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Abstract 

Background: Protein engineering aims to improve the functional properties of exist-
ing proteins to meet people’s needs. Current deep learning-based models have 
captured evolutionary, functional, and biochemical features contained in amino acid 
sequences. However, the existing generative models need to be improved when cap-
turing the relationship between amino acid sites on longer sequences. At the same 
time, the distribution of protein sequences in the homologous family has a specific 
positional relationship in the latent space. We want to use this relationship to search 
for new variants directly from the vicinity of better-performing varieties.

Results: To improve the representation learning ability of the model for longer 
sequences and the similarity between the generated sequences and the original 
sequences, we propose a temporal variational autoencoder (T-VAE) model. T-VAE con-
sists of an encoder and a decoder. The encoder expands the receptive field of neurons 
in the network structure by dilated causal convolution, thereby improving the encod-
ing representation ability of longer sequences. The decoder decodes the sampled data 
into variants closely resembling the original sequence.

Conclusion: Compared to other models, the person correlation coefficient 
between the predicted values of protein fitness obtained by T-VAE and the truth 
values was higher, and the mean absolute deviation was lower. In addition, the T-VAE 
model has a better representation learning ability for longer sequences when com-
paring the encoding of protein sequences of different lengths. These results show 
that our model has more advantages in representation learning for longer sequences. 
To verify the model’s generative effect, we also calculate the sequence identity 
between the generated data and the input data. The sequence identity obtained 
by T-VAE improved by 12.9% compared to the baseline model.

Keywords: Protein engineering, Temporal convolutional network, Deep generative 
model, Variational autoencoder

Introduction
As an essential life-sustaining biological macromolecule, proteins’ primary structure 
is composed of 20 different amino acids of variable lengths. Most existing stable pro-
teins evolved from natural selection and continuous environmental changes over mil-
lions of years. Biological functions and structural uniqueness closely correlate to protein 
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sequences. Since the 1970s, developments in protein engineering have aided researchers 
in exploring new protein variants in food [1], drug design [2]and industrial enzymes [3], 
and other fields to improve people’s lives. Protein sequences contain a wealth of infor-
mation about evolution, function, fitness landscape, and so on. Generating proteins with 
better functional properties remains one of biology’s most important research direc-
tions. In traditional protein engineering, it is time-consuming to screen out better-per-
forming variants needed by the industry from numerous random mutations of a single 
amino-acid sequence or recombination of natural homologous proteins.

Rapid developments in computer technology have made the use of machine learning 
in protein engineering an increasingly important research field [4–7]. Transfer learn-
ing uses many unlabeled protein sequences for pre-training to extract general pro-
teins’ features and representations. The model is then fine-tuned with a small amount 
of labeled data, enabling the model to adapt to problem-specific downstream tasks 
[8–11]. Boomsma et  al. [12] argue that extracting meaningful representations of raw 
protein sequence data into abstract, high-level, and low-dimensional spaces is critical 
to continued data exploration. Models such as ProGen [13], low-n [14], ESM-1v [15], 
and ECNet [16] have demonstrated that a joint optimization approach of “pre-training 
+ fine-tuning” is feasible to obtain new variants of desired characteristics. However, it is 
challenging to train a well-performing language model, because large-scale protein lan-
guage models often require massive amounts of data for training and are often limited 
by computing resources.

Unlike the embedding of models such as long short-term memory (LSTM), Trans-
former, and Resnet, the variational autoencoder (VAE) can clearly see phylogenetic sepa-
ration in 2-dimensional latent space [12].Vincenzo et al. think that VAE models are more 
suitable for protein sequence covariation modelling and have advantages in modelling 
higher-order interactions [17]. In addition, Ding et al. [18] showed that latent space vari-
ables of VAE can capture the evolutionary relationship of homologous family sequences 
and simulate higher-order epistasis without exponentially increasing the number of 
parameters. This is conducive to exploring the protein fitness landscape and generating 
the necessary new sequences.

Generating new protein sequences is one of the VAE models’ most important func-
tions. The model captures the evolutionary constraints of the training data by learning 
the representation of amino acid sequences and then searching the protein sequence 
space to find new sequences conforming to the evolutionary constraints. The primary 
goal of generative models is to generate variants that closely resemble the target protein. 
In this paper, we use sequence identity to measure the similarity of protein sequences. 
Sequence identity is the percentage of identical residues at corresponding positions 
in the same alignment length of two amino acid sequences. It can reflect the model’s 
ability to capture the type change of important sites in the sequence. For longer amino 
acid sequences, there are significant differences in sequence identity between generated 
and native. These differences are seen when the positions of many amino acid types on 
the generated sequences are changed, significantly reducing the similarity between the 
sequences. Therefore, we propose a model T-VAE based on a temporal convolutional 
network (TCN) [19].T-VAE consists of an encoder and a decoder. We use the TCN net-
work structure in the encoder to expand the range of receptive neuron fields to capture 
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the relationship between long-sequence sites. By comparing models and sequences of 
different lengths, T-VAE can better learn the representation of longer protein sequences. 
A continuous latent space allows the interpolation to follow the shortest Euclidean path 
between latent representations of the sequence. By changing the internal latent repre-
sentation and decoding it, we can obtain new variants with higher fitness values in the 
protein sequence space. In addition, experiments show that the sequences generated by 
T-VAE have a higher sequence identity than the input sequences.

Related work
Sequence modeling

In recent years, research in computer vision and natural language processing (NLP) 
has focused on learning useful or unknown information from unlabeled data. In NLP 
tasks such as machine translation [20], speech recognition [21], and sentiment analysis 
[22], the encoded representation of input data has had a critical impact on the applica-
bility and quality of the results of machine learning methods. Representations should 
preserve information relevant to the problem while reducing redundant data. Inspired 
by NLP, unlabeled protein sequences contain information about structure and function 
[23].Using the deep-learning network structure to learn the sequence-function mapping 
relationship effectively from protein sequences is necessary to improve the model’s abil-
ity to represent sequences. The sequence-to-sequence encoder model allows representa-
tion learning from raw data, so the potential representations of protein sequences can be 
learned in an unsupervised manner [24, 25]. As a neural network processing sequence 
data, a recurrent neural network (RNN) has more advantages in processing time-related 
sequence data than the traditional feedforward neural network [26].However, RNN is 
also prone to problems, such as gradient disappearance and gradient explosion. Further-
more, RNNs lose long-distance information that is dependent on longer sequences.

To process raw audio with long-range dependencies, Oord et  al. [27] proposed 
an architecture of dilated causal convolutions, which exhibits a large receptive field 
and generates novel and highly realistic musical fragments. Bai et  al. [19] proposed a 
structure for sequence modeling, the temporal convolutional network, which can take 
sequences of arbitrary length and map out fixed-length outputs. Temporal convolutional 
networks perform better than recurrent networks on different tasks and datasets while 
showing longer effective memory [19]. developed an autoregressive model that leverages 
causally dilated convolutional deep-generative networks to drive biological sequences, 
which captures functional constraints well and does not rely on explicit alignment struc-
tures. Kim et al. [28] used deep temporal convolutional networks to better predict muta-
tional effects by capturing information from multiple sequence alignments with low, 
effective sequence numbers.

Convolutional neural networks have a parameter-sharing architecture, so they can 
learn to summarize the higher-level features across different sequence positions. To 
improve the sequences’ encoding ability, we utilize a layer of TCN modules in the encod-
ing network structure. By enlarging the receptive fields of neurons in the network to cap-
ture relationships between distant sites, structural and co-evolutionary information in 
native protein sequences can be learned.
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Generative models in protein engineering

Machine learning is an efficient method for the selection of protein-directed evolution 
[4]. Neural networks learn protein sequences-function mappings from deep-mutation 
scanned data to predict previously undiscovered sequence functions [7]. Most existing 
generative models find the probability distribution of the data, and their training and 
sampling are excellent tests of their ability to represent the data and its probability dis-
tribution of high-dimensional features [29]. Deep generative models can be used to learn 
meaningful representations of protein sequences, assigning higher probabilities to pro-
tein sequences that satisfy desired criteria [5]. Goodfellow et al. [30] proposed a genera-
tive adversarial network (GAN) with generative and discriminative models. Models such 
as its variants DCGAN [31], CycleGAN [32], and StyleGAN [33] have achieved signifi-
cant improvements in architecture and style transfer. To expand the sequence space of 
functional proteins, Repeatka et  al. [34] designed a variant of the self-attention-based 
generative adversarial network ProteinGAN. ProteinGAN learns the evolutionary rela-
tionships and domain diversity between natural sequences from the complex multidi-
mensional amino acid sequence space and generates new sequence variants with natural 
physical properties and domain diversity. Although the GAN-based model has achieved 
good results, model collapse and convergence difficulty may occur during the generative 
process. Compared with GAN, VAE can generate more stable features. After embedding 
and visualizing natural protein sequences in latent space, the distribution relationship 
of homologous sequences along the evolutionary direction can be observed [18]. VAEs 
impose lower bounds on the input probabilities, allowing a probabilistic interpretation 
of the results. The latent space encodes phylogenetic data and other possible features 
about proteins to guide the exploration of the protein sequence space [35]. Greener et al. 
[36] used the VAE model to generate desired properties to add potential copper and cal-
cium binding sites to non-metal binding proteins. Hawkins-Hooker et al. [37] developed 
independent VAE models for the original and aligned sequences. They showed that ver-
sions trained by multiple sequence alignments improved the reproduction of functional 
constraints’ structures and statistical features, which are acquired and maintained when 
family members evolve.

Although most of the current work aims to generate “effective” sequences, we hope to 
use a generative model to optimize and eventually get “improved” sequences. In other 
words, the new variants we generated were not only “effective” proteins that functioned 
normally but also had more desirable fitness values. For example, when studying the sta-
bility of chimeric cytochrome proteins, we hope that the obtained protein variants have 
higher temperature resistance based on stability. It is currently difficult for feature repre-
sentations to capture the relationship between distant sites for some proteins with longer 
sequences. As a result, the sequence identity between the generated and raw sequences 
was adequate. We propose the T-VAE model mainly to study how to search for new 
variants with higher fitness values in the sequence space of longer proteins. Theoreti-
cally, the model can generate new protein sequences from the known functional protein 
sequence space and minimize the need to test many nonfunctional protein sequence 
variants. Therefore, our model will reduce the difference between generated sequences 
and natural sequences for a small dataset, guiding the model to search for sequences 
with “improved” functional properties.
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Methods
To improve the search for the protein we need in the protein sequence space, we propose 
the T-VAE model. Taking homologous family sequences with evolutionary relationships 
as research objects, we first processed or deleted the sequences we downloaded that 
did not meet the research requirements. Then, after multiple sequence alignments, the 
model trained the encoder and decoder simultaneously to obtain the parameters of the 
data distribution. Our encoding scheme attempted to capture prior domain knowledge 
about amino acids as the similarity between vectors. The representation output by the 
encoder was smoothed a priori to ensure that the internal latent representation could 
be changed or sampled from the prior distribution of latent vectors. Then, the resulting 
vector was fed to the decoder to obtain new protein sequences (Fig. 1). We used Gauss-
ian process regression to predict new protein function values to verify whether the gen-
erated sequences had similar or better properties than the training data.

T‑VAE model details

The T-VAE model consists of an encoder and a decoder. As shown in Fig. 2, the encoder 
consists of a TCN module [19] and a layer containing a fully connected neural network. 
TCN uses a 1D fully convolutional network and causal convolutions for sequence encod-
ing. The length of the amino acid sequence S = (s1, s2, s3, ..., sL) is L, and si represents 
the amino acid type at the ith position in the sequence. Causal convolutions are input 

Fig. 1 The workflow using a deep generative model. First, data is obtained from the database. After 
preliminary processing, the sequences are aligned by multiple sequence alignments. Next, they are fed into 
the deep generative model for training, generating the new sequences we need by sampling. The generated 
sequences should be as similar as possible to the training data

Fig. 2 Network structure of T-VAE
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in the sequence according to the sequence of the proteins. The parameter information 
at si is composed of the information of the ith site in the current layer and the infor-
mation before the ith site in the previous layer, which means there will be no “missing 
connections” in the occurrence of historical information or future data. Given an input 
sequence s1, ..., sL and the objective to output the corresponding sequence s̃1, . . . , s̃L ,a 
sequence modeling network is any function f:

In a general convolutional network, the number of convolutional layers must be 
increased if the input variables must be considered immediately. However, this will 
cause problems such as gradient disappearance, complex training, and poor fitting. In 
the temporal convolutional network, the problem of long-term dependence is solved by 
introducing dilated convolution. Usually, deepening the network depth will expand the 
receptive field and improve the model’s performance so more information can be cap-
tured. Unlike traditional convolutional networks, dilated convolution injects holes into 
the convolution kernel, so the size of the effective window increases exponentially with 
the number of layers. The sampling rate is controlled by the expansion rate d, so the 
convolutional network exponentially expands the model’s receptive field with fewer lay-
ers. Therefore, when the dilated convolution ensures that the output size is constant, the 
range of information obtained is larger. The operation of the dilation convolution F on 
sequence S is defined as:

where d is the dilation factor, k is the filter size, and (s − di) accounts for the direction 
of the past. If the size of the convolution kernel used in the current layer is denoted as ki 
and the receptive field is denoted as RFi,then the receptive field is calculated as follows:

where RFi−1 denotes the size of the receptive field of the previous layer, and Si denotes 
the product of all layers except this layer. That is:

TCN also uses the residual connection to eliminate the problems of gradient disappear-
ance and explosion that may exist in deep networks. The residual block turns the con-
nection between layers into a residual structure, using dilated causal convolution, weight 
norm, dropout, and two layers of activation functions [19]. Weight norm and dropout 
are added to each layer to regularize the network. The ReLU activation functions are 
added to the residual blocks after the two convolutional layers. Except for the first layer’s 
input and the last layer’s output, the remaining layers in the residual block require the 
same input and output lengths. Considering that the network’s input and output chan-
nels may differ, a 1× 1 convolutional layer is also introduced into the residual block 
structure. The residual connection is the sum of the input s and the nonlinearly varying 
output F  , so the output TO in the residual block is:

(1)s̃1, . . . , s̃L = f (s1, ..., sL)

(2)F(s) = S ∗d f (s) = k
i=1 f (i) · Ss−di

(3)RFi = RFi−1 + (ki − 1)× Si

(4)Si =
∏i−1

j=1sj
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where Activation(·) represents the activation function. The TCN network parameters 
in the model are: input dimension= 21× L , output dimension=100, kernel size=2, 
stride=1, padding=1, dilation=2, dropout=0.2. The fully connected layer network in the 
model uses the tanh function to activate neurons.

The encoder network can map a high-dimensional input s to a low-dimensional latent 
variable z. Given the observation sample s, the distribution of z can be deduced, that is 
p(z | s) . In high-dimensional continuous scenarios,p(s) is intractable, because it requires 
marginalization over all possible values of z.

Via Bayes’ formula:

This implies the intractability of the posterior p(z | s) . Thus, the distribution of p(z | s) 
is approximated by a member q(z | s) [38] of a parametric family of probability distri-
butions, which is parameterized by the encoder neural network. We use Kullback–Lei-
bler (KL) divergence to measure the distance between two distributions, denoted as 
KL(q(z | s) � p(z | s)) , to find the optimal member q(z | s) that is the best approximation 
of the true but unknown posterior.

Transform the above formula into:

The optimization objective of variational autoencoders is the evidence lower bound 
objective (ELBO):

It is easy to prove the variational lower bound:

where the first term represents the reconstruction ability of the model from the latent 
space, and the second term is the KL divergence between the approximate distribu-
tion q(z | s) and the prior distribution p(z) . Then, from formula (8) and formula (9) , it is 
obtained that

And because KL(q(z | s) � p(z | s)) ≥ 0 , then:

Finally, we need to maximize logp(s),equivalent to maximizing the evidence lower 
bound. Therefore, p(s) can be approximated using ELBO.

(5)To = Activation(s + F(s))

(6)p(s) =

∫

p(z)p(s | z)dz

(7)p(z | s) =
p(s | z)p(z)

p(s)

(8)logp(s) = Eq[logp(s, z)]− Eq[logq(z | s)]+ KL(q(z | s) � p(z | s))

(9)ELBO = Eq[logp(s, z)]− Eq[logq(z | s)]

(10)ELBO = Eq(log(p(s | z)))− KL(q(z | s) � p(z))

(11)logp(s) = ELBO + KL(q(z | s) � p(z | s))

(12)logp(s) ≥ ELBO = Eq(log(p(s | z)))− KL(q(z | s) � p(z))
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The encoder network learns the mean and variance of the latent variable probabilities 
to obtain the distribution parameters of the data. We randomly sample on the stand-
ard normal distribution to get the latent variable z. Each sampled point corresponds to 
a Gaussian distribution N (µ, σ) . The decoder reconstructs an approximate probability 
distribution of the original data based on the probability distribution of hidden variables 
generated by the encoding network. The decoder is responsible for restoring the data 
with the least loss, remapping the low-dimensional hidden variables into high-dimen-
sional output. The algorithm flow of the T-VAE model is as in Algorithm 1.

Gaussian process regression to predict protein fitness values

New sequences are generated when our model is pre-trained with homologous family 
sequences. We use the sequence data (unlabeled) of the target protein family to pre-train 
the model so that the T-VAE model can learn the characteristics of the family’s co-evo-
lutionary relationship. Then, fine-tune the T-VAE model using partial target protein data 
(labeled, including protein sequence and fitness value). These labels are not used when 
training the T-VAE but are used in the Gaussian process regression prediction model to 
evaluate the quality of the generated sequence.

Given a dataset Q =
{

(si, yi) | i = 1, 2, · · · , n
}

 consisting of n M − dimensional input 
data s and corresponding labels y.Gaussian process regression assumes a prior distribu-
tion to infer the implicit function g : RM −→ R so the fitness value corresponding to 
the new sequences can be predicted when we generate the new sequences. The implicit 
function can be uniquely determined by the mean function and the covariance function:

Where µ is the mean and k(·, ·) is the kernel function. Let the latent space z be the fea-
ture vector of the sequence. Use a radial basis function kernel:

(13)g(s) = GP(µ, k(s, s′))

(14)k(z1, z2) = σ 2
g exp

(

−
1

2

∥

∥z1 − z2
∥

∥

2

�2

)



Page 9 of 19Li et al. BMC Bioinformatics          (2023) 24:297  

Maximize the likelihood of the Gaussian process model to estimate the label data to find 
the variance parameter σ 2 and the length scale parameter �.

Results
We designed a set of comparative experiments to verify that the T-VAE model could 
learn protein sequence encodings effectively. We downloaded public data from the Pfam 
database [39]to verify the T-VAE model’s encoding effect. We collected and processed 
the downloaded dataset and then used the processed data to train the T-VAE model. 
When the model reached convergence, we embedded all protein sequences into the 
latent space and visualized the distribution characteristics. We used Pearson’s corre-
lation coefficient and mean absolute deviation (MAD) as evaluation indicators. Then, 
we used T-VAE’s generative network to generate numerous protein sequences from the 
latent space and the Gaussian process regression model to predict the fitness value cor-
responding to the generated sequence and screened out new variants with higher fitness 
values.

Data

The homologous protein family has statistical characteristics that reflect the shared 
evolutionary history and related structures and functions of family members [37]. 
Cytochrome P450 (P450) is the most widely used catalyst in plants, which can be used to 
synthesize many specialized metabolites with diverse structures. It is also a key enzyme 
in the drug metabolic process, providing a valuable resource in the development of new 
drugs [40]. Therefore, we chose the sequences of the cytochrome P450 protein family 
(PF00067) as our research object and downloaded the sequence of the entire family from 
the Pfam database [39]. After downloading the data, we needed to process or delete the 
data that did not meet the training requirements. The process was as follows. 

a. Delete the gap sites of “.” and “-” in each sequence.
b. Delete sequences in the family where the gap exceeded 20% of the total length of the 

sequences.
c. Remove repetitive sequences.
d. Sequence alignment.

After processing, the data that could be used for training had a total of 57,356 sequences, 
and the sequence length consisted of 426 amino acids. The types of amino acids were 
represented by numbers from 1 to 20, and the gaps in MSA were represented by 0. We 
weighted MSA sequences in protein families using a position-based sequence weight-
ing method [18] to reduce the distributional bias in which some species are more easily 
detected than others. The input was represented as a 21× L binary matrix.

Models training

We used the Pytorch framework to build the model architecture. To support matrix 
operations for deep learning, the GPU we use is NVIDIA Tesla T4 16  G. The server 
environment is Windows 10 operating system of 64-bit, which has a CPU of Intel(R) 
Xeon(R) Gold 5117 CPU @ 2.00GHz 2.00 GHz.Under the above hardware and software 



Page 10 of 19Li et al. BMC Bioinformatics          (2023) 24:297 

conditions, we trained and tested the representation learning ability and sequence gen-
eration ability of the proposed TVAE model. As a control, full connected-VAE (F-VAE) 
and LSTM-VAE (L-VAE) models are also tested.

Experimental results and analysis

Latent space representation of protein sequences

Proteins within a family have statistical characteristics that reflect evolutionary patterns 
among members [37]. In general, VAE’s simple architecture can learn the evolution of 
sequences in the family. Figure 3 is a schematic representation of the phylogenetic tree, 
where A and B represent two evolutionary time points from the root node. The value size 
at the time node generally represents the evolutionary distance from the root node. The 
protein sequences of the simulated phylogenetic tree with 10,000 leaf nodes [18] were 
all embedded in the F-VAE and T-VAE (Fig. 4). For visualization, we used a two-dimen-
sional latent space. Figure  4 shows that the distribution of data embedded in the two 
models is similar; both are star-shaped structures with spikes. When the evolutionary 

Fig. 3 A schematic representation of the phylogenetic tree

Fig. 4 Representations of protein sequences in latent space
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distance is set to 2.4, the sequences are grouped, and the sequences in the same group 
have the same color. We can observe that the distribution of the two scatter plots is simi-
lar, and the points of the same color are clustered in the same area. It shows that the 
same sequences with evolutionary relationships are distributed in the same region. We 
can interpolate in its latent space to obtain similar variant sequences related to a spe-
cific protein. The new sequences are likely to be evolutionarily related to the original 
sequence.

We used the phylogenetic reconstruction method to embed the phylogeneti-
cally related CYP450 family sequences into a two-dimensional latent space (Fig.  5) to 
observe the distribution of sequences embedded in the latent space. After visualization, 
we observed that the data are almost centered on the coordinate (0,0) and spread out 
in peak-like shapes. To investigate the effect of T-VAE on the distribution of encoded 

Fig. 5 The distribution of cytochrome P450 family sequences embedded in the two-dimensional latent 
space of a F-VAE, b L-VAE, and c T-VAE
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sequences in latent space, we set up two models for comparative experiments, F-VAE 
and L-VAE. The F-VAE encoder consists of a two-layer fully connected feedforward neu-
ral network [18], and the L-VAE encoder consists of an LSTM network module and a 
fully connected feedforward neural network layer. The decoders’ network structure in 
these two models is the same as that of the decoder in T-VAE. Embedding the P450 fam-
ily data into these two models’ two-dimensional latent space (Fig. 5a, b), we can also see 
the spikes extending from the center to the periphery.

We used 278 chimeric cytochromes with fitness labels [18, 41] (Fig. 6) to view the dis-
tribution of data embedded in the two-dimensional and three-dimensional latent space 
of the T-VAE model microscopically. The colors of the sequences represent the value 
T50 (the temperature at which 50% of the protein is irreversibly inactivated). In the two-
dimensional latent space, the data with higher T50 values are distributed on the lower-
left side. In the two-dimensional visualization graph, the data with higher T50 values are 
distributed on the lower-left side. In the three-dimensional latent space, it can be seen 
that the data distribution has specific rules. The data distribution is based on the high 
and low T50values in the latent space. Sequences with low or high values are concen-
trated in specific regions. It shows that the protein sequence has a specific positional 
relationship distribution in the latent space, which can be observed. If interpolation is 
performed near a sequence with excellent fitness, the obtained sequence fitness is likely 
similar or higher. We hope to use this on-site visualization to search for more high-per-
forming proteins directly in the vicinity of high-performing species. This provides us 
with a theoretical basis on which to search for new sequences with improved properties 
in the protein sequence space.

T‑VAE has the advantage of encoding protein sequences.

Protein fitness here refers to protein properties contributing to the normal functioning 
of a protein, such as protein stability and fluorescence, among others. Generating pro-
teins with desired properties is primarily about searching for valuable protein variants. 
We used Gaussian process regression to predict the possible fitness values of the gen-
erated sequences. The experiment measured 278 chimeric cytochrome P450 sequences 

Fig. 6 Visual distribution of 278 chimeric cytochrome P450 sequences embedded in a two-dimensional and 
b three-dimensional latent space
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[42] input into the F-VAE, L-VAE, and T-VAE models to obtain the sequence encoding 
representation. Then, they entered the Gaussian process regression model with the cor-
responding T50 value to study the extent to which the model quantified sequence fea-
tures (Fig. 7). There were 222 training data and 56 test data. After training, the F-VAE 
Pearson correlation coefficient was 0.70, the MAD was 3.9◦ C (Fig. 7a),and the test set 
Pearson correlation coefficient was 0.78. The MAD was3.4◦ C (Fig. 7b). The Pearson cor-
relation coefficient obtained by L-VAE was 0.74, the MAD was 3.5◦ C (Fig. 7c), and the 
Pearson correlation coefficient of the test set was 0.77. The MAD was 3.6◦ C (Fig. 7d). 
The Pearson correlation coefficient obtained by T-VAE was 0.84, the MAD was 2.8◦ C 
(Fig. 7e), and the Pearson correlation coefficient of the test set was 0.84. The MAD was 
2.9◦ C (Fig. 7f ).The predicted data after T-VAE model training had a higher correlation 
with the experimental data, and the MAD value was lower. The T-VAE model improved 
the encoding representation of long sequences and thereby improved the accuracy of the 
Gaussian process regression prediction, which provided the premise for us to predict the 
fitness value of the generated sequences.

Fig. 7 Performance of Gaussian process regression for predicting cytochrome T50 values
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We also used the small proteins (pin1 WW-domain, hYAP65 WW-domain, villin 
HP35, BBL, and 116 mutants of these proteins) and green fluorescent protein data 
in TAPE [23]to predict the stability landscape and fluorescence landscape. We used 
Gaussian process regression to predict the performance of the stability landscape on 
the training and test sets of small protein sequences. We also used it to predict the 
performance of the fluorescence landscape on the training and test sets of the green 
fluorescent protein sequence. The small proteins each consisted of 50 residues. There 
were 53,614 training sets and 12,851 test sets. The fluorescent proteins consisted of 
237 residues. There were 21,446 training sets and 5,362 test sets. We reported Pearson 
correlation coefficients and MAD values between truth values and predicted values 
for fitness landscapes. Table 1 shows that as the protein length increased, we achieved 
better results on both the training and test sets. The Pearson correlation between 
the predicted fitness value and the truth value improved significantly, and the MAD 
value significantly decreased. This shows that adding the TCN module in the encoder 
network can capture the relationship between long sequence sites, and the effect of 
encoding representation is improved.

Fig. 8 Pearson correlation coefficient between the Gaussian process prediction and the experimental T50 
data of the chimeric cytochrome P450 sequence test set when using different parameters. a Dilation layers; b 
Epochs; c Random seed; d Weight decay

Table 1 Pearson correlation coefficients and MAD values between ground truth and predicted 
fitness landscapes on proteins of different lengths

 Training set  Test set

Length Pearson MAD Pearson MAD

Small proteins 50 0.53 0.31 0.51 0.34

Fluorescent protein 237 0.79 0.27 0.75 0.32

Chimeric cytochrome 426 0.84 2.8 0.84 2.9
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We used the fixed variable method to try to adjust multiple hyperparameters, and the 
best results of each parameter on the test set are shown in Fig. 8. The number of dila-
tion layers did not improve as it increased. In our experiment, the correlation between 
the Gaussian process regression prediction and the experimental T50 data from the chi-
meric cytochrome P450 sequence test set was best when layers = 3 (Pearson’s r = 0.84 
). As the number of iterations increased, the model’s training effect improved. When 
epochs reached 8,000, the model’s training tended to be stable. Random seeds were 
selected in the group of {0, 8, 42, 50, 100} . When the random seed took 42, the model 
training obtained the optimal value. To avoid model overfitting, we added weight decay 
to the neural network. The weight decay factor was selected from the set of values 
{0.01, 0.001, 0.0001, 0.00001}.The model trained best when weight decay = 0.0001.

Generating new protein sequences.

We further evaluated the model-generated sequences’ performance using 39 labeled chi-
meric cytochrome fine-tuned F-VAE and T-VAE models.Table 2 shows the parameters 
required to train the two models. We sampled 10,000 points around the distribution 
with the highest fitness T50 and decoded them into 10,000 protein sequences through a 
generator network. We used the Bio.pairwee2 module in Biopython to compute global 
and local identity alignments between the sequence with the highest T50 value and all 
generated sequences. The average identity of the F-VAE sequence was 71.3% (three dig-
its are reserved), and the maximum identity was 75.5%. The average identity obtained by 
T-VAE was 84.2%, and the maximum identity was 93.8% (sequence ID: Generate_92). 
The results of the identity calculation between sequences showed that the T-VAE model 
had more advantages in the feature extraction of amino acid sequences, and the dif-
ference between the generated sequence and the natural sequence was lower. We used 
Gaussian process regression to predict the T50 values corresponding to 10,000 new 
sequences generated by the T-VAE model. We screened out sequences with T50 val-
ues greater than the maximum corresponding to natural sequences (max=69.7◦ C) and 
less than 72◦ C. We screened 61 sequences, of which the maximum identity was 86.1% 
(sequence ID: Generate_5322), and the average identity was 84.3%.

The domain is not only the stable evolutionary unit of a protein but also an impor-
tant part of structure and function prediction [43], which plays an important role in 
completing its physiological function [44]. We used the Conserved Domain Database 
(CDD) in NCBI to analyze the domains of the generated sequences. The conserved 
domains of the generated sequences of the identity of the top 100 were predicted 
using the Batch CD-search tool. We searched for matching results using the default 
database PSSMs. The specific hits of the generated sequences were found to belong 

Table 2 Parameter information for pre-training and fine-tuning of F-VAE and T-VAE

Data_nums Epochs Weight_decay Dim_z Hidden_layer Seed

Train_F-VAE 57356 20000 0.0001 3 100 42

Finetune_F-VAE 39 8000 0.0001 3 100 42

Train_T-VAE 57356 20000 0.0001 3 100 42

Finetune_T-VAE 39 8000 0.0001 3 100 42
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to CYP120A1, the short name of a conserved domain cytochrome_P450 superfamily. 
We also predicted the conserved domains of generated sequences (Generate_92 and 
Generate_5322) and natural sequences (Nature_EXPc5) using the CD-search tool. 
The conserved domains of the three sequences were found to be highly identical, and 
all of them retained key substrate-binding and catalytic residues (Fig.  9), indicating 
that the generated sequences possessed the same functional domains as the natural 
sequences.

Subcellular localization is critical for predicting the likely function of the generated 
sequences [45]. To further verify that the T-VAE model can learn the location of natu-
ral sequences in the biological environment to help us make a preliminary judgment 
on the function of the generated protein, we used deep learning-based Deeploc−1.0 
[46]to compare the generated sequences (Generate_92 and Generate_5322) with the 
natural sequence (Nature_EXPc5) for subcellular localization analysis.

Protein encoding uses BLOSUM62, and localization prediction shows that both 
new and natural sequences are mainly distributed in Cytoplasm and are soluble pro-
teins (Table 3). In the comparison diagram of nuclear signal localization in Fig. 10, the 
nuclear localization signal is roughly at the initial position of the sequence, and the 
position of the nuclear localization signal of the generated sequences and the natural 

Fig. 9 The natural sequence (Nature_EXPc5) and the generated sequences (Generate_92 and 
Generate_5322) all have heme binding sites, and the chemical substrate binding pockets and corresponding 
sites are nearly similar

Table 3 Subcellular localization analysis of natural sequence and generated sequences with the 
highest identity using Deeploc−1.0

Cytoplasm (%) Soluble(%)

Nature_EXPc5 0.7974 0.9594

Generate_92 0.8113 0.9655

Generate_5322 0.7577 0.9466

Fig. 10 Nuclear signal localization comparison of generated and natural sequences. The orange line 
represents the important positioning of the generated sequence site, and the blue line represents the 
important positioning of the natural sequence site
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sequence almost coincides. It shows that the sequences generated by our model retain 
important functional sites.

Conclusion
We have shown that sequence encoding affects data distribution. By comparing different 
models, we have proven that adding a TCN module to the encoder network can improve 
the performance of sequence representation learning. We compared the coding perfor-
mance of different length sequences on T-VAE. The experimental results show that our 
model has a more robust feature extraction ability for long sequences; that is, the model 
can extract more information on the site. In the generation task, the sequences generated 
by the T-VAE model have a higher similarity to natural sequences, indicating that we can 
search for better fitness near well-characterized protein representations based on the posi-
tional relationship of the data distribution in the latent space. This reduces the scope of the 
search in the huge protein sequence space and provides a new approach for deep learning 
in protein engineering and a feasible solution for generating directed evolution target pro-
tein variants quickly and efficiently.
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