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Abstract 

Background: Single-cell RNA sequencing (scRNA-seq) enables the high-throughput 
profiling of gene expression at the single-cell level. However, overwhelming dropouts 
within data may obscure meaningful biological signals. Various imputation methods 
have recently been developed to address this problem. Therefore, it is important 
to perform a systematic evaluation of different imputation algorithms.

Results: In this study, we evaluated 11 of the most recent imputation methods on 12 
real biological datasets from immunological studies and 4 simulated datasets. The 
performance of these methods was compared, based on numerical recovery, cell 
clustering and marker gene analysis. Most of the methods brought some benefits 
on numerical recovery. To some extent, the performance of imputation methods varied 
among protocols. In the cell clustering analysis, no method performed consistently 
well across all datasets. Some methods performed poorly on real datasets but excellent 
on simulated datasets. Surprisingly and importantly, some methods had a negative 
effect on cell clustering. In marker gene analysis, some methods identified potentially 
novel cell subsets. However, not all of the marker genes were successfully imputed 
in gene expression, suggesting that imputation challenges remain.

Conclusions: In summary, different imputation methods showed different effects 
on different datasets, suggesting that imputation may have dataset specificity. Our 
study reveals the benefits and limitations of various imputation methods and provides 
a data-driven guidance for scRNA-seq data analysis.
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Background
Advances in single-cell RNA sequencing (scRNA-seq) technologies have enabled the 
exploration of the transcriptome at the resolution of individual cells [1]. This can poten-
tially reveal heterogeneity and diversity among different cell types [2]. However, despite 
improvements in experimental protocols, various technical factors lead to substan-
tial noise in scRNA-seq data. In addition, the low transcript capture efficiency and low 
sequencing efficiency may result in a high frequency of zero or low read counts, defined 
as dropout events [3]. These can corrupt scRNA-seq data and hinder downstream 
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analyses, such as novel cell type identification and marker gene analysis, which rely 
heavily on data quality.

Recently, many studies have reported promising advances in the field of single-cell 
omics, highlighting the importance of single-cell data analysis [4, 5]. In particular, vari-
ous imputation approaches have been introduced to resolve the problem of dropouts. 
Some methods assume statistical models underlying the observed expression values, and 
handle the dropouts with the help of the assumed model [6–8]. Some impute the drop-
outs through deep learning models [9, 10]. Some combine the deep models with statisti-
cal assumption [11, 12]. Besides, some methods are based on network analysis [13, 14], 
similarity learning [15] or clustering [16].

As the ultimate goal of imputation is to recover true data and gain more reliable bio-
logical insights, it is essential to determine whether these methods can aid in subsequent 
analyses, such as discovering the cell clusters, and determining whether these clusters 
can be discriminated by marker genes and represent meaningful cell types [17–19]. 
Moreover, although most methods have exhibited good performance in a range of fun-
damental analysis tasks, it has been pointed out that imputation may introduce false-
positive results [20]. Therefore, there is an urgent need for an unbiased evaluation of 
imputation methods, and guidance on how to select suitable methods for different data 
applications.

In this study, we conducted a systematic evaluation for 11 known or adapted imputa-
tion methods on 12 real datasets and 4 simulated datasets, based on numerical recovery, 
cell clustering and marker gene analysis.

We first evaluated these methods from the perspective of numerical recovery, and cal-
culated imputation errors to directly demonstrate their ability to recover true expres-
sion levels. We then evaluated the methods on the cell clustering task, to determine their 
ability to recover and enhance the underlying clusters within the original data. We paid 
more attention to evaluating the methods based on marker gene expression, because the 
investigation of marker genes is an excellent way to determine actual biological signif-
icance. This study reveals the benefits and limitations of various imputation methods, 
and provides data-driven guidance for scRNA-seq data analysis.

Results
Performance in the numerical recovery of scRNA‑seq data

The initial aim of imputation is to impute the dropouts in scRNA-seq data to approxi-
mate the true expression values. Therefore, it is a direct way to measure the numerical 
difference between the true values and imputed values of different imputation methods, 
to evaluate the bias distribution and imputation accuracy.

On real datasets, including ILC, HCC, CRC, NSCLC, PBMC, BCC, ITC, human and 
mouse DCs and Melanoma.1 (Table 1), most methods tended to slightly underestimate 
expression values (Fig. 1). Furthermore, on Smart-Seq2 (and Smart-Seq) datasets, some 
methods, such as SAVER and scScope, significantly underestimated (like the corrupted 
data) while others, such as DCA and scVI, significantly overestimated expression val-
ues. Moreover, some methods, resulted in extremely large expression values, such as 
scImpute on HCC, CRC, NSCLC, PBMC, DC_mouse and Melanoma.1, and scVI on ILC 
and HCC. On simulated datasets (Sim1 to Sim4), most methods, especially SAVER and 
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SIMLR, significantly underestimated expression values, while scVI again overestimated 
expression values, and resulted in extremely large expression values for all simulated 
datasets.

Table 1 Details of all the datasets

∗ Number of genes × number of cells. This is the size of data after quality control
∗∗ TPM, Transcripts Per Kilobase Million
∗∗∗https:// suppo rt. 10xge nomics. com/ single- cell- gene- expre ssion/ datas ets/1. 1.0/ pbmc6k

Dataset in 
the study

Source Description Data Size∗ Clusters Sparsity 
Rates

Original 
data type∗∗

Protocol

ILC [27] GSE70580 Human 
tonsil Innate 
lymphoid 
cells (ILCs)

26087 × 647 4 87.2% Raw count Smart-Seq2

HCC [28] GSE98638 T cells from 
hepatocellu-
lar carcinoma 
(HCC)

14127 × 4050 11 75.0% Raw count Smart-Seq2

CRC [29] GSE108989 T cells from 
colorectal 
cancer (CRC)

12547 × 8496 20 71.6% Raw count Smart-Seq2

NSCLC [30] GSE99254 T cells from 
non-small 
cell lung can-
cer (NSCLC)

12415 × 9051 16 75.9% Raw count Smart-Seq2

PBMC∗∗∗ – Peripheral 
blood mono-
nuclear cells 
(PBMCs)

14219 × 5356 5 94.8% Raw count Chromium

BCC [31] GSE123813 Single cells 
from basal 
cell carci-
noma (BCC)

1000 × 50026 19 55.9% Raw count Chromium

ITC [32] GSE124731 Human 
innate T cells 
(ITCs)

13260 × 2005 7 93% Raw count Chromium

DC_human 
[33]

GSE137710 Human 
splenic den-
dritic cells 
(DCs)

14064 × 4406 7 85.6% Raw count Chromium

DC_mouse 
[33]

GSE137710 Mouse 
splenic den-
dritic cells 
(DCs)

12699 × 4432 7 84.6% Raw count Chromium

Melanoma.1 
[33]

GSE137710 Single cells 
from mela-
noma

15292 × 8612 7 92.1% Raw count Chromium

Melanoma.2 
[34]

GSE72056 Single cells 
from mela-
noma

22280 × 4636 7 80.2% TPM Smart-Seq2

BRCA [35] GSE75688 Single cells 
from breast 
cancer 
(BRCA)

27420 × 515 5 79.0% TPM Smart-Seq

Sim1 – – 600 × 2000 5 30.7% Raw count –

Sim2 – – 600 × 2000 5 50.6% Raw count –

Sim3 – – 600 × 2000 5 70.2% Raw count –

Sim4 – – 600 × 2000 5 89.6% Raw count –

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k
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More importantly, to evaluate the accuracy of the recovered expression values, 
we focused on the absolute imputation errors of the different methods, and used 
their median and mean errors as indicators of accuracy. The median error reflects 
the general performance of the imputation method, and neglects the effect of out-
lier values, while the mean error takes the outliers into consideration. Additionally, 
we also evaluated imputation accuracy based on R2 score (Table 5). The ranking of 
compared algorithms based on R2 score is similar to that based on mean error.

On real datasets, the effect of the imputation methods varied among the different 
protocols (Fig. 2). On 10x datasets, most methods explicitly improved the corrupted 
data. However, on Smart-Seq2 (and Smart-Seq) datasets, imputation can barely 
accurately recover most of the artificially corrupted values and even introduced 
more noise (with higher median errors). However, we also found that most methods 
led to significantly lower mean errors (Fig. 2b), which indicates that large corrupted 
values were effectively imputed. In general, most methods generally benefited the 
real datasets, albeit with the addition of some noise. SAVER slightly improved all of 
the datasets.

On simulated datasets, the imputation methods, especially DCA and scScope, gen-
erally performed well (Fig. 2b). Some methods that assume statistical models, such 
as scVI, ZINBWaVE, and SAVER, led to relatively higher errors than those without 
statistical assumptions. Given that simulated datasets were generated using Splatter, 
an scRNA-seq data simulation package that assumes a gamma distribution for the 
mean expression of each gene and a Poisson distribution based on the read counts in 
each cell, it may be more difficult for statistical model-based methods to analyze the 
simulated datasets, which have inconsistent underlying data distributions.

In summary, different imputation methods performed differently in numerical 
expression recovery. Most methods slightly underestimated expression values on 
real datasets and significantly on simulated datasets, while SAVER and scScope sig-
nificantly underestimated on almost all datasets and scVI tended to overestimate 
expression values. In terms of the recovery accuracy, only SAVER showed a slight, 
but consistent, improvement on real datasets. On simulated datasets, most meth-
ods performed well, especially DCA and scScope, but some statistical model-based 
methods were less effective.

Fig. 1 Distribution of log2 normalized differences between the imputed values (or corrupted values) and 
true values. The performance of different imputation methods for all datasets with raw counts are shown. The 
differences were calculated by subtracting the true values from the imputed values (or zeros for corrupted 
data). Positive differences were normalized to log2(value + 1) and negative differences were normalized to 
− log2(−value + 1)
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Performance in single‑cell clustering and visualization

To investigate the effect of imputation on subsequent data analyses, we performed clus-
tering analysis and visualization for data before and after imputation. We implemented 
single-cell consensus clustering (SC3) and PhenoGraph on both original and imputed 
data to capture the underlying clustering structure. As the analysis results based on 
these two methods were relatively consistent, we have only shown the results of SC3.

Evaluation of clustering consistency of imputed data

A crucial factor that reflects the effect of imputation on clustering analysis is the con-
sistency between the clusters uncovered from the imputed data and the ground truth. 
Therefore, the adjusted rand index (ARI) was evaluated for all of the methods.

On real datasets, surprisingly, data imputed by most imputation methods had lower 
ARI scores than those before imputation (Fig.  3a). Most methods did not exhibit 
expected or satisfactory performance, even on datasets with clear intrinsic clustering 

Fig. 2 Median and mean imputation errors on raw count datasets. a Median imputation error and mean 
imputation error on each dataset. b Normalized total error across the real (Smart-Seq2 and 10x Chromium) 
and simulated datasets. The normalized error was calculated by dividing the original error by the maximum 
error on the dataset. Gray dashed baselines indicate the performance before imputation. Lower errors 
indicate better performance
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structures, such as ILC (Additional file 1: Figure S1), where the ARI score on the raw 
count data was over 0.8. However, many of the methods did perform well on PBMC, 
which mainly contains four types of immune cells (T cells, B cells, natural killer (NK) 
cells, and monocytes) that are easy to distinguish (Additional file 2: Figure S2).

On simulated datasets, most methods performed well on Sim1, which has a drop-
out rate of approximately 30% (Fig. 3). With the increase in dropout rate from 30% 
(Sim1) to 90% (Sim4), clustering consistency markedly decreased. However, some 
methods, such as scScope and DrImpute, still showed better performance. In particu-
lar, scScope maintained a distinctively higher ARI score (Fig. 3a) and better clustering 

Table 2 Input data type and parameter setting of different imputation methods

∗For scImpute, ZINBWaVE and DCA, only raw counts are allowed for input
∗∗ To ensure that scImpute obtained the same prior knowledge as other methods, we didn’t provide the accurate number of 
cell types for it

Algorithm Version Input data type∗ Parameter Setting

SIMLR [15] 0.1.3 Raw count, TPM Default

ZINBWaVE [6] 1.6.0 Raw count Default

scImpute [7] 0.0.9 Raw count ‘Kcluster’ was set to 5 for simulated datasets, 20 for GSE123813 
and 10 for the others.∗∗

DrImpute [16] 1.0 Raw count, TPM ‘ks’ was set to 5:10

SAVER [8] 1.1.1 Raw count, TPM Default

MAGIC [13] 1.5.2 Raw count, TPM Default

NE [14] – Raw count, TPM Default

scVI [11] 0.3.0 Raw count, TPM ‘new_n_genes’ was set to the number of genes of each dataset.

DCA [12] 0.2.2 Raw count Default

scScope [9] 0.1.5 Raw count, TPM Default

SAUCIE [10] – Raw count, TPM Default

Fig. 3 ARI scores based on SC3 clustering. a The ARI scores on all of the datasets, with different colors 
representing various imputation methods, ordered on the x-axis in each panel. The dashed baseline 
corresponds to the ARI score of the clustering results on raw data before imputation. b Visualization of the 
baseline dataset and the simulated datasets derived from it, with different colors representing the simulated 
clusters. ARI scores are shown in the bottom right corner in each panel. Higher scores indicate better 
performance
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visualization (Fig.  3b) than other methods, even though the dropout rate reached 
approximately 90%. In general, imputation could bring significantly benefits to sim-
ulated datasets, although the performance of all methods dropped with increasing 
sparsity rates.

Thus, it was found that the performance of various imputation methods on real and 
simulated datasets were quite different. For example, scScope performed very well on 
simulated datasets, but relatively poorly on many real datasets, such as ILC and Mela-
noma.2 (Additional file 1, 3: Figures S1 and S3). In general, SAVER, NE, and DrImpute 
showed better performance on real datasets and, given the biological significance of real 
datasets, these results should be paid more attention.

We conducted additional experiments to evaluate the clustering results using Purity 
(Table 3) and NMI (Table 4) metrics. The results showed that the ranking of the com-
pared methods is mostly consistent with that based on ARI metric.

Evaluation of cluster coherency of imputed data

The silhouette coefficient is widely used to assess the coherency of clusters, and we 
therefore used this metric to evaluate the ability of different imputation methods to 
enhance the clustering structures of data.

As illustrated in Fig. 4a, most methods slightly recovered the known cluster structures 
(annotated by the author) of real datasets, but significantly improved those of simulated 
datasets. This again demonstrated the different performances of methods on real and 
simulated datasets. On real datasets, only two methods, SAVER and NE, showed rela-
tively good and stable performance, while others did not show satisfactory performance 
(also shown in Supplementary Figures  S4, S5 and S6). In contrast, simulated datasets 
were improved by most methods.

We also calculated the silhouette coefficient based on the SC3 clustering results, to 
measure the enhancement of potential cluster structures (Fig.  4b). We found that, on 
most real datasets, NE, SAVER, DrImpute, and scImpute improved the clustering 

Fig. 4 Silhouette scores on all the datasets. a Silhouette scores calculated using pre-annotated clusters. b 
Silhouette scores calculated using SC3 clustering results. The dashed baseline corresponds to the silhouette 
score before imputation. Higher scores indicate better performance



Page 10 of 24Cheng et al. BMC Bioinformatics          (2023) 24:302 

quality, while others had unstable performance. Besides, on simulated datasets, scScope, 
DrImpute, NE, and SIMLR clearly enhanced the clusters.

Evaluation based on marker gene expression and immune cell subsets

As marker genes are not specific to any dataset, they can directly, clearly and unbiasedly 
characterize cell types from the biological perspective. Therefore, special attention was 
also paid to evaluation based on marker genes.

In general, marker genes showed good discrimination after imputed by DCA, MAGIC, 
NE, and SAVER on PBMC (Fig. 5). However, some methods were barely able to discrimi-
nate different cell subsets based on marker genes. CD3E, which is generally considered 
to be a T cell marker, although it is also expressed in NK cells at the RNA level, is not 
expressed in B cells. However, in data imputed by scScope, CD3E showed the strongest 
expression levels in B cells, whereas it was barely expressed in other cell types. There-
fore, imputation may also introduce false-positive results.

Methods were found to vary greatly in their performance. Some could bring ben-
efits, while others had negative effects instead. ILC comprises three ILC subsets and 
one NK subset (Fig. 6a). NE explicitly separated the four subsets, and the visualization 
of SAVER was as clear as the original data. Moreover, scImpute and DrImpute derived 
novel distinct subtypes for each ILC subset. Based on marker gene expression (Fig. 6b), 
only SAVER and scImpute performed well, while several other methods performed 
very unstably. Interestingly, all of the marker genes from data imputed by scScope were 
shown to be barely expressed (Fig. 6b), which was also observed on PBMC (Fig. 5). After 
imputed by scVI, ZINBWaVE, and DCA, the patterns of marker gene expression in dif-
ferent subsets were obscured, suggesting that, on ILC, imputation may introduce a large 
amount of noise.

Fig. 5 Violin plot illustration of selected marker gene expression in PBMC. Marker genes for various immune 
cell subsets are shown on the right: CD3D (T-cell surface CD3 delta chain) and CD3E (T-cell surface CD3 
epsilon chain) for T cells; CD19 and CD79A (B-cell antigen receptor complex-associated protein alpha chain) 
for B cells; CD56 and GZMH (granzyme H) for natural killer (NK) cells; and CD14 and ITGAM (integrin subunit 
alpha M) for monocytes (indicated as ‘Mono’ in the figure)
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Besides, based on the visualization of marker genes (Fig.  7), we found that the per-
formance of different imputation methods was heavily dependent on datasets. For 
example, on ILC, most methods could not clearly separate different cell types based 
on marker genes, although some methods, such as SAVER, NE, scImpute, and DrIm-
pute, performed well (Fig. 7a). However, most methods performed very well on PBMC 
(Fig. 7b), which comprises four major types of immune cells (T cells, B cells, NK cells, 

Fig. 6 Performance of different imputation methods on ILC. a Cluster visualization by t-SNE. Colored cell 
labels were directly derived from the original study. b A heat map illustration of marker gene expression. 
Expression values were calculated from log2(raw count +1) . The color bar indicates expression levels from 
high (red) to low (blue)

Fig. 7 Visualization of marker genes. a ILC and b PBMC. Cells expressing high levels of marker genes for a 
specific cell type are highlighted in each panel
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and monocytes). Although NK cells slightly overlapped T cells, the original clustering 
structure was sufficiently distinct. Most recovered data were as clear as the original data, 
except for data imputed by ZINBWaVE and scScope, where multiple cell types over-
lapped. Therefore, in terms of marker genes and clustering structure, the performance of 
imputation methods was dataset-dependent.

In addition, to evaluate how much the intrinsic structure can be discriminated based 
on the marker genes after imputation, we also calculated silhouette scores based on the 
discriminated cell clusters for datasets PBMC, ILC, Melanoma.2 and BRCA (Fig. 8). We 
found that no matter for datasets that are easy to cluster (e.g. PBMC and BRCA) or that 
are difficult to separate (e.g. ILC and Melanoma.1), there were always some methods 
that can improve the original data. SAVER performed the best on these four datasets, 
outperforming all of the original data, with NE the next best.

In addition to marker gene analysis, one of the most important applications of scRNA-
seq data is to identify potential novel cell subsets. Clear clusters mapping to various cell 
types or subsets are strongly expected, particularly when multiple cell types exist in a 
dataset.

Monocytes are well-recognized in human peripheral blood and are generally catego-
rized into three classes, based on the expression of cell surface markers, denoted CD14 
and CD16 (FCGR3A, low affinity immunoglobulin gamma Fc region receptor III-A) 
[21]. Thus, there are classical (CD14++CD16− ), intermediate (CD14++CD16+ ) and non-
classical (CD14+CD16++ ) monocytes. Interestingly, two separate monocyte clusters 
were clearly observed after imputed by scImpute (Fig. 9a). When remapped using the 
subset labels derived from scImpute, monocytes of most other methods, except ZINB-
WaVE and scScope, showed two separate discernible clusters (Fig. 9b). However, mono-
cyte subsets could not be well discerned from marker gene expression (Fig. 9d), because 
of the conflicting expression of CD14 and CD16 in different monocyte subsets derived 
from scImpute.

Fig. 8 Silhouette scores based on clusters annotated by markers on four datasets. Higher scores indicate 
better performance
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We further selected the two slightly separated monocyte subsets derived from DrIm-
pute to remap monocytes in data imputed by other methods (Fig. 9c). Based on CD14 
and CD16 expression (Fig. 9e), we identified two discriminate monocyte subsets corre-
sponding to the main classical (CD14++CD16− , in red color) and non-classical (CD14+

CD16++ , in green color) monocytes. Intermediate monocytes (CD14++CD16+ ) were 
mainly present in the cluster representing classical monocytes, which makes biological 
sense. Therefore, DrImpute may perform better in the identification of cell subtypes. 
This was further supported by ILC, in which ILC3 also showed multiple clusters (Fig. 6a).

Overall, four methods — NE, SAVER, scImpute and DrImpute — improved the origi-
nal data in the marker gene analysis. scImpute and DrImpute may be beneficial to detect 
subtle cell types.

Discussion
Unlike previous benchmarking studies that mainly used cell lines with homogeneous cell 
populations, this paper evaluates the methods mainly on single cell datasets from real 
world. Such datasets tend to exhibit greater cellular heterogeneity, introducing higher 
variability and complexity, making the evaluation more challenging. Additionally, the 
availability of reference datasets is often more limited compared to well-characterized 
cell lines, further complicating the evaluation process.

Besides 11 imputation methods mentioned above, we also evaluated some other meth-
ods, such as AutoImpute [22]. However, not all methods are suitable for comparison. 
As AutoImpute first selects and only imputes the 1,000 most variable genes, evaluation 
tasks, such as numerical recovery, cannot be fairly compared. However, some visualiza-
tion results about AutoImpute are shown in Additional file 7: Figure S7.

The evaluation results are summarized in Fig.  10, and reveal that the performance 
of the methods varied between datasets (Fig.  10a). Moreover, real datasets were only 
slightly improved by a few methods (Fig.  10b), while simulated datasets were signifi-
cantly improved by most methods (especially those without statistical models). SAVER 

Fig. 9 A visual illustration of immune cell subsets based on marker genes. a Four main pre-annotated 
subsets in PBMC. b and c indicate monocyte subsets, where the labels are derived from the two separated 
clusters (in red and green) of scImpute and DrImpute, respectively. Scatter plots in (d) and (e) show a 
relationship between CD14 (x-axis) and CD16 (y-axis) expression in the corresponding monocyte clusters, 
with the same colors from scImpute and DrImpute, respectively
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and NE are the only methods that improved both real and simulated datasets, while 
ZINBWaVE and scVI generally brought negative effects. In addition, scScope showed 
entirely different performances across the two types of datasets.

On the numerical recovery task, almost all of the methods showed a biased estimation 
of dropout events. Furthermore, statistical model-based methods performed unstably 
on simulated datasets, which may result from inconsistencies with the assumed models. 
Additionally, it may be too difficult for imputation methods to achieve accurate numeri-
cal recovery. For example, the lowest mean absolute imputation error on ILC exceeded 
175 (Fig. 2a), while the mean non-zero expression value of all genes was only approxi-
mately 261.

We found that the effects of imputation methods, in terms of median error, varied in 
different protocols. For most imputation methods, it was difficult to reduce the median 
error on Smart-Seq2 (and Smart-Seq) datasets, but easy on 10x Chromium datasets 
(Fig. 2b). This may be due to the different quantification schemes. The former represents 
read-count only protocols, while the latter is unique molecular identifier (UMI)-based 
protocol. UMI-based protocols remove duplicates in read counts resulting from poly-
merase chain reaction cycles during library construction. Thus, to exclude the potential 
influence of dataset characteristics, another set of datasets, which were recently devel-
oped specifically for benchmarking [23], were also evaluated for the top three bench-
marking protocols. Similar results (small mean and median errors) were observed on 
both UMI-based protocols, Quartz-Seq2 and 10x Chromium (Additional file 8:  Figure 
S8a). However, for clustering analysis, the imputation methods did not show apparently 
different tendencies across different protocols (Figs.  3 and 4), which was further con-
firmed by the benchmarking datasets (Additional file 8, 9: Figures S8b and S9).

Fig. 10 Summary of the performance of the imputation methods. a The performance of different methods 
on each dataset. b The overall performance of different methods on real and simulated datasets. In both a 
and b, red and blue grids correspond to better and worse performance, respectively. Six metrics on three 
evaluation tasks are shown in the columns, namely median absolute imputation error ‘median’, mean 
absolute imputation error ‘mean’, ARI score ‘ARI’, silhouette score based on the ground truth ‘sil(g)’, silhouette 
score based on SC3 clustering results ‘sil(s)’, and silhouette score based on marker genes ‘marker’. Scores in 
each column were normalized by subtracting the baseline (data before imputation) score, and then dividing 
by the difference between the maximum and the minimum score. Opposite scores were used for the 
‘median’ and ‘mean’, as lower imputation errors indicate better performance. The methods were categorized 
as ‘Statistical’ or ‘Non-statistical’, according to their principles. In (b), the scores in each grid are the averages 
across all (real or simulated) datasets. The methods were ranked by the ‘overall’ score, which is a weighted 
sum of the metrics, with weights of 1
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In clustering analysis, based on the ARI metric, only SAVER slightly improved most 
real datasets, while the other methods generally showed unstable performance. How-
ever, on simulated datasets, most methods performed relatively well. Moreover, under 
the silhouette score based on the ground truth cluster labels, SAVER and NE showed 
better performance. However, under the silhouette score based on SC3 clustering 
results, most methods were unstable on real datasets, but performed better on simu-
lated datasets. Overall, no method performed consistently well across all datasets, and 
some methods even had negative effects on most datasets. Furthermore, it is not easy for 
imputation methods to improve real datasets, particularly those with biologically homo-
geneous cell subsets, such as HCC, CRC, and NSCLC. For example, on HCC, in which 
all of the cells are T cells, most methods performed poorly, as indicated by the ARI and 
silhouette scores. Thus, how to improve the cluster analysis in highly homogeneous sub-
sets remains a substantial challenge for imputation methods.

Evaluations based on clustering analysis and visualization also suffers from some dif-
ficulties, due to the overdependence on the ground truth or the lack of prior knowledge. 
On one hand, for ARI and silhouette scores based on the known cluster structures, the 
ground truth was annotated in the original studies. If there is an unknown but significant 
difference between the ground truth and the true intrinsic clustering structure, evalua-
tion based on the ground truth is of little benefit. Although the ground truth of simu-
lated datasets is accurate, analyses based on simulated datasets are always limited, due 
to the differences between real and simulated datasets. On the other hand, the silhouette 
coefficient based on SC3 clustering results, can be used to evaluate imputation methods 
without ground truth, thus eliminating the errors caused by inexact ground truth. How-
ever, evaluation that relies on no prior knowledge would be unreliable. As a result, how 
to evaluate the effect of imputation on clustering analysis remains to be improved.

During the evaluation, much attention was paid to marker gene analysis, because of its 
biological significance. Imputation methods are expected to at least recover marker gene 
expression values. However, our results showed that, different imputation methods had 
varied performance in marker gene expression and may introduce false-positive signals.

For example, DCA, DrImpute, MAGIC, scVI, and ZINBWaVE introduced a large 
amount of noise on ILC (Fig. 6b). In addition, on HCC, CRC, and NSCLC, false-posi-
tive marker genes were also introduced by these methods, as well as by NE and SAUCIE 
(Additional file 10: Figure S10). However, more false-positive signals were observed on 
the Smart-Seq2 datasets (HCC, CRC and NSCLC) than the 10x Chromium dataset (DC_
human). Therefore, the benchmarking datasets were further evaluated for marker gene 
expression.

Five imputation methods were selected according to their performance (Fig. 10), and 
were evaluated for analysis (Additional file 11, 12, 13: Figures S11, S12 and S13). SAVER 
showed the best performance across different protocols. scImpute also performed well. 
DrImpute and NE performed better on UMI-count datasets than the Smart-Seq2 data-
set. Therefore, the induction of false-positive marker signals may be involved in proto-
cols, imputation methods and datasets.

Besides, based on marker gene analysis, it appeared that imputation may assist the dis-
covery of potentially novel cell subsets. DrImpute and scImpute have been found to have 
advantages to identify more sub-clusters (Fig. 9), which may facilitate the discovery of 
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novel subsets. However, they should be used with caution, as the derived subsets have 
yet to be further validated. It is important to consider whether the clusters are induced 
by varying sequencing quality or other factors such as batch effect. If these factors have 
been accounted for, it is ideal to further identify truly reliable marker genes for these 
new subpopulations. In terms of marker genes, when a cell subtype is divided to subtler 
sub-divisions, specific marker genes in these sub-divisions will become more difficult to 
identify. Therefore, datasets with highly homogeneous structures, or those with many 
subtle sub-populations, would be difficult to impute for most methods, suggesting that 
imputation challenges remain.

We also evaluated the impact of imputation on gene-gene correlation. Based on some 
significantly correlated gene pairs from bulk RNA-seq datasets [24], we compared their 
correlation before and after imputation. We found that some imputation algorithms, 
such as MAGIC, scVI and scScope, were indeed able to improve the correlation. How-
ever, we also discovered that these methods introduced a significant number of false 
positive signals, which accords with the previous observation [20].

There are some potential improvements for imputation methods. For example, to pro-
mote biological discoveries, imputation methods should focus more on the improve-
ment of data in downstream analyses, which is closely related to the method design. 
Therefore, imputation methods could incorporate the characteristics of scRNA-seq data, 
such as interactions among genes and connections between cells, to improve their effec-
tiveness. Moreover, with the development of high-throughput sequencing technology, 
the size of scRNA-seq data will grow rapidly. However, some imputation methods cost 
a lot of time on some datasets (Additional file 14: Figure S14). Therefore, the scalability 
and efficiency of imputation methods should be improved, to adapt to future develop-
ments and trends. Finally, with the development of single-cell multi-omics methods [25, 
26], integrating data from multiple levels will improve imputation performance and the 
downstream applications.

There are some guidelines for using imputation methods. It is suggestive to try and 
compare several well-performing imputation methods (such as SAVER and NE), then 
choose the best-performing one for subsequent tasks. Furthermore, it is essential to 
understand the purpose of the analysis. For instance, when analyzing the gene-gene 
correlation, high correlation after imputed by some methods, like MAGIC, should be 
treated with caution, unless it can be supported by other techniques such as bulk RNA-
seq. Additionally, since imputation is dataset-specific, it is crucial to analyze the expres-
sion patterns of known marker genes after imputation to determine their validity within 
the dataset.

Conclusions
In this study, we conducted a systematic evaluation of 11 imputation methods for 
scRNA-seq data. The results revealed that the performance of different methods var-
ied across different datasets, suggesting that imputation may have dataset specificity. 
In particular, based on the experiments evaluating downstream analysis, real datasets 
were barely improved by most imputation methods. In contrast, simulated datasets were 
always improved. Furthermore, methods without statistical models had more advan-
tages on simulated datasets.
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In general, based on their performance in cell clustering and marker gene analysis, 
two imputation methods, SAVER and NE, are recommended for downstream analyses. 
In additional, we recommend DrImpute and scImpute for discovering novel subtle cell 
types, due to their potential in identifying sub-clusters of single cells.

Methods
Datasets and preprocessing

All of the tested datasets [27–35] are shown in Table  1. They vary in size from a few 
hundred to tens of thousands, with varying sparsity rates (proportion of zero entries) 
and different numbers of inherent cell subpopulations, thus allowing a comprehensive 
evaluation of the imputation methods. In addition, all of the real datasets comprise 
certain types of immune cell subsets, such as T cells, B cells, natural killer (NK) cells, 
monocytes, dendritic cells (DCs) and innate lymphoid cells (ILCs). For example, dataset 
PBMC is mainly composed 4 distinct cell types (T cells, B cells, NK cells, and mono-
cytes), while dataset CRC contains 20 highly homogenous cell subsets (12 CD4+ T cell 
subsets and 8 CD8+ T cell subsets), which poses different challenges for imputation.

To further evaluate the effectiveness and robustness of the different methods, four 
simulated datasets with varying proportions of dropouts were synthesized using Splat-
ter [36]. Briefly, a baseline dataset without dropouts was first generated using the default 
parameters in Splatter. This dataset contains 2000 cells, 600 genes, and 5 clusters. Four 
datasets with different sparsity rates, ranging from 30 to 90%, were then derived from 
this baseline dataset.

Quality control of the real datasets was performed before imputation. First, bulk RNA 
samples within the datasets were removed. Low-quality single cells were then filtered 
out if the number of expressed genes or the library size exceeded the upper threshold or 
fell below the lower threshold. The upper threshold was defined as the 75th percentile 
of all cells plus three times the interquartile range (IQR), while the lower threshold was 
defined as the 25th percentile minus three times the IQR. Genes that were expressed in 
no more than two cells were removed.

In dataset BCC, which contains more than 50,000 cells, only the top 1000 genes with 
the highest expressional variance were retained for imputation, to speed up the calcula-
tion. DrImpute and scImpute were not applied to this dataset, as the number of cells 
exceeds the limit of DrImpute, and the run time of scImpute exceeds our time limit (5 
days).

Numerical recovery of gene expression values

To quantify the numerical recovery of the scRNA-seq data, we measured the imputation 
error for each imputation method on datasets with raw count data.

Specifically, for simulated datasets, the baseline dataset, which has true expression val-
ues that are missing in the four simulated datasets, was treated as the ground truth. Fol-
lowing a similar strategy in scScope [9], two lists, l and l′ , were constructed, in which 
elements respectively corresponded to the ground truth and the imputed values for all 
of the dropout entries. The mean imputation error was defined as the mean distance 
between l and l′ , and the median imputation error was defined as the median distance 
between l and l′.
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For real datasets, we followed the downsampling strategy used in scVI [11]. We simu-
lated the dropout process by corrupting the real datasets, randomly selecting 10% of the 
non-zero entries and setting them to zero. We then imputed the corrupted datasets and 
compared the recovered data with the original data. The imputation error was calculated 
using the same method as that used for the simulated datasets. We repeated the dropout 
process ten times for some datasets, and found that the randomness of the dropout pro-
cess had little effect on the performance of most imputation methods.

Clustering analysis and visualization

Two clustering algorithms, PhenoGraph [37] and SC3 [38], were used for cluster-
ing analysis. Default parameters in SC3 were used, except that ‘gene_filter’ was set to 
‘FALSE’ and ‘ks’ was set to the real number of clusters. All of the default parameters 
in PhenoGraph were used. In addition, to visualize the intrinsic structure of the high-
dimensional data, the non-linear dimension reduction method, t-distributed stochastic 
neighbor embedding (t-SNE) [39], was used, with the parameter ‘perplexity’ set to 50. 
Before clustering and visualization, all expression values were scaled to log2(value + 1) , 
except when using SUACIE, as it would result in some negative values. All samples were 
then reduced to 50 dimensions using principal component analysis (PCA).

To compare the consistency between the clustering results and the ground truth or the 
original label in the corresponding study, we used adjusted rand index (ARI), which is 
defined as

where nij denotes the number of shared cells between cluster i in ground truth and 
cluster j in clustering results, n denotes the number of all the cells, ai = j nij and 
bj =

∑

i nij . We visualized the consistency by projecting the original data and imputed 
data into two dimensions, with different colors of points representing different labels of 
ground truth.

We used silhouette coefficient to measure coherency, based on the ground truth or 
clusters generated using SC3. The silhouette score of a sample i is defined as

where a(i) denotes the mean intra-cluster distance of sample i and b(i) is the mean near-
est-cluster distance of sample i. The silhouette score of a clustering is the mean silhou-
ette score of all of the samples.

For real datasets, clusters annotated in the corresponding study were used as the 
ground truth. For simulated datasets, the original clusters in the baseline dataset were 
used as the ground truth.
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Marker gene analysis

To determine whether imputation can improve marker gene analysis, we used marker 
genes to discriminate cell clusters for data before and after imputation, and evaluated 
whether the clusters are well separated. Marker genes of each cell type and subset were 
extracted from the published literature.

First, the mean expression value of marker genes was used to measure how much a 
cell belongs to a cell type. For a particular cell type, if the mean value of the correspond-
ing marker gene expression in a cell exceeded a predefined threshold, the cell would be 
labeled with that cell type. A cell could have no label, one label or multiple labels. The 
predefined threshold was optimized to maximize the proportion of one-label cells, while 
ensuring that more than 90% of cells had labels. The threshold varied among different 
datasets and imputation methods, due to their heterogeneity.

Based on the cell labels, a new dataset was then constructed from the original dataset. 
The constructed dataset consisted of the two-dimensional projection of cells with one or 
more labels. Multi-labeled cells were duplicated multiple times. The silhouette score was 
calculated for the constructed datasets, to evaluate whether they could be well separated 
by the labels.

Settings of imputation methods

The type of input data and the parameter settings of all of the imputation methods are 
shown in Table 2.

Specially, the NE algorithm, a network enhancement method [14], was adapted to 
impute scRNA-seq data for the first time in this study. Firstly, we normalized the input 
data by

where Cij is the expression value of gene i in cell j. Next, we constructed a cell-to-
cell similarity matrix by calculating the Pearson correlation between cells. Network 
enhancement was then applied to denoise the similarity matrix and enhance the cell-to-
cell correlations. We normalized the denoised similarity matrix to a weighting matrix by 
dividing all of the similarity values by the maximum value of each cell, and set the self-
weight of each cell to 1.5 times the maximum weight to its neighbors. To share infor-
mation from similar cells, recovered data were obtained by multiplying the weighting 
matrix by the original data matrix, as in MAGIC [13].

For SIMLR [15], we first used the method to directly learn a cell-to-cell similarity 
matrix from the input data. The similarity matrix was then normalized to a weighting 
matrix, in which the sum of each row equaled one. We then multiplied the weighting 
matrix by the input data matrix to obtain the imputed data.

When using SAUCIE [10], the input data were first reduced to 100 dimensions by PCA 
before imputation. The output data were then inversely converted to the original dimen-
sions to give the imputation results.

log2(
105 ∗ Cij
∑

i Cij
+ 1)
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Abbreviations
scRNA-seq  Single-cell RNA sequencing
ILC  Innate lymphoid cell
HCC  Hepatocellular carcinoma
CRC   Colorectal cancer
NSCLC  Non-small cell lung cancer
PBMC  Peripheral blood mononuclear cell
BCC  Basal cell carcinoma
ITC  Innate T cell
DC  Dendritic cell
BRCA   Breast cancer
SIMLR  Single-cell interpretation via multi-kernel learning
ZINBWaVE  Zero-inflated negative binomial-based wanted variation extraction
SAVER  Single-cell analysis via expression recovery
MAGIC  Markov affinity-based graph imputation of cells
NE  Network enhancement
scVI  Single-cell variational inference
DCA  Deep count autoencoder network
SAUCIE  Sparse autoencoder for unsupervised clustering, imputation and embedding
TPM  Transcripts per kilobase million
SC3  Single-cell consensus clustering
ARI  Adjusted rand index
NK  Natural killer
UMI  Unique molecular identifier
IQR  Interquartile range
t-SNE  T-distributed stochastic neighbor embedding
PCA  Principal component analysis
CD3D  Cluster of differentiation antigen 3d molecule
CD3E  CD3e molecule
CD19  CD19 molecule
CD79A  CD79a molecule
CD56  CD56 molecule, also known as neural cell adhesion molecule 1/NCAM1
GZMH  Granzyme H
CD14  CD14 molecule
ITGAM  Integrin subunit alpha M
CD16  CD16 molecule, also known as Fc fragment of IgG receptor IIIa/FCGR3A
ITGAX  Integrin subunit alpha X
CD1C  CD1c molecule
CD79B  CD79b molecule
CD8A  CD8a molecule
CD8B  CD8b molecule
CD4  CD4 molecule
SLIT2  Slit guidance ligand 2
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Additional file 1: Fig. S1: Visualization of different methods on ILC. On dataset ILC, data before imputation (’raw’) 
and after imputed by different methods were visualized by t-SNE, with different colors representing different cell 
types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based on 
the ground truth and the ARI scores, respectively.

Additional file 2: Fig. S2 Visualization of different methods on PBMC. On dataset PBMC, data before imputation 
(’raw’) and after imputed by different methods were visualized by t-SNE, with different colors representing different 
cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based 
on the ground truth and the ARI scores, respectively.

Additional file 3: Fig. S3Visualization of different methods on Melanoma.2. On dataset Melanoma.2, data before 
imputation (’raw’) and after imputed by different methods were visualized by t-SNE, with different colors represent-
ing different cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette 
scores based on the ground truth and the ARI scores, respectively.

Additional file 4: Fig. S4 Visualization of different methods on HCC. On dataset HCC, data before imputation (’raw’) 
and after imputed by different methods were visualized by t-SNE, with different colors representing different cell 
types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based on 
the ground truth and the ARI scores, respectively.

Additional file 5: Fig. S5 Visualization of different methods on NSCLC. On dataset NSCLC, data before imputation 
(’raw’) and after imputed by different methods were visualized by t-SNE, with different colors representing different 
cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette scores based 
on the ground truth and the ARI scores, respectively.

https://doi.org/10.1186/s12859-023-05417-7
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Additional file 6: Fig. S6 Visualization of different methods on DC_mouse. On dataset DC_mouse, data before 
imputation (’raw’) and after imputed by different methods were visualized by t-SNE, with different colors represent-
ing different cell types. For each subgraph, values in the lower left and lower right corners represent the silhouette 
scores based on the ground truth and the ARI scores, respectively.

Additional file 7: Fig. S7 Visualization of raw count, SAVER, NE and AutoImpute. Data before imputation (’raw’) and 
after imputed by SAVER, NE, and AutoImpute were visualized by t-SNE, with different colors representing different 
cell types. For these data, log transformation was not performed before visualization, as AutoImpute imputed data 
with many negative values.

Additional file 8: Fig. S8 The performance of five imputation methods on benchmarking datasets.Five selected 
imputation methods (scImpute, DrImpute, SAVER, NE, and DCA) were tested on datasets from three different pro-
tocols (Quartz-Seq2, Chromium, and Smart-Seq2). (a) For the numerical recovery task, two indices, the median error 
and mean error, are shown. (b) For clustering analysis, three indices, ARI, silhouette based on ground truth ’sil(g)’, 
and silhouette based on SC3 clusters ’sil(s)’ are shown. The five selected imputation methods did not show different 
tendencies with respect to these five indices across these three protocols. Human samples including PBMCs and 
HEK293T cells, were used for the analyses.

Additional file 9: Fig. S9 Cluster visualization of five imputation methods on benchmarking datasets.Clusters on 
three different protocols (Quartz-Seq2, Chromium, and Smart-Seq2) were visualized by t-SNE. Colored cell labels 
were directly derived from the original study.

Additional file 10: Fig. S10 Marker gene expression on HCC, CRC, NSCLC and DC_human. Expression values of 
marker genes of different datasets before and after imputation are shown: CD3D and CD3E for HCC, CRC and NSCLC; 
ITGAX and CD1C for DC_human. Expression values of marker genes in different datasets before and after imputation 
are shown. We selected the following marker genes for analysis: CD3D and CD3E for T cells; CD79A and CD79B for B 
cells; NCAM1 for NK cells; and ITGAX and CD1C for DCs.The datasets HCC, CRC, and NSCLC represent T cells, which 
should highly express CD3D and CD3E, but not CD79A, CD79B, or NCAM1. The dataset DC_human represents DCs, 
which should highly express ITGAX and CD1C, but not CD3E, CD79A, or CD79B.

Additional file 11: Fig. S11 Marker gene expression of different cell types from the Quartz-Seq2 protocol. Expres-
sion values of marker genes of different cell types are shown: CD3D and CD4 for CD4$^+$ T cells; CD3D, CD8A 
and CD8B for CD8$^+$ T cells; CD19 and CD79A for B cells; NCAM1 for NK cells;CD14 for CD14$^+$ monocytes; 
FCGR3A for FCGR3A$^+$ monocytes; SLIT2 for HEK293T cells.

Additional file 12: Fig. S12 Marker gene expression of different cell types from the Chromium protocol.Expression 
values of marker genes of different cell types are shown:CD3D and CD4 for CD4$^+$ T cells; CD3D, CD8A and CD8B 
for CD8$^+$ T cells; CD19 and CD79A for B cells; NCAM1 for NK cells; CD14 for CD14$^+$ monocytes; FCGR3A for 
FCGR3A$^+$ monocytes; SLIT2 for HEK293T cells.

Additional file 13: Fig. S13 Marker gene expression of different cell types from the Smart-Seq2 protocol. Expression 
values of marker genes of different cell types are shown: CD3D and CD4 for CD4$^+$ T cells; CD3D, CD8A and CD8B 
for CD8$^+$ T cells; CD19 and CD79A for B cells; NCAM1 for NK cells;CD14 for CD14$^+$ monocytes; FCGR3A for 
FCGR3A$^+$ monocytes; SLIT2 for HEK293T cells.

Additional file 14: Fig. S14 Run time of different imputation methods. The run times (in seconds) of different 
methods are shown for all datasets. Green and yellow grids correspond to faster and slower speeds, respectively. The 
methods were ranked by the ’overall’ score, which is the average score of all of the datasets.
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