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Abstract 

Background: Understanding the Mechanism of Action (MoA) of a compound 
is an often challenging but equally crucial aspect of drug discovery that can help 
improve both its efficacy and safety. Computational methods to aid MoA elucidation 
usually either aim to predict direct drug targets, or attempt to understand modulated 
downstream pathways or signalling proteins. Such methods usually require extensive 
coding experience and results are often optimised for further computational process‑
ing, making them difficult for wet‑lab scientists to perform, interpret and draw hypoth‑
eses from.

Results: To address this issue, we in this work present MAVEN (Mechanism of Action 
Visualisation and Enrichment), an R/Shiny app which allows for GUI‑based prediction 
of drug targets based on chemical structure, combined with causal reasoning based 
on causal protein–protein interactions and transcriptomic perturbation signatures. The 
app computes a systems‑level view of the mechanism of action of the input com‑
pound. This is visualised as a sub‑network linking predicted or known targets to modu‑
lated transcription factors via inferred signalling proteins. The tool includes a selection 
of MSigDB gene set collections to perform pathway enrichment on the resulting net‑
work, and also allows for custom gene sets to be uploaded by the researcher. MAVEN 
is hence a user‑friendly, flexible tool for researchers without extensive bioinformatics 
or cheminformatics knowledge to generate interpretable hypotheses of compound 
Mechanism of Action.

Conclusions: MAVEN is available as a fully open‑source tool at https:// github. com/ 
layla gerami/ MAVEN with options to install in a Docker or Singularity container. Full 
documentation, including a tutorial on example data, is available at https:// layla gerami. 
github. io/ MAVEN.
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Background
The discovery of the Mechanism of Action (MoA) of a small molecule, which describes 
the biochemical interactions a molecule makes to produce a pharmacological effect, is 
an important aspect of drug discovery for a wide range of reasons, from repurposing 
for a new indication to anticipating potential side effects and rationalising phenotypic 
findings [1]. Advances in machine learning techniques, combined with large publicly 
availably bioactivity databases such as ChEMBL and PubChem, as well high-throughput 
biological assays such as LINCS L1000 and DRUG-Seq, have contributed to the develop-
ment of computational methods for generating hypotheses of compound MoA [2]. Two 
popular approaches include target-based and network-based methods. Target-based 
methods aim to predict the direct biological target of the compound, and have shown 
high performance using chemical structure fingerprints as descriptors [3–5]. Network-
based methods such as causal reasoning use transcriptomics data along with prior 
knowledge networks to infer upstream drivers of transcriptional changes, and have been 
shown to capture biological pathways modulated by drug compounds [6–9].

However, such approaches often require proficiency in programming languages such 
as R and Python as well as the command-line, and output computer-readable data 
which can be difficult to convey to non-specialists, which can hinder scientific commu-
nication in multi-disciplinary groups. R/Shiny apps allow for the implementation of R 
code and the visualisation of results in an interactive GUI, and have been widely used, 
e.g., also for the integration of multi-omics (e.g., transcriptomics, phosphoproteomics, 
metabolomics) data with bioinformatics tools such as COSMOS [10] and CARNIVAL 
[7] to gain insights into compounds or other perturbations [11]. Hence, here we intro-
duce MAVEN, or Mechanism of Action Visualisation and ENrichment, an R/Shiny app 
which allows users to integrate compound structure-based target prediction with gene 
expression-based causal reasoning without prior coding experience, and allows for the 
visualisation and pathway enrichment of the results to obtain a systems-level, easily 
interpretable view of the mechanism of action of a compound.

Implementation
Development and installation

MAVEN was written in the R programming language (v 4.2) using the Shiny application 
framework, and the source code is available for local installation at https:// github. com/ 
layla gerami/ MAVEN. To run direct target prediction (which is optional for software 
functionality) the app also invokes PIDGINv4 [4] (https:// github. com/ Bende rGroup/ 
PIDGI Nv4) models and scripts implemented in Python, using a Bash command script 
called from within R. For causal reasoning over biological prior knowledge networks 
with CARNIVAL [7] (https:// github. com/ saezl ab/ CARNI VAL), it is necessary to install 
an ILP (Integer Linear Programming) solver, either the free, open-source Cbc solver [12] 
or the free-for-academic IBM ILOG CPLEX [13]. Installation and configuration instruc-
tions for the solvers are described in the documentation https:// layla gerami. github. io/ 
MAVEN/ along with troubleshooting steps. We also provide an R script to install all 
packages with the required versions, and a conda.yml file with packages required for 
running the PIDGINv4 Python scripts. In case a container solution is preferred for ease 

https://github.com/laylagerami/MAVEN
https://github.com/laylagerami/MAVEN
https://github.com/BenderGroup/PIDGINv4
https://github.com/BenderGroup/PIDGINv4
https://github.com/saezlab/CARNIVAL
https://laylagerami.github.io/MAVEN/
https://laylagerami.github.io/MAVEN/
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of installation and security purposes, build files for Docker and Singularity containers 
with all required software and environments (including solvers) are provided. The size 
of the PIDGINv4 models prevent the publication of the app on the Shiny web server, 
but the same tools (minus compound structure-based target prediction) are available 
via the FUNKI Shiny web-app (https:// saezl ab. shiny apps. io/ funki/) [11]. Installation and 
deployment with the open-source Cbc solver have been tested on the HPC systems at Eli 
Lilly and Company and AWS in order to ensure compatibility with corporate computa-
tional environments.

The Omnipath [14] signed and directed protein–protein interaction network is 
included with the app as well as gene expression [15] and compound structure data for 
lapatinib which is used as an example in the documentation, and will be discussed here 
in the case study. For pathway enrichment on the predicted signalling network, MSigDB 
[16–18] (v2022.1) gene sets in the hallmark (H), curated (C2) and ontology (C5) collec-
tions have been provided (as well as an option to use custom user-uploaded gene set 
files).

Workflow and use

The overall workflow for MAVEN is depicted in Fig. 1. Three inputs are taken; known 
or hypothesised targets which can be predicted from the compound’s chemical struc-
ture with PIDGINv4 [4] or defined a priori (optional) (Fig. 1A); a signed and directed 
(i.e., A activates/inhibits B) prior knowledge network (Fig. 1B) for causal reasoning; and 
compound-induced gene expression data in the form of a summary statistic such as 
t-values or log2-fold changes (Fig. 1C). A signed and directed prior knowledge network 
on causal protein–protein interactions is required to infer causality and function (acti-
vation or inhibition), and can be obtained from open source databases e.g., Omnipath 

Fig.1 Workflow of analyses and features in MAVEN which requires 3 main inputs: Targets (A, optional) which 
can be known/hypothesised or predicted from the compound structure with PIDGINv4, [4, 19] a signed 
and directed prior knowledge network for causal reasoning B and differential gene expression signatures 
as e.g., log2FC, t‑statistic C which is used for the inference of transcription factor and pathway activities 
with DoRothEA [20] and PROGENy [21]. These are used as input to CARNIVAL [7] for optimisation of the 
signalling network, connecting the targets to the TFs via intermediate signalling proteins D. The resulting 
predicted signalling network is displayed in the GUI and interactive pathway enrichment can be carried out 
to contextualise the signalling proteins and interpret the compound’s mechanism of action E. Figure adapted 
with permission from https:// github. com/ saezl ab/ carni val

https://saezlab.shinyapps.io/funki/)
https://github.com/saezlab/carnival
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[14] (provided), SignaLink [22] or SIGNOR [23]. Gene expression data in the form of 
differential expression signatures (i.e., Z-score, Log2FC, t-statistic) can be from any plat-
form, e.g., microarray, RNA-Seq, and publicly available gene expression data is avail-
able for many perturbations in databases such as GEO (https:// www. ncbi. nlm. nih. gov/ 
geo/) [24] (provided for the compound lapatinib) and LINCS L1000 (https:// clue. io/ 
relea ses/ data- dashb oard—Level 5) [2]. The differential expression signature is then used 
to infer transcription factor (TF) activities with DoRothEA [20] and pathway activities 
with PROGENy [21], which is then used along with the prior knowledge network by 
CARNIVAL [7] to optimise a subnetwork which captures signalling proteins upstream 
of TF activity changes and, if targets are predicted or provided, links them to the tar-
gets (Fig. 1D). The outputs from DoRothEA, PROGENy and CARNIVAL are processed 
and formatted using helper scripts from (https:// github. com/ saezl ab/ trans cript utori al). 
Finally, the subnetwork can be viewed and exported to use in other software such as 
Cytoscape [25], and we also provide a collection of MSigDB [26] gene sets (or allow for 
the upload of a custom gene set) for pathway enrichment with over-representation anal-
ysis (ORA), the results of which can also be visualised on the network (Fig. 1E).

MAVEN is designed to be scalable and flexible to the needs of the user by taking 
advantage of parallel processing available in PIDGINv4 and CARNIVAL for the two bot-
tleneck steps (target prediction and network optimisation), and depending on the avail-
able resources (i.e., RAM, number of processors) can handle large networks and gene 
expression signatures. This is because gene expression data is reduced to a smaller (user-
defined) number of transcription factor activities using DoRothEA, making the network 
optimisation more efficient by reducing the input space from tens of thousands of data-
points to typically 50–100. Furthermore, a time limit can be applied to the CARNIVAL 
optimisation step as a setting, to stop the process if an optimal solution isn’t found. For 
large networks it is recommended to use the IBM ILOG CPLEX, as prior benchmarking 
has found that the solver outperforms Cbc in such cases [27]. As MAVEN is a graphical 
user interface (GUI), there is a small amount of computational overhead required over 
running the analyses purely programmatically, however in practice this does not present 
as a decrease in performance for the user.

Throughout the workflow, all chosen parameters and command-line options are saved 
in log files for reproducibility purposes and so that analyses can be re-run programmati-
cally (for information on how to run the tools used in MAVEN, please refer to https:// 
pidgi nv4. readt hedocs. io/ en/ latest, https:// github. com/ saezl ab/ shiny funki and https:// 
github. com/ saezl ab/ trans cript utori al). Additionally, there are help buttons throughout 
the GUI with more information to aid the user in choosing algorithm parameters, and 
guidelines on the formatting of data. The functionalities implemented in MAVEN will 
now be discussed in more detail:

Target prediction with PIDGINv4

The first data analysis step in MAVEN is target prediction based on compound chemi-
cal structure—though this is optional and targets can be manually entered or left out 
entirely. These targets are used as input to CARNIVAL in a later step, to connect to 
inferred signalling proteins. Target prediction is implemented in MAVEN by invoking 
the PIDGINv4 software. PIDGINv4 [4] is an open-source target prediction tool trained 

https://www.ncbi.nlm.nih.gov/geo/)
https://www.ncbi.nlm.nih.gov/geo/)
https://clue.io/releases/data-dashboard
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https://github.com/saezlab/transcriptutorial
https://github.com/saezlab/transcriptutorial
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on ChEMBL [28] (v29) and PubChem [29] data using the scikit-learn [30] Python pack-
age, available on GitHub (v4.2). The tool consists of a collection of Random Forest mod-
els trained on the chemical structures (ECFP4 fingerprints calculated with the RDKit 
[31] Python package) of active and inactive compounds against 2000 + human targets, 
and Python scripts to generate predictions for query compounds and to search for struc-
turally similar compounds in the model training sets. For target prediction, the user is 
required to upload a.smi file, and a ChemDoodle [32] widget [33] is embedded in the app 
GUI to sketch the structure and generate a SMILES file in case the structural SMILES 
are not known. The user can select various parameters for the target prediction includ-
ing activity threshold (0.1, 1, 10 or 100 µM – default 10 µM), number of cores (default 
10), and applicability domain filter (default 50 out of 100) to remove low-confidence pre-
dictions [34]. Once the user chooses to run the target prediction, a Bash script is invoked 
which runs the predict.py and sim_to_train.py PIDGINv4 scripts. The predict.py script 
processes the input SMILES and calculates ECFP4 fingerprints, applies the pre-trained 
models, and then outputs the Platt-scaled Random Forest probability values. The sim_
to_train.py script retrieves the most structurally similar compound in the ChEMBL29 
database (nearest neighbour), based on Tanimoto similarity of their ECFP4 fingerprints. 
The results from both scripts are saved on disk, and then formatted and displayed in the 
GUI.

Transcription factor enrichment with DoRothEA and VIPER

To perform causal reasoning on a protein–protein interaction network, the gene expres-
sion data must be converted from the “gene-level” to the “protein-level” by inferring 
upstream TFs driving the expression changes. DoRothEA (Bioconductor dorothea 
v1.8.0) describes curated TF regulons, so known TF-gene interactions [20]. Each inter-
action is given a confidence score reflecting the supporting evidence behind it from A 
(highest confidence, manually curated) to E (lowest confidence, computational predic-
tions). The package is coupled with the VIPER (v1.3) [35] statistical method to infer TF 
activity from gene expression data, generating normalised enrichment scores for each 
TF [36]. In the app, the user can select the confidence levels A-E to filter the interac-
tions in the regulon, and a slider for the number of top TFs they want to report and 
use for causal reasoning analysis. By default, 50 TFs are reported and plotted as a bar-
chart in terms of their normalised enrichment score (NES, from -1 to 1). This number 
is generally a trade-off between coverage and noise which can be examined by adjust-
ing the slider and viewing the NES plot, which updates automatically upon re-calcula-
tion. Furthermore, only confidence levels A-C are included by default, but this criterion 
can be relaxed if more enriched TFs are required. The documentation and help buttons 
also provide guidance on choosing these parameters. Another parameter which can be 
changed in the source code (but not the GUI) is the ‘minsize’ VIPER parameter which 
indicates the minimum number of genes per TF regulon, set to 5 by default.

Pathway activity inference with PROGENy

Pre-weighting proteins on the prior knowledge network has shown to improve the 
causal reasoning results by CARNIVAL [7]. PROGENy [21] (Bioconductor progeny 
v1.16.0) is a “footprint” method which infers pathway activities by leveraging a large 
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compendium of publicly available perturbation experiments that yield a common 
core of Pathway RespOnsive GENes. Based on the pathway footprint genes, PROG-
ENy produces pathway scores for 14 major signalling pathways (Androgen, EGFR, 
Estrogen, Hypoxia, JAK-STAT, MAPK, NFkB, p53, PI3K, TGFb, TNFa, Trail, VEGF 
and WNT). The pathway scores are converted under-the-hood to protein weights to 
improve the CARNIVAL optimisation. The user can select the number of most dys-
regulated genes to include in the PROGENy pathway score calculations (by default 
100, but this depends on the number of input genes – for experiments with a higher 
coverage such as RNA-Seq, this can be increased to e.g., 200 – 500).

Causal reasoning with CARNIVAL

The last analysis tool implemented in MAVEN is causal reasoning to infer dysregu-
lated signalling networks. CARNIVAL [7] (Bioconductor CARNIVAL v.2.6.2) is a 
causal reasoning algorithm based on integer linear programming (ILP) which aims to 
optimise a subnetwork of signalling proteins contextualising a perturbation of inter-
est. CARNIVAL takes as input dysregulated transcription factors (from DoRothEA) 
and a prior knowledge network (signed and directed protein–protein interactions), 
with pre-computed node weights (based on pathway activity scores from PROGENy) 
to aid the network optimisation. CARNIVAL generates multiple solutions which are 
then aggregated to form a consensus network which connects TFs to targets (pre-
defined or predicted with PIDGINv4) via inferred dysregulated signalling proteins, 
including their sign (activated or inhibited). If no target is defined then the signal-
ling proteins get connected to a proxy “perturbation” node. The user can choose the 
runtime (in seconds) and the number of cores. To solve the ILP problem a separate 
solver must be installed—Cbc [12] (v.2.9, free and open source) or IBM ILOG CPLEX 
[13] optimisation studio (v20.10, free for academic use or a license is required). The 
lpSolve (v5.7.16) ILP optimiser [37] implemented in R is also available to use and is 
installed along with CARNIVAL, but it is strongly recommended to be used only for 
toy examples or testing purposes.

Visualisation and functional enrichment

Following causal reasoning with CARNIVAL the consensus network is visualised in the 
GUI using the visNetwork package (CRAN visNetwork v.2.1.0). To put the inferred sig-
nalling network into biological context it is possible to perform functional enrichment. 
To this end, 11 MSigDB [26] gene sets collections are included with MAVEN (such as 
Hallmark [16], GO [18], Reactome [38], Wikipathways [39]). Alternatively, a.gmt file can 
be uploaded by the user for custom enrichment analysis. Over-representation analysis 
of the signalling network nodes in the gene sets using the prior knowledge network as 
background is performed with piano [40] runGSAhyper function (Bioconductor piano 
v2.10.1). Following enrichment and tabular display of the results, the user can select a 
pathway of interest and highlight the participating proteins on the network. The pathway 
results can also be downloaded. The network.sif file is also saved for further analysis and 
visualisation in Cytoscape [25] or other software packages.
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Demonstration and discussion
To demonstrate the app’s utility for generating hypotheses for compound mechanism 
of action in practice, and to give an overview of the UI and app functionalities, we will 
now present a case study using the EGFR and ERBB2 (HER2) inhibitor lapatinib (we 
also provide this as a tutorial included in the documentation).

The differential gene expression data used in this case study is derived from lapat-
inib-treated (1uM, 6 h) HER2-positive BT474 breast cancer cells, from a publication 
by Sun et al [15] (GEO [24] accession GSE129254). In HER2-positive breast cancer, 
lapatinib inhibits the activation of signalling pathways downstream of EGFR and 
HER2 including MAPK, PI3K-AKT and PLC-γ, leading to apoptosis, decreased cellu-
lar proliferation and cell cycle arrest [41]. The aim of the MAVEN analysis in this case 
study is to infer a signalling network which captures the known cellular response of 
HER2 + positive cells treated with lapatinib.

The MAVEN UI is split into five tabs; Index (landing page), Data, Targets, Analysis 
and Visualisation (Fig. 2). The landing page provides a summary of the MAVEN work-
flow and the case study will proceed from the second tab (Data).

Data

Here the gene expression data and prior knowledge are uploaded and stored in local 
memory for use in the Analysis tab. The user can browse for their files or use the tog-
gle to load the Omnipath network and the lapatinib gene expression data used in this 
case study (Fig. 2). As well as the documentation, there are help buttons throughout 
the workflow to explain file formats, definitions of parameters, and so on.

After checking that the data is in the correct format (including checking valid HGNC 
symbols and reporting any invalid symbols using HGNChelper v0.8.1 [42]), the GUI 
provides a summary of the uploaded data for the user to check e.g., number of nodes 
and edges in the network. The user is then prompted to move onto the Targets tab.

Fig. 2 Screenshot of the Data tab showing the overall layout of MAVEN’s GUI after the case study datasets 
were loaded into the app via the “Load example” toggles
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Targets

The Targets page is split into four sub-tabs (Fig. 3) and is an optional step in the MAVEN 
workflow. In the first tab (Fig.  3A), the user either uploads a SMILES file or sketches 
their compound to produce a SMILES file. Following successful SMILES upload, the 
compound is displayed as an image for the user to check, which can be seen for the case 
study with the correctly rendered lapatinib structure. In the second tab, the user is able 
to select the options for running PIDGIN (Fig. 3B). Here, the bioactivity threshold was 
set to 1 µM to correspond with the concentration of lapatinib used to generate the gene 
expression data. The applicability domain (AD) filter was set to 30, and 20 cores of com-
pute power were used to run the predictions. After choosing the parameters the user is 
prompted to browse for the location of their PIDGINv4 installation directory, and then 
a button becomes available to click for running the target prediction analysis (which can 
be monitored via the R console output). Targets can also be defined manually by enter-
ing their HGNC symbols in the (D) User-defined targets tab.

Once the PIDGIN run is complete, the results are saved and also displayed in the third 
tab, (C) Results, as a data table (Fig. 4), with one row for each target model. The table 
contains the HGNC symbol, target name, predicted probability of activity, ChEMBL ID 
of the most structurally similar compound in the ChEMBL29 database (nearest neigh-
bour), Tanimoto similarity of the nearest neighbour compared to the query compound 
computed from ECFP4 fingerprints, and the experimental measurements available for 
this compound. The target and nearest neighbour are hyperlinked to the UniProt and 
ChEMBL databases, respectively. It can be seen that many of the highest-predicted tar-
gets (ERBB4, EGFR, ERBB2, KCNH2 and PIK3C2B) are experimentally measured tar-
gets of lapatinib (CHEMBL554, Tanimoto Similarity = 1).

Targets can be chosen from the PIDGIN output (by selecting rows) based on the pre-
dicted probabilities as well as Tanimoto similarities (the higher the better in both cases; 

Fig. 3 The Targets page contains 4 sub‑tabs including SMILES upload A and PIDGIN run options B. Results 
are displayed in C Results, and the user can manually define targets in D User‑defined targets (not shown)
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a predicted probability of 0.5 or above indicates that the compound is active against the 
target, and a Tanimoto similarity of 0.3 or above is considered “similar” in the feature 
space used to build the models [43]), or by consulting the literature references to a wide 
variety of protein functions listed in their linked UniProt entries (e.g., https:// www. unipr 
ot. org/ unipr ot/ P00533 for EGFR). Alternatively, the analysis can be run without targets, 
and then re-run with selected targets based on these findings to investigate specific tar-
get hypotheses. For example, if the final network outputs nodes from a particular signal-
ling pathway, a highly-predicted target upstream of this pathway can be used to refine 
the final network. The information provided in Fig. 4 is intended only for selecting tar-
gets of interest, only the target HGNC symbols themselves are used as information for 
the CARNIVAL optimisation.

We took the three targets with highest predicted probability; ERBB4 (0.790), EGFR 
(0.784) and ERBB2/HER2 (0.724) all known to be expressed in HER2 + breast cancer 
[44, 45], to the causal reasoning analysis stage. The rows are selected in the data table as 
shown in Fig. 4.

Analysis

The analysis page is split into three sub-tabs for the three bioinformatics analysis meth-
odologies; DoRothEA, PROGENy and CARNIVAL. The settings for each can be set on 
the left-hand side of the page (Fig. 5).

Fig. 4 Loaded data table of PIDGIN results. The results table includes a row for each target defined by their 
HGNC symbol (hyperlinked to the UniProt database entry) and preferred names, the predicted probability 
of activity of the query compound lapatinib, the most structurally similar compound (nearest neighbour—
NN) in the model training set (hyperlinked to the ChEMBL database entry), the Tanimoto similarity of the 
NN compared to lapatinib (where 1 indicates the compounds are exactly the same), and the experimental 
pChEMBL value of the NN against the target. Here the top three predicted targets (ERBB4, EGFR and ERBB2/
HER2), are selected for further analysis to recapitulate lapatinib’s MoA in HER2 + cells

https://www.uniprot.org/uniprot/P00533
https://www.uniprot.org/uniprot/P00533
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For the case study, DoRothEA (Fig. 5A) was run with confidence levels A, B and C and 
the top 50 enriched TFs have been used for further analysis. For PROGENy (Fig.  5B) 
the top 100 most responsive lapatinib genes (based on the t-values input in the Data 
stage) were used for the calculations. For CARNIVAL (Fig. 5C) it can be seen that the 
targets selected in the previous step (Fig.  4) have populated the CARNIVAL options, 
and they can be further deselected if required—here, we kept EGFR, ERBB4 and ERBB2 
as described above. We set a time limit of 3600 s for the calculations, 30 cores of com-
pute power and used the IBM ILOG CPLEX solver for solving the ILP problem. This 
means that the solver will generate as many optimal network solutions as possible with 
the given time and compute resources, and output the final consensus network. Increas-
ing the time limit or number of cores hence allows the solver to generate more networks, 
which may be required if no optimal solutions are found.

Following DoRothEA analysis, the resulting normalised enrichment scores (NES) for 
each TF are displayed as a bar chart (Fig. 6) and a corresponding data table with TFs 
hyperlinked to their corresponding UniProt page. It can be seen from the plot that the 
top enriched upregulated TF was FOXO3 which is known to be upregulated by lapa-
tinib in HER2 + cells [46], and the top enriched downregulated TF was ESRRA which 
is known to be degraded in response to lapatinib-mediated inhibition of growth fac-
tor-induced signalling in HER2 + tumours [47]. Hence, MAVEN is able to generate an 
easy-to-interpret overview of TFs which are known to be dysregulated by lapatinib in 
the specific cellular context under investigation.f the slider is adjusted to select a differ-
ent number of top-scoring TFs, the plot and table of results automatically update. The 
number chosen here is a trade-off between coverage (where selecting a higher number 
may lead to additional findings) and also noise, where on the other hand a greater num-
ber of TFs may not necessarily contribute additional information and instead increase 
computational time. To aid in this decision, the plot and associated UniProt information 
for each TF can be consulted to select a number that provides good coverage of different 
protein functions (i.e., to not solely choose a set of proteins in the same family, so that 

Fig. 5 Settings for DoRothEA A, PROGENy B and CARNIVAL C which can be interactively set in the MAVEN 
GUI
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the CARNIVAL analysis can better exploit the prior knowledge network) coupled with 
prior knowledge/hypotheses on phenotypic findings. The interface help buttons (which 
can be seen in Fig. 5) also provide guidance text for selecting these parameters, from the 
authors of DoRothEA.

Following PROGENy analysis, the results are visualised in the same way—a bar chart 
of predicted pathway activity score (from -1 to 1 indicating inhibition and activation) 
(Fig. 7) and a corresponding data table (not shown). In agreement with the results of the 
analysis, lapatinib is known to inhibit the EGFR [48], MAPK [49] and PI3K [50] path-
ways in HER2 + cells. The pathway scores are converted to weights on the protein–pro-
tein interaction network, which aids the optimisation of the signalling subnetwork by 

Fig. 6 DoRothEA results derived from the differential expression signature of lapatinib‑treated HER2 + BT474 
cells expressed as a colour‑coded bar plot. NES = Normalised enrichment score. Here, the most enriched 
upregulated TF (indicated by a positive NES) was FOXO3, and the most enriched downregulated TF (indicated 
by a negative NES) was ESRRA, which matches with the known activity of lapatinib in HER2 + cells

Fig. 7 PROGEny results for lapatinib‑treated differential expression signature in terms of predicted pathway 
activity score (from − 1 to 1 indicating inhibition and activation). It can be seen that known pathways 
inhibited by lapatinib in HER2 + cells EGFR, MAPK and PI3K, are predicted as inhibited, aiding the optimisation 
of the CARNIVAL network in the next stage of the analysis
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CARNIVAL [7]. By default, the top 100 top responsive genes are chosen, but this can be 
adjusted depending on the coverage of the gene expression experiment – in general, the 
greater the number of genes measured, the greater the number of top responsive genes 
(e.g., 200–500 for RNA-Seq experiments). The bar chart will again update upon adjust-
ment of the number of genes, and can be interpreted with regards to the function of each 
pathway and what would be expected based on what is known about the compound.

Visualisation and enrichment analysis

Following DoRothEA and PROGENy analysis, CARNIVAL can be run, taking as input 
the DoRothEA enriched TFs and pathway weights from PROGENy, as well as the prior 
knowledge network uploaded in the first Data step. Once complete, the resulting CAR-
NIVAL consensus network is visualised on the visualisation page (Fig. 8). Files from pre-
vious analysis runs, which are automatically saved, can also be uploaded into the tool for 
visualisation.

It can be seen that the top layer of the network consists of the three selected targets 
(ERBB4, ERBB2 and EGFR), the bottom layer consists of the input TFs (e.g., FOXO1, 
FOXO3, ESR1), and they are connected by signalling proteins with inferred direction-
ality (indicated with blue for up-regulation and red for down-regulation), which along 
with their interactions have been optimised from the input prior knowledge network. 

Fig. 8 Following CARNIVAL analysis (or re‑uploading previous results) the user can carry out pathway 
enrichment and visualisation on the inferred signalling network. Here, pathway enrichment was carried 
out on the network derived from lapatinib data with the built‑in Biocarta MSigDB gene set, and the HER2 
signalling pathway is highlighted on the network (as green nodes)
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As well as visualising the resulting network and deriving hypotheses from individ-
ual nodes, it is possible to perform pathway enrichment using the network proteins 
in an over-representation analysis. To illustrate this, we ran the enrichment analy-
sis using the BioCarta [51] gene set and the top enriched pathway, HER2 signalling 
pathway (adjusted p-value = 2.26e−9) is visualised on the network with participating 
proteins highlighted in green (Fig. 8). Hence, CARNIVAL was able to construct a sig-
nalling network highly enriched for HER2 signalling, including the signalling proteins 
MAPKs, ESR1, ERBB2, EGFR, PIK3CA [52] and EP300 [53], which are known to be 
relevant for the primary mechanism of action of lapatinib in HER2 + cancers [52].

The enrichment results are also displayed in the GUI as a data table (Fig. 9) and if 
one of the included MSigDB sets was used for the analysis, then they can be clicked 
through to the entry on the MSigDB website. A.csv file with more information on the 
enrichment results (e.g., participating proteins, odd’s ratio, unadjusted p-value) can 
also be downloaded.

Case study summary

Through the case study, we have demonstrated the ability of the MAVEN R/Shiny 
app and its constituent tools to produce and report correct target prediction results 
(predicting the lapatinib targets EGFR and ERBB2), infer both down- and up-regu-
lated transcription factors induced by lapatinib (including FOXO3 and ESRRA), 
infer pathways known to be modulated by lapatinib (EGFR, MAPK and PI3K), and 
finally construct and visualise a signalling network which is highly enriched for the 
HER2 signalling pathway known to be modulated by lapatinib. This demonstrates the 
detailed insights into compound MoA that can be obtained using MAVEN’s user-
friendly interface, and without requiring extensive coding knowledge.

Fig. 9 Pathway enrichment results table following over‑representation analysis on the lapatinib‑derived 
signalling network. It can be seen that the HER2 pathway is the top enriched pathway; selecting it lights up 
participating on the signalling network and reports the list of proteins to the user. The full results can also be 
downloaded as a.csv file
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Future development

Future additions to the app will include a batch upload option to analyse multiple 
compounds at once and compare their results, options to use other causal reason-
ing algorithms, and the ability to upload and analyse other data types (e.g., phospho-
proteomics and metabolomics data). Supplementary files such as the MSigDB gene 
sets will be continuously updated to reflect any major version changes. Suggestions 
for new features can also be requested on the GitHub page https:// github. com/ layla 
gerami/ MAVEN.

Conclusions
We have developed an R/Shiny app called MAVEN (Mechanism of Action Visualisa-
tion and ENrichment) a novel, feature-rich tool integrating chemical-structure-based 
target prediction with gene expression-based causal reasoning analysis, coupled 
with visualisation and pathway enrichment analysis. A case study, using the chemi-
cal structure of lapatinib and gene expression data derived from lapatinib-treated 
HER2 + positive cells, has demonstrated the ease of inferring detailed insights into 
compound MoA using MAVEN.

Availability and requirements
Project name: MAVEN. Project home page: https:// github. com/ layla gerami/ MAVEN. 
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