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Abstract 

Background: Accurate prediction of molecular property holds significance in con-
temporary drug discovery and medical research. Recent advances in AI-driven molecu-
lar property prediction have shown promising results. Due to the costly annotation 
of in vitro and in vivo experiments, transfer learning paradigm has been gaining 
momentum in extracting general self-supervised information to facilitate neural 
network learning. However, prior pretraining strategies have overlooked the necessity 
of explicitly incorporating domain knowledge, especially the molecular fragments, 
into model design, resulting in the under-exploration of the molecular semantic space.

Results: We propose an effective model with FRagment-based dual-channEL pre-
training (FREL). Equipped with molecular fragments, FREL comprehensively employs 
masked autoencoder and contrastive learning to learn intra- and inter-molecule agree-
ment, respectively. We further conduct extensive experiments on ten public datasets 
to demonstrate its superiority over state-of-the-art models. Further investigations 
and interpretations manifest the underlying relationship between molecular represen-
tations and molecular properties.

Conclusions: Our proposed model FREL achieves state-of-the-art performance 
on the benchmark datasets, emphasizing the importance of incorporating molecular 
fragments into model design. The expressiveness of learned molecular representa-
tions is also investigated by visualization and correlation analysis. Case studies indicate 
that the learned molecular representations better capture the drug property variation 
and fragment semantics.

Keywords: Drug property prediction, Transfer learning, Molecular representation 
learning

Introduction
One of the most foundational and crucial tasks in the domain of drug discovery per-
tains to the accurate prediction of molecular properties. Compared with conventional 
in vitro and in vivo experiments, computational methods have the potential to expedite 
the overall process of identifying better drug candidates with specific characteristics [1, 
2]. In general, the performance of molecular property prediction is mainly affected by 

*Correspondence:   
fengweike315@163.com

1 College of Traditional Chinese 
Medicine, Shandong University 
of Traditional Chinese Medicine, 
Jinan, China
2 College of Pharmacy, Shandong 
University of Traditional Chinese 
Medicine, Jinan, China
3 College of Intelligence 
and Information Engineering, 
Shandong University 
of Traditional Chinese Medicine, 
Jinan, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05413-x&domain=pdf


Page 2 of 21Wu et al. BMC Bioinformatics          (2023) 24:293 

two stages. The initial stage involves molecular featurization design [3–5], which aims 
to translate chemical information into structured data recognizable by machine learning 
algorithms. The subsequent stage, known as molecular representation learning [6–8], 
focuses on the development of methods for representing molecules as numerical vec-
tors that encapsulate rich semantic biochemical information, either through manual [9] 
or automatic means [10]. Our paper, situated within the second stage, delves into self-
supervised molecular representation learning techniques that implicitly extract biomed-
ical domain knowledge via drug molecular fragments.

Due to the inherent benefits of graphs in representing molecules, graph-based mod-
els, ranging from convolutional [11] to spatial neural networks [12, 13], have garnered 
attention in initial efforts towards supervised molecular representation learning. How-
ever, it is hampered by the lack of labeled property [14] and the out-of-distribution prob-
lem [10, 15], which have spurred the development of transfer learning approaches. A 
common framework involves pretraining the model with proxy tasks on extensive unla-
beled molecular datasets, followed by fine-tuning the learned model on labeled down-
stream tasks. Prior studies [16–20] employ various augmentation methods to construct 
molecular view pairs for contrastive learning, maximizing the agreement between differ-
ent augmented views. Some models, on the other hand, use generative learning [21] to 
reconstruct partial information of the sample itself [22, 23], enabling the model to learn 
the molecular semantic space.

Despite of some encouraging headway, most of the prior studies tend to overlooked 
the potential benefits of incorporating domain knowledge into model architecture, 
which can explicitly integrate biochemical information into model training. In the 
domain of pharmaceuticals, molecular fragments are of vital importance in determining 
molecular properties. For example, adrenergic receptor agonists with catechol structure 
(catechol hydroxyl group) are easily decomposed by COMT (catechol O-methyltrans-
ferase) in vivo, with poor stability and short action time, which affects the effectiveness 
of the drug. In comparison, adrenergic receptor agonists with non-catechol structure 
have much stronger stability [24]. Moreover, we further present a exploratory experi-
ment to verify the feasibility and effectiveness of fragment-based model design in the 
Additional file 1.

Motivated by intuitive inspiration and exploratory experiment, we propose a novel 
and effective framework with FRagment-based dual-channEL pretraining (FREL), that 
comprehensively employs generative learning and contrastive learning to achieve intra- 
and inter-molecular agreement, respectively. The overall framework is demonstrated 
in Fig. 1. Specifically, for the contrastive learning channel, we generate two correlated 
molecular views of the same molecule. Then, we define a contrastive loss to maximize 
the inter-molecular agreement. For generative learning channel, we randomly mask par-
tial node features and leverage a decoder to reconstruct the masked features based on 
intra-fragment information. By combining aforementioned contrastive and generative 
loss, FREL is expected to learn both intra- and inter-molecular agreement. We further 
support the effectiveness of our approach with theoretical analysis from the perspective 
of information theory.

We evaluate the performance of our FREL model on 10 widely-used benchmark 
datasets from MoleculeNet [10] and malaria [25] that cover a wide range of molecular 
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property prediction tasks, including classification and regression. The results reveal that 
FREL improves non-pretraining baselines without negative transfer and achieve the 
state-of-the-art (SOTA) performance. Moreover, we conduct extensive experiments to 
evaluate the expressiveness of molecular representations by visualization and statistical 
methods. The main contributions of this work are three-fold:

• With intuitive biochemical inspiration and convincing exploratory experiment, we 
rethink the necessity to incorporate molecular fragment into model design in molec-
ular property prediction tasks.

• We propose a novel dual-channel self-supervised pretraining strategy to learn intra- 
and inter-molecule agreement, enabling effective molecular representation learning.

• We evaluate our method on extensive molecular property prediction tasks. Experi-
mental results demonstrate that FREL achieve superior performance compared with 
competitive baselines. Further experiments investigate the expressiveness of learned 
molecular representation.

Related work
Molecular pre-training, achieved through self-supervised training on massive amounts 
of unlabeled upstream data, enables models to capture rich semantic information about 
molecules. This research paradigm has demonstrated its effectiveness in enhancing 
predictive performance on downstream tasks. In the context of graph-based molecular 
pre-training, early works focused on adapting classical graph self-supervised methods 
to molecular graph training. Methods such as AttrMask, ContextPred [16], GPT-GNN 
[26], and GraphMAE [27] utilize generative learning to predict masked features within 
the molecule, allowing for the capture of structural and semantic properties of the graph. 

Fig. 1 The proposed FREL model. In the pre-training phase, the GNN encoder takes molecular graph and 
fragments as inputs, which are respectively fed into the subsequent contrastive channel and generative 
channel. The model parameters are optimized with the sum of contrastive loss and generative loss to 
learn intra- and inter-molecule agreement. We express our gratitude for the use of the illustration of the 
blood-brain barrier and HIV virus, which were obtained from the websites https:// smart. servi er. com/ and 
https:// www. vecte ezy. com/, respectively. We confirm that permission was given to reproduce these works

https://smart.servier.com/
https://www.vecteezy.com/
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On the other hand, GraphCL [17], JOAO [28], and MolCLR [29] leverage contrastive 
learning to provide supervision signals during model training. Additionally, some meth-
ods approach the problem from the perspective of mutual information or clustering to 
capture cross-level graph semantics.

However, traditional graph self-supervised learning often overlook the incorporation 
of domain-specific knowledge in the molecular domain, which can impact the positive 
transfer brought by pre-training. In recent years, tailored pre-training strategies specific 
to molecular graphs have been proposed, broadly categorized into atom-level strategies 
and fragment-level strategies. GraphMVP [20], 3D Infomax [30], GeoSSL [31], and GEM 
[32] enhance the model’s ability to capture energy information by utilizing the atomic 
coordinates of the molecular 3D conformation as auxiliary inputs. Mole-BERT [33], on 
the other hand, explores the feasibility of masked atom modeling from an optimized 
atomic encoding perspective. Given the crucial role of functional group information in 
determining molecular properties, a subset of concurrent works has focused on min-
ing functional group or fragment information. For instance, methods like GROVER [34], 
MGSSL [35], and iMolCLR [36] explicitly incorporate chemical priors at the pre-training 
stage from the perspective of motifs or fragments. In recent years, low-data drug dis-
covery and the few-shot setting have gained increasing attention, aiming to address the 
challenges of limited labeled data and out-of-distribution generalization in downstream 
tasks [37, 38].

However, prior work has not adequately integrated unsupervised training strategies 
with the introduction of domain-specific knowledge (such as molecular fragments), 
which hinders exploration of intra- and inter-molecular semantics. Therefore, we aim to 
explore the possibilities for a more integrated approach in this regard.

Results
In this section, we present empirical evaluation of our proposed FREL model and dem-
onstrate its effectiveness. Specifically, the experiments aim to investigate the following 
research questions.

• RQ1 (Overall performance). Does the proposed model bring positive transfer and 
outperform state-of-the-arts on molecular property prediction tasks?

• RQ2 (Representation expressiveness). How expressive are pre-trained molecular 
representations?

• RQ3 (Ablation studies). How do the different channels contribute to the model per-
formance?

• RQ4 (Sensitivity Analysis). How does different hyperparameters affect model per-
formance?

We first provide a brief introduction of the experimental configurations, with more 
detailed settings available in the Methods section. We then demonstrate the perfor-
mance of our proposed FREL on various property prediction tasks. Additionally, we 
leverage visualization and case studies to better showcase the superiority of the learned 
representations. Lastly, we present the results of ablation experiments and sensitivity 
analysis.
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Experimental configurations

Datasets and baselines

We choose GEOM-Drugs [39] as the pre-training dataset following GraphMVP [20] 
and evaluate the pre-trained model on ten downstream datasets: BBBP [40], Tox21 
[41], ToxCast [42], SIDER [43], MUV [44], HIV [45], BACE [46], ESOL [47], Lipophi-
licity [48] and Malaria [25].

For comprehensive comparison, we select the following two groups of Self-Super-
vised Learning (SSL) methods as primary baselines in our experiments.

• Generic graph SSL models: AttrMask, ContextPred [16], InfoGraph [49], GPT-
GNN [26], GraphLoG [18], GraphCL [17], JOAO [28], and GraphMAE [27].

• Molecular SSL models: GROVER-Contextual (GROVER-C), GROVER-Motif 
(GROVER-M) [34], MGSSL [35], GraphMVP [20] and Mole-BERT [33].

Evaluation protocols

We evaluate the performance of our model differently depending on the task. For 
classification tasks, we use the Area Under the Receiver Operating Characteristic 
curve (ROC-AUC) as the performance metric, where higher values indicate better 
performance. For regression tasks, we use Root Mean Squared Error (RMSE) as the 
performance metric, where lower values indicate better performance. The TPR, FPR 
and RMSE are formalized as follow:

To ensure the robustness of our results, we report the averaged performance with the 
standard deviation by repeating each experiment using three different random seeds 
under scaffold splitting, following previous work [20].

Main results on molecular property classification

The performance of molecular property prediction tasks is summarized in Table  1. 
Our model exhibit outstanding performance on seven classification datasets for 
molecular property prediction, outperforming most of the baseline models. Specifi-
cally, our model achieve the state-of-the-art results on five of the seven datasets, and 
comparable results on the remaining two. On average, our model exhibit superior 
performance to all baseline models, with a 0.9% improvement over the second-best 
performing model.

(1)FPR = False Positive

False Positive+ True Negative

(2)TPR = True Positive

False Positive+ True Negative

(3)RMSE = 1

n

n

i=1

(yi − ŷi)2
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We make other observations as follows. Firstly, compared with randomly initialized 
baseline, FREL obtains more accurate and robust predictions, indicating that our pre-
training framework can capture useful knowledge from large, unlabeled datasets and 
migrate the learned semantics to downstream tasks without negative transfer. Sec-
ondly, we can observe that prior work has already achieved promising performance, 
especially in scaffold split settings. For example, Mole-BERT, as the current SOTA 
methods, only obtains a 1.2% absolute improvement over its best baseline GraphMAE 
in terms of average ROC-AUC. Our model expands the limits of performance without 
extensive hyperparameter tuning, achieving an absolute improvement of up to 0.9% 
in terms of average ROC-AUC over Mole-BERT. Lastly, it is shown tha second-best 
models often fail to achieve robust performance gains on most datasets, which can 
be attributed to the diversity of downstream drug properties. For instance, although 
GROVER-C achieved second-best performance on the BACE dataset, it exhibits poor 
performance on the MUV dataset. In contrast, our proposed framework achieve 
robust performance on diverse drug property prediction tasks, highlighting the 
robustness of FREL.

Results on molecular property regression

To further demonstrate the effectiveness of our proposed model FREL, we further 
conduct experiments on molecular property regression on the ESOL [47], Lipo-
philicity [48] and Malaria dataset [25]. Table  2 presents the performance compari-
son of FREL with one non-pretraining baselines and five state-of-the-art pretraining 
baselines AttrMask, ContextPred [16], JOAO [28], GraphMVP [20] and GraphMAE 
[27]. Furthermore, we conduct a comparison between the predicted value distribu-
tions obtained from pre-trained and non-pre-trained models, and the true label 

Table 1 Results for seven molecule property prediction tasks in terms of ROC-AUC (%, ↑)

We highlight the best- and the second-best performing results in boldface and italicized, respectively

Pretraining BBBP Tox21 ToxCast SIDER MUV HIV BACE Avg.

– 65.4±2.4 74.9±0.8 61.6±1.2 57.7±2.4 71.0±2.5 75.3±0.5 72.6±4.9 68.36

EdgePred 64.5±3.1 74.5±0.4 60.8±0.5 56.7±0.1 73.3±1.6 75.1±0.8 64.6±4.7 67.07

AttrMask 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 73.9±1.3 74.3±1.3 77.2±1.4 70.39

GPT-GNN 64.5±1.1 75.3±0.5 62.2±0.1 57.5±4.2 76.1±2.3 75.1±0.2 77.6±0.5 69.76

InfoGraph 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 74.0±1.5 74.5±1.8 73.9±2.5 69.40

ContextPred 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 72.5±2.2 75.8±1.1 78.6±1.4 70.50

GraphLoG 67.8±1.7 73.0±0.3 62.2±0.4 57.4±2.3 73.1±1.7 73.4±0.6 78.8±0.7 69.39

GROVER-C 70.3±1.6 75.2±0.3 62.6±0.3 58.4±0.6 72.3±0.9 75.9±0.9 79.2±0.3 70.56

GROVER-M 66.4±3.4 73.2±0.8 62.6±0.5 60.6±1.1 73.3±2.0 73.8±1.4 73.4±4.0 69.04

GraphCL 67.5±3.3 75.0±0.3 62.8±0.2 60.1±1.3 77.1±1.0 75.0±0.4 68.7±7.8 69.46

JOAO 66.0±0.6 74.4±0.7 62.7±0.6 60.7±1.0 77.0±2.2 76.6±0.5 72.9±2.0 70.04

GraphMVP 68.5±0.2 74.5±0.4 62.7±0.1 60.3±1.6 75.0±1.4 74.8±1.4 76.8±1.1 70.37

GraphMAE 70.3±0.9 75.0±0.4 62.9±0.3 59.9±0.5 76.9±2.6 76.7±0.9 75.4±1.4 71.19

MGSSL 67.8±0.7 75.1±0.3 62.6±0.4 60.7±0.8 75.5±2.1 75.2±0.9 76.9±1.1 70.54

Mole-BERT 71.2±1.5 75.5±0.6 63.9±0.3 61.5±0.5 77.1±1.6 76.5±1.1 78.8±1.5 72.07

FREL 70.8±0.8 75.8±0.4 64.9±0.8 60.9±0.6 78.9±1.2 77.8±0.5 80.3±0.3 72.77
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distribution. The discrepancy between the predicted value distribution and the true 
label distribution is measured by KL divergence, as shown in Fig. 2

It is seen from Table 2 that our FREL model also obtains positive transfer compared 
with non-pretraining baseline and achieves the SOTA performance on all datasets. 
Moreover, it can be observed from Fig. 2 that the predicted molecular properties by 
the pre-trained model show a better match with the true label distribution of drug 
properties compared with non-pre-trained one, which also verifies the effectiveness 
of our framework and demonstrates the importance of taking into consideration the 
molecular fragments.

Interpretation and analysis

Although we have incorporated information on molecular fragments through explicit 
model design, the black-box nature of deep learning still hinders our understanding 
of the specific reasons behind performance improvements. Based on the experimen-
tal results mentioned above, we will attempt to provide some hypotheses for perfor-
mance improvements based on the characteristics of the specific dataset.

Note that most of the datasets we used for downstream tasks are ADMET property 
prediction tasks: chemical Absorption (A), Distribution (D), Metabolism (M), Excre-
tion (E), and Toxicity (T), and we thus group the ten end tasks according to their pre-
diction targets in the following analysis. We provide detailed analysis as follows:

Table 2 Additional results on four molecular property regression tasks in terms of Root-Mean-
Square Error (RMSE, ↓)

The lowest prediction error is highlighted in boldface

Pretraining ESOL Lipophilicity Malaria Avg.

— 1.361±0.016 0.797±0.006 1.122±0.011 1.093

AttrMask 1.115±0.048 0.791±0.004 1.119±0.014 1.008

ContextPred 1.199±0.037 0.763±0.020 1.101±0.015 1.021

JOAO 1.123±0.019 0.769±0.007 1.145±0.010 1.012

GraphMAE 1.282± 0.023 0.769± 0.003 1.098± 0.012 1.050

GraphMVP 1.094±0.021 0.776±0.016 1.114±0.013 0.995

FREL 1.088±0.034 0.744±0.001 1.087±0.009 0.973

Fig. 2 Distribution of the predicted property and true label
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• Tox21, Toxcast, and Sider are datasets that provide information on chemical toxic-
ity, toxicological assessment, and side effects and adverse reactions (ADR) of listed 
drugs. These datasets are relevant to the study of drug toxicity, specifically its side 
effects. Our research suggests that the success of these datasets can be attributed to 
the identification of structural alerts and toxicophores, such as aromatics and nitro 
groups, which are associated with hepatotoxicity. These functional groups are essen-
tial components of drugs and cannot be easily replaced. [50].

• The blood-brain barrier (BBB) is a highly selective interface between the circulating 
blood and the brain extracellular fluid, which serves to protect the brain from poten-
tially harmful foreign substances present in the bloodstream. BBBP refers to the per-
meability of the BBB, which is determined by several factors such as the size of the 
molecule, the expression of relevant transporters and enzymes, and lipid/water solu-
bility. While the functional groups of a substance may affect its lipid/water solubility, 
they cannot directly alter the permeability of the BBB. As a result, the impact on 
the permeability of the BBB is limited, which may explain why the outcomes of our 
experiment were not as optimal as we had hoped. [51].

• Drug molecular fragments play a significant role in the inhibition of HIV-1 replica-
tion, where the same functional groups have similar antiviral activity. Take tenofovir 
for example, and a series of aryl phenoxy-amidate derivatives of it, showed potent 
activities against the replications of HIV-1 [52]. Furthermore, the modification of 
functional groups during the transformation of precursor compounds into anti-HIV 
drugs is an effective strategy for detecting precursor compounds.

• The ESOL and Lipophilicit datasets describe the hydrophilicity and lipophilicity of 
drug molecules, the ratio of a drug to its lipid/water distribution. Compared with 
macromolecules, the larger the molecular weight, the more lipophilic. Since most 
molecules in production and life are smaller, the lipid/water solubility of molecules 
is mainly affected by functional groups. For example, the presence of -COOH sig-
nificantly increases the hydrophilicity of a molecule. Therefore, our model achieves 
better performance [47].

• Malaria is a data set on antimalarial drug inhibitors collected by GlaxoSmithKline ( 
GSK ). This data set discloses the structure of effective, drug-like antimalarial com-
pounds in the hope of finding the key to new malaria treatment. These compounds 
exhibit higher molecular weight and hydrophobicity index compared to other com-
pounds. We speculate that the success of this experiment may be attributed to these 
characteristics of the compounds in the dataset.

Investigation on molecular representation

We use t-SNE (t-distributed Stochastic Neighbor Embedding) [53] to intuitively show 
the molecular representation learned by FREL. The t-SNE algorithm is a dimensional-
ity reduction technique that is commonly used for visualizing high-dimensional data in 
a 2D space. Points that are similar in the high-dimensional space are mapped to nearby 
points in the low-dimensional space, while points that are dissimilar are mapped to dis-
tant points. As shown in Fig. 3, we perform t-SNE analysis on the HIV and Lipophilicity 
datasets to compare the superiority of our pre-training strategy against non-pre-trained 
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models. We further visualize the t-SNE plots of the SOTA atom-level pre-training 
strategy, GraphMAE, to highlight the advantages of considering molecular fragments. 
Distinct class labels are represented via different colors. It is worth noting that the visu-
alized representations are fine-tuned by downstream labels.

After pre-training, the representations obtained by the model exhibit clustering char-
acteristics, with similar labeled representations being closer to each other, and repre-
sentations with dissimilar labels being distributed further apart, thereby enhancing the 
discriminability of molecules belonging to different categories. This is beneficial for 
improving the performance during downstream classification and regression. In con-
trast, the non-pre-trained model performs poorly in this regard. As shown in figure A 
and D from Fig. 3, representations with distinct labels are closer to each other. Addition-
ally, we present four examples with clearly distinct properties for each dataset. Taking 
the Lipophilicity dataset as an example, the molecule at the top has poor hydrophobicity 

Fig. 3 Investigations on molecular representation based on t-SNE analysis. A, t-SNE analysis with random 
initialized GIN model on HIV dataset. B, t-SNE analysis with model pretrained by FREL on HIV dataset. C, t-SNE 
analysis with model pretrained by GraphMAE on HIV dataset. D, t-SNE analysis with random initialized GIN 
model on Lipophilicity dataset. E, t-SNE analysis with model pretrained by FREL on Lipophilicity dataset. F, 
t-SNE analysis with model pretrained by GraphMAE on Lipophilicity dataset. G, correlation analysis of t-SNE 
distance and label difference on regression tasks pretrained by FREL. H, correlation analysis of t-SNE distance 
and label difference on regression tasks pretrained by GraphMAE
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due to the presence of amino groups, whereas the molecule at the bottom consists of 
nonpolar functional groups such as phenyl group and alkyl groups that enhance lipophi-
licity. This is consistent with our motivation for designing the model based on molecular 
fragment.

To better explore the expressiveness of the learned representation obtained from 
model after pre-training, we draw the scatter plots of the distance between the molecu-
lar representations after t-SNE dimensionality reduction and the absolute value distance 
between their true labels on three regression datasets, as illustrated in figure G and H 
from Fig. 3. The horizontal axis represents the Euclidean distance between the molecu-
lar representations after t-SNE dimensionality reduction, and the vertical axis represents 
the absolute difference between the molecular labels. The correlation coefficient is dis-
played in the upper left corner of each plot, showing a positive correlation between the 
t-SNE distance and label difference, indicating that the pre-trained representation can 
better capture features affecting property variation. It can reflect the effectiveness of the 
learned representations and provide a more intuitive understanding. While GraphMAE 
produce better representations compared to non-pre-trained model, it demonstrate 
suboptimal ability in capturing label variation and molecular separability compared to 
our approach. This highlights the necessity of incorporating fragment information in our 
proposed pretraining strategy.

Based on the aforementioned correlation analysis, we conduct a case study on the HIV 
dataset to further verify the relationship between the distance learned between repre-
sentations and the difference in molecular properties. Since the HIV dataset evaluates 
whether molecular compounds are able to inhibit HIV replication (positive or negative), 
we randomly selected three sets of molecular instances for observation, namely positive-
positive, positive–negative, and negative-negative. The results are shown in Fig. 4.

It can be observed that representations of molecules with the same properties are gen-
erally closer to each other, with distances ranging from 10−8 to 10−5 . On the other hand, 
molecules with different properties have larger distances, with most distances ranging 
from 10−2 to 10−1 . This indicates that our pre-training strategy can help the model learn 
better molecular semantic information, thus facilitating the completion of downstream 
tasks.

Empirical analysis of capturing fragment semantics

To support our key motivation and justify that FREL enables better learning of fragment 
semantics compared to other atom-based pretraining strategies, we further conduct two 
experiments, including (1) Aromatic Ring Counting and (2) Hydroxyl-Containing Mol-
ecules Solubility Regression. The description of experimental settings are as follow:

• For aromatic ring counting, we randomly draw 10K molecules from GEOM-Drugs 
dataset to test whether model pretrained with different strategies can recognize the 
number of aromatic rings of each molecule, which is an informative descriptor deter-
mining various drug properties [54]. The performance in terms of Mean Average 
Error (MAE) are shown in Table 3.

• For the hydroxyl-containing molecules solubility regression, we select all mole-
cules with hydroxyl groups from the ESOL dataset. We then perform a regres-
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sion task on their water solubility using the same experimental setup as described 
in the Experimental Configurations. The performance in terms of Rooted Mean 
Squared Error(RMSE) are shown in Table 3.

Given the intimate relationship between the experiments we proposed and molec-
ular fragment information, the performance of these experiments can serve as an 
indicator of the capability to capture molecular fragment semantics. A superior 
performance signifies a stronger proficiency in capturing the semantic of molecu-
lar fragments. Based on the results from Table 3, we observe that our proposed pre-
training strategy achieves the best performance compared to other atom-level and 

Fig. 4 Case study of learned molecular representations

Table 3 The results of case studies (Ring Counting & Solubility Regression)

The best performing result is highlighted in bold

Random AttrMask GraphCL GraphMVP MGSSL FREL

Ring Count (MAE, ↓) 0.1949 0.1373 0.1222 0.1207 0.1154 0.0956
Solubility (RMSE, ↓) 1.4982 1.2655 1.1877 1.1620 1.1989 1.0652
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fragment-level methods, indicating its superiority in capturing molecular fragment 
semantics.

Ablation studies and sensitivity analysis

To answer RQ3, we conduct ablation studies on the effect of different pretraining 
channels to verify that different modules of FREL can independently provide benefi-
cial impact. We consider the following model variants for further inspection. Except 
the modifications in specific modules, other implementations remain the same as pre-
viously described.

• FREL –C removes the generative learning channel in the pretraining phase and 
simply uses the LC in Eq. 10 as the pretraining objective.

• FREL –G modifies the pretraining objective by removing the contrastive learning 
channel and uses the LG in Eq. 10 as the pretraining objective.

We report the performance of model variants in Additional file 2. It is seen that all 
three variants achieve downgraded performance, which empirically rationalizes the 
design choice of our molecular pretraining framework with dual-channel pretraining. 
Specifically, the performance of FREL–C and FREL–G is inferior to that of FREL, dem-
onstrating the necessity of combining self-supervised information from both chan-
nels. In addition, FREL–G occasionally obtains better performance than the FREL–C . 
For example, on the MUV dataset, FREL–G achieves 2.1% improvement in terms of 
ROC-AUC. It indicates that the proposed generative learning strategy is more effec-
tive compared with the contrastive learning.

Moreover, we further evaluate the performance of FREL with respect to two model-
specific hyper-parameters: the mask ratio m and temperature coefficient τ . Intuitively, 
a small mask ratio is simpler for reconstruction, but it can lead to the inability to 
capture effective molecular semantic information. Conversely, a large mask ratio can 
result in a reduction of available information, lacking sufficient self-supervision sig-
nals. Therefore, we select different candidate values at equal intervals of 10% within 
the range of 10% to 60%. For the temperature coefficient, we also select six candidate 
values [0.01, 0.07, 0.1, 0.3, 0.5, 0.7] for analysis. To demonstrate the joint influence of 
these two key hyper-parameters, we use an enumeration combination of the candi-
date values for both parameters and obtain the results shown as Additional file 3.

Discussion and future work
Prior works on drug property prediction have two main limitations. Firstly, they tend 
to overlook the effectiveness of explicitly incorporating molecular fragment infor-
mation into model design, despite the crucial role that molecular fragments play in 
determining molecular properties. Secondly, the effective utilization of both intra- 
and inter-molecular relationships for self-supervised pretraining has not been ade-
quately addressed, resulting in suboptimal molecular representation learning.

Our model has demonstrated the ability to partially mitigate the aforementioned 
issues and yield performance improvements. However, there are still some limitations 
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to address. Currently, most molecular pre-training models are based on the GIN 
encoder, which tends to have a smaller parameter count due to challenges such as 
over-smoothing [55, 56] and over-squashing. In contrast, in the fields of NLP and CV, 
larger parameter sizes have shown significant benefits for pre-training and bring more 
positive transfer. Therefore, an intriguing avenue for future research lies in explor-
ing how existing pre-training strategies can be better adapted to models with larger 
capacities.

Furthermore, the method of fragmenting molecules based on BRICS decomposition 
is rather crude, while the approach of decomposing molecules into functional groups 
based on chemical definitions is overly meticulous, thus limiting effective exploration 
of the chemical semantic space. Consequently, an unresolved issue is how to identify 
valuable molecular subgraphs for pre-training strategies. In the future, we aim to find 
effective solutions to these open-ended questions that can drive drug discovery forward.

Conclusions
Pretraining methods have emerged as a prominent research focus in the field of drug 
property prediction. Nevertheless, prevalent pretraining methods in the field often 
lack explicit incorporation of biochemical knowledge and exhibit a limited scope in the 
design of self-supervised strategies. To this end, we propose a novel framework, coined 
FREL, which comprehensively employs generative learning and contrastive learning to 
achieve intra- and inter-molecule agreement, respectively. Our approach explicitly inte-
grates molecular fragment information into the model design. We evaluate the effective-
ness of FREL on ten benchmark datasets and achieve the state-of-the-art performance. 
Further empirical analysis supports our key motivation that molecular fragment has the 
potential to boost the performance of drug property prediction. Overall, our work high-
lights the necessity of incorporating molecular fragments into model design and pro-
vides a promising solution for drug property prediction task.

Methods
Preliminaries

We begin by introducing some common notations for Graph Neural Networks (GNNs) 
and outlying the key concepts used in this work. Each molecule can be represented as 
an undirected graph, with atoms as nodes and chemical bonds as edges. Let G = (V , E) 
denote a molecule, where v ∈ V represents atom and (u, v) ∈ E represents chemical 
bond connecting atom u and v. The feature of node v and edge (u, v) with D dimension 
are denoted as xu, xuv ∈ R

D , respectively. Graph neural networks are message-passing 
networks. Formally, given a node v, its representation vector h(k)v  at the k-th layer is for-
malized by

where N (v) is the set of neighbors of node v, AGGREGATE(k)(·) is the aggregation 
function for gathering neighboring messages for the central node, UPDATE(k)(·) is 
the update function for regenerating the node representation. We initialize the node 

(4)
a(k)v = AGGREGATE(k)

({
h(k−1)
v ,h(k)u , xuv|u ∈ N (v)

})
,

h(k)v = UPDATE(k)
(
h(k−1)
v ,a(k)v

)
.
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representation at the 0-th layer as the node feature, that is, h(0)v = xv . To obtain the 
graph representation hG , the READOUT(·) function is adopted to integrate node repre-
sentation for permutation invariant pooling, such as sum and average:

where K is the number of GNN layers. The graph representation vector hg can then be 
used for downstream task prediction. For conciseness, we ignore the superscript (K) and 
denote hv as the representation of node v and denote GNN(·) as graph neural network 
hereafter.

The FREL framework

Following generic “pretrain, fine-tune” pipelines, we first pretrain a simple GNN model 
with self-supervised objective and then fine-tune it on the downstream molecular property 
prediction tasks. The core idea of the FREL framework lies in the design of self-supervised 
objective, which facilitates the learning of underlying biomedical semantics by the model. 
The overall pretraining process involves two perspectives, known as dual-channel pretrain-
ing, which includes contrastive learning and generative learning channel. In the subsequent 
fine-tuning phase, we take the weights of the learned model and tune it on the labeled data-
sets with supervised information.

In the following, We first elaborate on the two pretext tasks specialized for molecular 
fragment and introduce a integrated objective for pretraining. Then, we justify the effective-
ness of our pretraining strategy from the perspective of information theory.

The contrastive learning channel

Contrary to prior works that generate augmented views from local and global aspects with 
random perturbation [57–59], our contrastive learning channel takes into consideration the 
molecular fragment to construct positive pairs.

To be specific, we first leverage the GNN encoder to obtain node embeddings for both 
views. For the first view, we take the mean of node embeddings belonging to the same frag-
ment as fragment representation. Then, we perform fragment-level self-attention to fur-
ther capture the correlation between different substructures and make weighted pooling 
based on attention coefficients. The second view is obtained by simple mean pooling upon 
node embeddings. Eventually, we employ a contrastive objective to enforce the embedded 
molecular views agree with each other and can be discriminated from embeddings of other 
molecules.

In our FREL model, we use BRICS algorithm [60] to decompose the molecule into frag-
ments. We further adopt mean pooling and attentive pooling to get the fragment and mol-
ecule representation as:

where hmf , h̃g ∈ R
D represent the representation of fragment and molecule, respectively. 

The Fm is the node set of fragment m and scalar value |Fi| is the corresponding number 
of node. We leverage an self-attention network [61] that learns to adjust the contribution 

(5)hg = READOUT
(
h(K )
v |v ∈ V

)
,

(6)hmf = 1

|Fm|
∑

v∈Fm

hv , h̃g =
∑

m∈M
αmhmf ,
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of each fragment and generate a fragment-based molecular representation with weighted 
coefficients. Formally, the attention coefficient αm denoting the contribution of the m-th 
fragment is computed by:

where qmf , k
m
f , v

m
f ∈ R

D , W q ,W k ,W v ,∈ R
D×D are trainable parameters in the attention 

network, and B denotes the set of molecules in the current training batch. Finally, our 
contrastive objective aims to align the fragment-based molecular embeddings with 
atom-based molecular embeddings.

For any molecule gi , we specify the fragment-based embedding h̃
i

g as the anchor, 
while the atom-based embedding hig is regarded as the positive sample. Other gener-
ated embeddings {hjg }i �=j in the same batch are negative samples. By performing pop-
ular and effective Information Noice Contrastive Estimation (InfoNCE) objective as 
prior studies, the pairwise objective is formalized as follow:

where the critic function θ computes the similarity score of contrastive pairs and the 
hyperparameter τ adjusts the dynamic range to control the smoothness of the distribu-
tion. The B denotes the number of training samples in the batch.

The generative learning channel

While contrastive learning maximizes the agreement between molecule pairs, gen-
erative learning, on the other hand, extracts unsupervised signals from the molecule 
itself. Prior graph masked auto-encoder (GMAE), which targets reconstructing graph 
structures and features, are mainly performed on the complete graph for recovery. 
However, it may undermine the intrinsic information (e.g. acidity and polarity of car-
boxyl) of molecular fragments when encoded in different molecules, thus impairs the 
prediction performance.

To this end, we propose to conduct GMAE at fragment level to preserve intrinsic 
information where possible. Formally, we randomly select partial nodes to constitute 
a subset V̂ ⊂ V and mask their node features with the special token [MASK] . Given 
the graph encoder GNNenc(·) , decoder GNNdec(·) and masked node feature x̂v , the 
reconstructed node representation ẑv is formalized as below:

(7)αm = exp(wm)∑
m′∈M exp(wm′

)
vmf ,

(8)wm = 1

|B|
∑

hmf ∈B

qmf · kmf√
D

,

(9)qmf = hmf ·W q , kmf = hmf ·W k , vmf = hmf ·W v ,

(10)LC = 1

|B|
�

i∈B


− log

exp(θ(�hig ,hig )/τ )
�

j∈B exp(θ(�hig ,h
j
g )/τ )


,
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Following GraphMAE [27], we leverage scaled cosine error as the criterion to mitigate 
the sensitivity and low selectivity problem [62]. The generative loss is defined as:

where the scaling factor γ is a self-defined hyper-parameter. It is worth noting that the 
graph encoder and decoder are both performed at fragment level rather than graph level. 
By now, the overall pretraining objective can be summarized as follow:

Theoretical analysis

Recalling that the overall optimization objective has the form of the summation of con-
trastive loss and generative loss. In this section, we further provide a deeper insight into 
the theoretical support of our optimization objective. We demonstrate that minimizing 
the total loss L is equivalent to maximizing a lower bound on the sum of two types of 
mutual information. The first type is based on the mutual information between positive 
pairs in contrastive learning, while the second type is based on the mutual information 
between the original input and the encoded representation in generative learning. To be 
specific, we propose the following theorem:

Theorem 1 The sum of mutual information can be lower bounded by

where I(h̃
i

g ,h
i
g ) is the mutual information between positive pair in contrastive learn-

ing, and I(x, ẑ) is the mutual information between raw input and the encoded represen-
tation in generative learning. The detailed proof is included in the Additional file 4.

Intuitively, the result of theoretical analysis tells us that with the continuous optimiza-
tion of model parameters, on the one hand, contrastive learning improves the mutual 
information among positive samples by comparing them with negative samples, which 
learns the agreement between molecules; generative learning, on the other hand, 
improves the mutual information between the original input and the encoded represen-
tation by reconstruction loss, which learns the agreement within molecules. Overall, by 
constructing high-quality contrastive samples and obtaining better masked representa-
tions with molecular fragments, we simultaneously learn the intra- and inter-molecule 
agreement, which is the key to the effectiveness of our proposed model FREL.

More detailed experimental configurations

Datasets

For fair comparison with the other pre-trained models, we choose GEOM-Drugs [39] 
as the pre-training dataset, which contains 304,466 mid-sized organic molecules with 

(11)ẑv = GNNdec

(
GNNenc(x̂v , xuv)

)

(12)LG = 1

|B|
�

i∈B


 1

|V̂i|
�

v∈V̂i

�
1− xv

T ẑv

�xv� · �ẑv�

�γ

, γ ≥ 1

(13)L = LC + LG

(14)I(h̃
i

g ,h
i
g )+ I(x, ẑ) ≥ −L+ const
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experimental data. Due to the limitation of computing resources, we follow GraphMVP 
[20] to sample a subset of 50K molecules for practical training. We then conducted fine-
tuning using various datasets, sourced from MoleculeNet [10] and ChEMBL [48]. The 
datasets used in fine-tuning encompass a broad range of applications including both 
biological and pharmaceutical tasks.These properties can be divided into three catego-
ries: physical chemistry, biophysics, physiology. Basic dataset statistics is summarized in 
Table 4.

• Physical chemistry.

The ESOL dataset [47] contains data on the solubility of molecules in water. Similarly, 
the Lipophilicity dataset represents a subset of the ChEMBL database [48] and records 
data on the octanol/water distribution coefficient of molecules.

• Biophysics.

The HIV dataset (AIDS Antiviral Screen) [45] was developed by the Drug Therapeu-
tics Program (DTP), and is designed to evaluate the ability of molecular compounds 
to inhibit HIV replication. The Maximum Unbiased Validation (MUV) group [44] was 
selected from PubChem BioAssay via a refined nearest neighbor analysis approach. The 
BACE dataset, on the other hand, offers qualitative binding data on a collection of inhib-
itors of human β-secretase 1 (BACE-1) [46]. The Malaria dataset [25] gauges drug effi-
cacy in inhibiting parasites responsible for causing malaria.

• Physiology.

The Blood-brain barrier penetration (BBBP) dataset [40] models the barrier permeabil-
ity of molecules targeting central nervous system. Tox21 [41] and ToxCast [42] are all 
related to the toxicity of molecular compounds. The Side Effect Resource (SIDER) [43] is 
a dataset measuring the adverse drug reactions of 27 system organ classes of marketed 
drugs.

For those datasets for fine-tuning, we follow OGB [15] that uses scaffolds to split 
training/test/validation subsets with a split ratio of 80%/10%/10%. The scaffold split 

Table 4 Statistics of datasets used in experiments. The first section describes the datasets used for 
pre-training; the later two sections describe datasets for fine-tuning

Dataset #Molecules Avg. #atoms Avg. #bonds #Tasks Avg. degree
GEOM-Drug 304,466 44.40 46.40 – 2.09

Classification BBBP 2,039 24.06 25.95 1 2.16

Tox21 7,831 18.57 19.29 12 2.08

ToxCast 8,576 18.78 19.26 617 2.05

SIDER 1,427 33.64 35.36 27 2.10

MUV 93,087 24.23 26.28 17 2.17

HIV 41,127 25.51 27.47 1 2.15

BACE 1,513 34.09 36.86 1 2.16

Reg. ESOL 1,128 13.30 13.69 1 2.06

Lipophilicity 4,200 27.04 29.50 1 2.18

Malaria 9,999 30.36 33.20 1 2.19
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constructs the out-of-distribution scenario, which is more in line with the actual drug 
development situation.

Baselines

For comprehensive comparison, we select the following two groups of Self-Supervised 
Learning (SSL) methods as primary baselines in our experiments.

• Generic graph SSL models: AttrMask, ContextPred [16], InfoGraph [49], GPT-GNN 
[26], GraphLoG [18], GraphCL [17], JOAO [28], and GraphMAE [27].

• Molecular SSL models: GROVER-Contextual (GROVER-C), GROVER-Motif 
(GROVER-M) [34], and GraphMVP [20].

In the pretraining stage, all the above SSL approaches are trained on the same dataset 
based on GEOM-Drugs. We also report performance with a randomly initialized model 
as the non-pretraining baseline. To ensure the performance is comparable with existing 
work, we report most of baseline performance from previously published results [20]. 
However, we reproduce the performance of GraphMAE [27] and report the correspond-
ing results to avoid inconsistent comparison with different pre-training dataset.

Implementation details

All of the experiments are deployed on a computer server with 4 NVIDIA GeForce RTX 
3090 GPUs (with 24GB memory each) and 256 AMD EPYC 7742 CPUs. We adopt Glo-
rot initialization [63] for the initialization of the model parameters and the Adam opti-
mizer [64] for optimization.

In the selection of the pre-training backbone model, all of the baseline methods and 
our model follow the widely-used settings proposed by Hu et  al. [16]. On one hand, 
they have demonstrated that the GIN model exhibits significant benefits in pre-training 
while maintaining a moderate parameter size. On the other hand, considering that the 
baselines we compare against employ the GIN model as the backbone, we maintain con-
sistent experimental settings to ensure a fair comparison. Next, we provide a detailed 
description of the hyperparameter settings for the models. For the GNN encoder, we fol-
low widely-used settings [16], where the network consists of 5 layers and the number of 
neurons in the hidden layers is set to 300. The dropout ratio is set to 0 in the pre-training 
phase and 0.5 in all downstream tasks. The GNN decoder in our framework follows the 
setting of GraphMAE, which utilizes a single-layer GIN as its decoder. This choice is 
based on the claim made by Hou et  al. [27] that a GNN decoder can reconstruct the 
input features of a node using a set of neighboring nodes, rather than relying solely on 
the node itself.

For other hyperparameters used in model training, we follow the settings used in 
GraphMVP [20] and assure that all of the baselines align with this setting for fair com-
parison. To be specific, we set the batch size to 256, and the learning rate for both 
upstream and downstream models is set to 0.001. We also set the number of workers to 
8 to reduce training time. Moreover, the initialization random seed used in pretraining is 
fixed to 42. For downstream evaluation, we randomly run the same scaffold split on each 
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dataset three times with different seeds, which also align with the settings in GraphMVP. 
Note that the temperature coefficient τ for contrastive learning and the mask ratio m 
for generative learning are two highly relevant parameters for the performance of FREL. 
We conduct detailed discussions and experimental explorations on these parameters in 
the sensitivity analysis section. The source code of our experiment is available at https:// 
github. com/ Ruowu 9944/ FREL.
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