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Abstract 

Background: Integrating multi‑omics data is fast becoming a powerful approach 
for predicting disease progression and treatment outcomes. In light of that, we intro‑
duce a modified version of the NetRank algorithm, a network‑based algorithm for bio‑
marker discovery that incorporates the protein associations, co‑expressions, and func‑
tions with its phenotypic association to differentiate different types of cancer. NetRank 
is introduced here as a robust feature selection method for biomarker selection in can‑
cer prediction. We assess the robustness and suitability of the RNA gene expression 
data through scanning genomic data for 19 cancer types with more than 3000 patients 
from The Cancer Genome Atlas (TCGA).

Results: The results of evaluating different cancer type profiles from the TCGA data 
demonstrate the strength of our approach to identifying interpretable biomarker sig‑
natures for cancer outcome prediction. NetRank’s biomarkers segregate most cancer 
types with an area under the curve (AUC) above 90% using compact signatures.

Conclusion: In this paper we provide a fast and efficient implementation of NetRank, 
with a case study from The Cancer Genome Atlas, to assess the performance. We 
incorporated complete functionality for pre and post‑processing for RNA‑seq gene 
expression data with functions for building protein‑protein interaction networks. The 
source code of NetRank is freely available (at github.com/Alfatlawi/Omics‑NetRank) 
with an installable R library. We also deliver a comprehensive practical user manual 
with examples and data attached to this paper.
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Background
In the field of oncology, gene expression serves as a potent indicator of disease pro-
gression and its outcome prediction. Over decades, microarrays and RNA sequencing 
have been used extensively to investigate profiles in the form of biomarker signa-
tures by quantifying the expression level of genes in the RNA data in cancer patients 
compared to the average in healthy individuals. To this end, several classical statis-
tical methods have been introduced, such as DESeq2 [1], edgeR [2], and limma [3]. 
We urge that a trustworthy biomarker signatures should be interpretable, compact, 
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robust to data changes, and neither overfitted nor biased toward the original data. 
However, due to the complexity of diseases and the high dimensionality of the data 
analyzed, difficulties arise when attempting to deliver a causal and interpretable 
model for predicting disease outcomes and progression. Perhaps the main limitation 
of the classical methods is that they evaluate biomarkers independently, regardless of 
their functional and statistical dependencies. This necessitates using complementary 
techniques to address and handle these difficulties, such as network analysis.

Network science has provided a useful account of exploring other aspects in assess-
ing the biomarker significance besides the statistical correlation with a phenotype, 
such as molecular and functional interactions. Previously, we developed a random 
surfer model to integrate protein interactions with expression and phenotypic infor-
mation to rank biomarkers according to their effectiveness in predicting cancer pro-
gression [4, 5]. Inspired by the concept of ten cancer hallmarks [6], our objective was 
to explore the possibility of defining a universal cancer biomarker signature by focus-
ing on the common features between cancer types and disregarding the differences 
[4]. This effort resulted in finding a biomarker signature of 50 genes that were inter-
pretable and robust in predicting cancer outcomes in general, regardless of the type, 
with an area under the curve between 80% and 90% for different datasets [4]. How-
ever, this signature cannot be extrapolated to distinguish between different cancer 
phenotypes or profiles, as it focuses only on the common mechanisms and functions.

Our work aims to extend the implementation and application of NetRank to dif-
ferentiate different cancer phenotype and deliver an open source R implementation 
for the algorithm with complete functionality, including pre-and post-processing of 
RNA-seq gene expression data, see Fig. 1. We evaluate our algorithm and implemen-
tation by differentiating between 19 cancer types in 3388 patients (data obtained from 
the Cancer Genome Atlas (TCGA) https:// portal. gdc. cancer. gov/).

Fig. 1 A flowchart to explain the primary processes in the implemented pipeline

https://portal.gdc.cancer.gov/
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Implementation
NetRank

NetRank is a random surfer model for biomarker ranking inspired by Google’s Pag-
eRank algorithm. NetRank integrates protein connectivity (e.g., co-expression, signal-
ing pathways, biological functions, co-localization, fusion, co-occurrence) with their 
statistical phenotypic correlation, see Eq.  (1). It favors proteins strongly associated 
with the phenotype and connected to other significant proteins. The algorithm is 
implemented with the R version 3.6.3. The provided implementation allows parallel 
processing with any number of cores by utilizing shared memory using the packages 
“bigstatsr”, “foreach” and “doparallel”, see Fig. 2.

r: ranking score of the node (gene). n: number of iterations. j: index of the current 
node. d: damping factor (ranging between 0 and 1); defines the importance (weights) 
of connectivity and statistical association. s: Pearson correlation coefficient of the gene. 
degree: the sum of the output connectivities for the connected nodes. N: number of all 
nodes (genes). m: connectivity of the connected nodes.

Interaction networks

We implemented and evaluated NetRank to work with two types of networks: biologi-
cal precomputed networks (protein-protein interaction) and computationally computed 
networks (co-expression of genes). For the first one, we used the database STRINGdb, 

(1)rnj = (1− d)sj + d

N

i=1

mijr
n−1
i

degreei
, 1 ≤ j ≤ N

Fig. 2 The parallel processing mechanism for the implemented pipeline
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which covers predicted and known biological interactions between proteins through the 
R package “STRING v10” [7]. For the latter, we implemented a workflow to construct a 
co-expression network using the weighted gene correlation network analysis (WGCNA) 
method [8] through the R package “WGCNA” version 1.71 [9].

Dataset

We obtained RNA gene expression data on 05/08/2022 from the Cancer Genome Atlas 
(TCGA), which initially consisted of 20,531 genes and 11,069 samples. We kept only 
8603 samples after removing those who were duplicated or had missing values in the 
expression levels. Of these, we used only 3388 samples that were manually reviewed and 
approved in TCGA clinical follow-up. These 3388 were covering 19 cancer types, see 
Fig. 3. We normalized the expression data using the MinMaxScaler function of scikit-
learn package version 1.0.2 [10]. We randomly split the data for each cancer type into a 
development set (70%) and a test set (30%). Using the development set, the interaction 
networks are constructed as described previously, and the Pearson correlation with the 
phenotypes is determined by the correlation function of the WGCNA package version 
1.71. Then to the test set was utilized for evaluation using the principal component anal-
ysis (PCA) and the support vector machine (SVM) on each cancer type.

Results and discussions
A case study of 19 cancers with 3388 individuals was conducted to evaluate the perfor-
mance of the NetRank algorithm as a feature selection and ranking method for RNA 
expression data. In our primary analysis, we visualized breast cancer results because 
it contains the highest number of samples. In this, 862 (breast cancer samples) were 
labeled as cases and 2526 (other cancer types) as controls. Out of these, 618 (cases) and 

Fig. 3 Overview of the final dataset with 3388 samples covering 19 cancer types. Breast cancer (BRCA, in red 
color) has more data with 862 samples, while lower grade glioma (LGG) has the smallest size with 27 samples. 
For the complete list of abbreviations, see Table 3
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1753 (controls) were used in the development set for the feature selection and ranking, 
while 244 (cases) and 773 (controls) were kept unseen for evaluation purposes (test set). 
This corresponds to the usual data division of 70% and 30% between the development 
and test sets to avoid over-fitting.

Furthermore, the analysis was replicated to the other 18 cancer types with the same 
setup and configuration, and the final results are reported accordingly in this section.

The results of the STRINGdb and the co‑expression networks are correlated

We performed NetRank on two kinds of networks: the one obtained from StringDB and 
the co-expression network that is constructed using WGCNA (see the implementation 
section). Wecompared the results. STRINGdb was fetched directly, while WGCNA 
was locally computed using our curated dataset. For each network, we ranked proteins 
according to their suitability for breast cancer prediction. What stands out is the cor-
relation in ranking proteins according to their suitability for breast cancer prediction 
between the STRINGdb and the WGCNA network (Pearson’s R-value = 0.68), see Fig. 4. 
Accordingly, we can infer that the results are comparable when using different types of 
networks.

Fig. 4 The correlation of the gene rankings generated by NetRank when applied to a protein‑protein 
interaction network and a gene co‑expression network. According to the figure, the rankings are significantly 
correlated, with a Pearson R‑value of 0.676
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Proteins with high NetRank scores serve as informative biomarkers

NetRank scores the proteins’ potential in cancer type prediction, according to their 
connectivities and associations. For breast cancer data, using the development set, we 
picked the top 100 proteins with a P-value of association below 0.05 and have the high-
est NetRank score in separating breast cancer from the other cancer types. Then, we 
evaluated their performance using the test set by performing principal component anal-
ysis (PCA), a linear and simple dimensionality reduction method, and support vector 
machine (SVM), a nonlinear machine learning approach.

What is striking is the significant segregation of individuals with breast cancer from 
the from the ones with other cancer types in the test set when using PCA, with an area 
under the ROC curve (AUC) of 93% for the first principal component (see Fig. 5). Using 
the same features, SVM classifies the data nearly perfectly with accuracy and an F1 score 
of 98% (see Fig. 1).

The functional enrichment analysis on the breast cancer signatures shows that selected 
biomarkers harbor biological relevance through enhancing the protein-protein enrich-
ment significance with 88 enriched terms in 9 relevant categories, compared with only 
nine terms if we choose the proteins according to their statistical associations only. The 
list of genes is provided in the Appendix.

Other cancer types

In the same manner, we generated a feature set for each cancer type independently and 
evaluated them with machine learning using SVM. As is shown in Table 1, the method 
is nearly perfect for all cancer types in the Cancer Genome Atlas (TCGA) with an AUC 
and accuracy above 90% except for Cholangiocarcinoma (CHOL), Bladder Urothelial 
Carcinoma (BLCA) and Uterine Carcinosarcoma (UCS), which have a limited AUC of 

Fig. 5 a PCA plot of the TCGA samples generated by using the top hundred proteins selected based on their 
NetRank scores. The red dots are breast cancer samples, while the blue refers to the other 18 cancer types 
in the dataset. The two different clusters can be visually separated very easily. b The ROC curve of the first 
principle component. The high diagnostic ability of these proteins is confirmed by the AUC value of 0.93
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82%, 79%, and 71%, respectively. All signatures are provided in the Appendix. Overall, 
our implementation introduces a powerful feature selection method with demonstrable 
results on cancer sequencing data for around 4000 patient.

Table 1 The performance of the SVMs that were trained with the top hundred genes as ranked by 
the Netrank on the development set and tested with the test set

The numbers of positive and negative samples in the training and testing sets are reported

Cancer type Precision Recall F1_score Accuracy AUC No. samples

Development set Test set

Case Control Case Control

ACC 0.99 0.95 0.97 0.99 0.95 57 2314 21 996

BLCA 0.97 0.79 0.85 0.98 0.79 95 2276 41 976

BRCA 0.97 0.97 0.97 0.98 0.97 618 1753 244 773

CESC 0.94 0.95 0.94 0.99 0.97 91 2280 33 984

CHOL 0.99 0.81 0.88 0.99 0.82 25 2346 11 1006

KICH 0.99 0.92 0.96 0.99 0.93 44 2327 21 996

KIRP 0.99 0.98 0.99 0.99 0.99 88 2283 43 974

LGG 1 0.95 0.97 0.99 0.95 16 2355 11 1006

LIHC 0.99 0.95 0.97 0.99 0.96 132 2239 67 950

LUAD 0.99 0.95 0.97 0.99 0.95 213 2158 86 931

MESO 0.97 0.89 0.93 0.99 0.9 54 2317 25 992

PAAD 0.92 0.95 0.93 0.99 0.96 120 2251 36 981

PRAD 0.99 0.99 0.99 0.99 0.99 141 2230 82 935

SARC 0.98 0.94 0.96 0.99 0.94 166 2205 71 946

SKCM 0.97 0.97 0.97 0.99 0.98 250 2121 99 918

TGCT 0.98 0.98 0.98 0.99 0.99 95 2276 38 979

THYM 0.99 0.97 0.98 0.99 0.97 83 2288 34 983

UCS 0.99 0.71 0.79 0.98 0.71 38 2333 19 998

UVM 0.97 0.99 0.98 0.99 1 61 2310 19 998

Fig. 6 Principle component analysis on the expression data by using the best ten proteins from each analysis 
(19 cancer types) according to their NetRank scores. The two plots are for the same analysis but use different 
principle components on the x and y‑axis. We visualize the first and second components on the left side, 
while on the right side, the third and fourth components. It is clearly visible that cancers are separated in 
these figures
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Additionally, for visualization purposes, we picked the best ten biomarkers from each 
cancer type and ran the principal component analysis on them (171 unique proteins), 
using all data. As shown in Fig. 6, the selected biomarkers cluster the data and distin-
guish different cancer types very well.

Performance evaluation

We measured the performance of the NetRank R package on the development set of 
breast cancer data, i.e. 618 case and 1753 control samples, using a computer with 15 
cores. As can be seen in Table 2. This shows the effluence and speed of our implementa-
tion using normal computers.

Table 2 Time taken, memory consumption, and CPU usage of the NetRank R package functions 
used on the development set of the breast cancer samples

Function name Description Time (min) Memory (GB) CPU usage

Fetch StringDB Fetch data from STRINGdb 1.41 0.75 100% (1 core)

RunNetRank (StringDB) Apply NetRank algorithm 19.02 0.53 1500% (15 cores)

Preprocessing Preprocess expression data 29.9 0.53 100% (1 core)

BuildNetwork Create the co‑expression 
network

126 0.53 100% (1 core)

Postprocessing Prepare the network for NetRank 6.3 0.05 100% (1 core)

RunNetRank (Co‑expression) Apply NetRank algorithm 8.7 0.08 1500% (15 cores)

Table 3 The abbreviations of cancer types that were used in Figs. 3, 6 and Table 1

Abbreviation Cancer type

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma 
and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

KICH Kidney Chromophobe

KIRP Kidney renal papillary cell carcinoma

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

MESO Mesothelioma

PAAD Pancreatic adenocarcinoma

PRAD Prostate adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

TGCT Testicular Germ Cell Tumors

THYM Thymoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma
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Conclusion
This application note has introduced an extended open-source implementation of the 
NetRank algorithm, a network-based approach for biomarker discovery in cancer pre-
diction. By incorporating protein associations, co-expressions, and functions, along with 
phenotypic associations, NetRank has demonstrated its robustness and suitability for 
identifying interpretable biomarker signatures in various cancer types. Our approach 
is advantageous compared to correlation-based methods. It ensures that proposed bio-
markers share a common function, avoiding unrelated and challenging interpretations.

This manuscript focuses on technical aspects and package usage, providing a case 
study demonstrating the network approach’s ability to identify meaningful outcomes. 
Emphasizing the functional relevance of biomarkers enhances understanding and opens 
avenues for targeted therapies or diagnostics. This paper contributes to the field by pro-
viding fast and efficient implementation of NetRank and comprehensive functionality 
for pre and post-processing RNA-seq gene expression data and building protein-protein 
interaction networks. The availability of the source code on GitHub and the accompany-
ing R library allows for easy accessibility and further exploration by researchers.

Appendix
A file with a sheet for each cancer type containing the protein names that have the high-
est NetRank scores, which were used in the PCA and SVM in this paper.
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