabling us to explore the potential of various language models in generative and 
discriminative paradigms. Our initial investigation involves assessing the capability of 

Fig. 7  Comparing the MDIDB knowledge base generated using BERE (TL) model versus our prediction 
model
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generative models, namely GPT-3, BioGPT, and BioMedLM, in a zero-shot or few-shot 
setting. We sought to determine if these models can perform well on the task with mini-
mal fine-tuning or data preparation. However, we find that their results are of poor qual-
ity, highlighting the need for domain-specific adaptations to enhance their usefulness.

Interestingly, we discover that GPT-3 performs the best when fine-tuned. Sub-
sequently, we explore the performance of discriminative models, specifically the 
BERT-based models and their domain-specific adaptations such as BioMegatron, Pub-
MedBERT, BioClinicalBERT, and BioLinkBERT. As expected, fine-tuning these models 
yields state-of-the-art results for the task. We also observe that the quality of the training 
data significantly influences the accuracy improvements achieved. Our work serves as a 
foundation for further research on adapting and leveraging language models in the field 
of biomedicine. In conclusion, we have demonstrated that language models in both gen-
erative and discriminative settings are viable candidates for fine-tuning and constructing 
models that yield SOTA results for the microbiome-disease relationship extraction task.

There are several avenues for future exploration. For instance, investigating a broader 
range of models, including Galactica [40], LLaMA [41], GPT-4 [42], etc., could provide 
valuable insights for these tasks. Additionally, as we are in the era of models like Chat-
GPT [43], it would be interesting to explore the possibility of fine-tuning similar conver-
sational models. As a preliminary experiment, we briefly examined ChatGPT using their 
publicly available service, and the results can be found in the supplementary website [see 
Additional file 1] of this paper. While the initial findings appear promising, we observed 
that the model produced different outputs for the same prompt, raising concerns about 
the reliability of the generated responses. These observations align with our experiences 
during the fine-tuning of GPT-3, indicating the need for further refinement in this area. 
Such investigations could lead to exciting new research directions.

Furthermore, we identify limitations in entity recognition and normalization within 
the GSC dataset. Addressing these issues requires additional work to refine the end-to-
end pipeline and build accurate and trustworthy knowledge bases. Another important 
aspect of this research is that once reliable knowledge bases are established, they can 
serve as a foundation for formulating hypotheses regarding potentially new disease-
microbe associations, thus fostering new knowledge and discoveries [44, 45]. Previous 
studies, such as those conducted by [46, 47], have explored similar approaches. In addi-
tion, while we considered the current work purely as a NLP task, augmenting with other 
heterogeneous knowledge networks (such as in [48, 49]) can further improve the predic-
tion ability of the models.
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