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Abstract 

Background: The identification of tumor T cell antigens (TTCAs) is crucial for provid-
ing insights into their functional mechanisms and utilizing their potential in antican-
cer vaccines development. In this context, TTCAs are highly promising. Meanwhile, 
experimental technologies for discovering and characterizing new TTCAs are expensive 
and time-consuming. Although many machine learning (ML)-based models have been 
proposed for identifying new TTCAs, there is still a need to develop a robust model 
that can achieve higher rates of accuracy and precision.

Results: In this study, we propose a new stacking ensemble learning-based frame-
work, termed StackTTCA, for accurate and large-scale identification of TTCAs. Firstly, 
we constructed 156 different baseline models by using 12 different feature encod-
ing schemes and 13 popular ML algorithms. Secondly, these baseline models were 
trained and employed to create a new probabilistic feature vector. Finally, the optimal 
probabilistic feature vector was determined based the feature selection strategy 
and then used for the construction of our stacked model. Comparative benchmark-
ing experiments indicated that StackTTCA clearly outperformed several ML classifiers 
and the existing methods in terms of the independent test, with an accuracy of 0.932 
and Matthew’s correlation coefficient of 0.866.

Conclusions: In summary, the proposed stacking ensemble learning-based frame-
work of StackTTCA could help to precisely and rapidly identify true TTCAs for follow-
up experimental verification. In addition, we developed an online web server (http:// 
2pmlab. camt. cmu. ac. th/ Stack TTCA) to maximize user convenience for high-through-
put screening of novel TTCAs.
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Introduction
Tumor cells generate molecules called tumor antigens (TAs). TAs are classified into two 
types: tumor associated antigens (TAAs) and tumor specific antigens (TSAs). TAAs are 
self-proteins which are highly expressed in tumor cells in comparison to normal cells, 
while TSAs are found solely in tumor cells [1, 2]. The human body is capable of recogniz-
ing TAs and initiating the innate and adaptive immune responses of the body to elimi-
nate cancerous growths. Innate immune cells, (i.e., neutrophils, macrophages, NK cells, 
dendritic cells, and others) can quickly respond and to offer defense mechanisms that 
are nonspecific. The adaptive immune system, comprising T-cells and B-cells, is a more 
intricate and slower process to target antigens. However, it has the potential to create a 
robust and targeted immune response to combat tumors or cancers [3]. Dendritic cells 
(DCs) that present antigens break down TAs and exhibit small peptides through major 
histocompatibility complex class I (MHC-I) to activate CD8+ T-cells that are cytotoxic, 
or through MHC class II to stimulate CD4+ T-cells that are helper T-cells. However, 
CD8+ T-cells are crucial for eradicating tumors and performing surveillance of the 
immune system to target cancer cells [4, 5]. Hence, T-cell epitopes linked with TAs are 
one of the most important targets for developing cancer immunotherapy, which can help 
eliminate diseases and prevent their recurrence. In recent times, the identification of 
peptides originating from TAs as epitopes has been used as immunotherapeutic agents 
to combat various types of tumors and cancers. [3, 4, 6, 7]. For a T-cell antigen to be an 
ideal target in cancer immunotherapy, it needs to fulfil several criteria. These include 
exhibiting specificity to the tumor, which means that it should be highly expressed in 
cancerous tissues but should not trigger autoimmunity or immune tolerance. Addition-
ally, the antigen should be prevalent and abundant in tumor cells, especially if it plays a 
crucial role in oncogenesis and can prevent the tumor from evading the immune system. 
Furthermore, the antigen should be immunogenic, meaning that it should be capable 
of generating an immune response, which can be assessed by cytokine release, tumor 
cytolysis and most importantly, T-cell recognition. Finally, epitopes with favorable prop-
erties, such as optimal length, hydrophobicity, and aromaticity, could be highly effective 
[1, 8–10]. In order to create successful experiments for personalized and precise immu-
notherapy, it is crucial to have a comprehensive understanding of the immunogenic 
epitopes found on tumor antigens.

The existence of large peptide databases, such as immune epitope database (IEDB) 
[11], TANTIGEN [12], and TANTIGEN 2.0 [13], is expected to aid in the identifi-
cation of tumor T-cell antigens (TTCAs) that bind to MHC-I molecules. By using 
sequence information alone, computational methods have the potential to rapidly 
and precisely identify TTCAs, which can be a more time-efficient and cost-effec-
tive alternative to experimental approaches. This is especially important given the 
laborious and expensive nature of test-based discovery, making it imperative to 
develop efficient computational methods for TTCAs identification [14–16]. To date, 
there are a variety of computational approaches that have been created for TTCA 
identification based on sequence information, including TTAgP1.0 [17], iTTCA-
Hybrid [18], TAP1.0 [19], iTTCA-RF [20], iTTCA-MFF [21], and PSRTTCA [22]. 
Table 1 summarizes the existing computational approaches according to the applied 
benchmark datasets, machine learning (ML) methods, and web server availability. 
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According to the applied ML methods, the six existing computational approaches 
can be categorized into two groups, i.e., single ML-based (TTAgP1.0 [17], iTTCA-
Hybrid [18], TAP1.0 [19], iTTCA-RF [20], and iTTCA-MFF [21]) and ensem-
ble learning-based (PSRTTCA [22]) methods. Among the existing computational 
approaches, PSRTTCA [22] was recently developed constructed on RF-based meta-
approach. In PSRTTCA, a pool of propensities for amino acids and dipeptides was 
estimated by using the scoring card method (SCM) and then treated as the input 
feature vector for the construction of a meta-predictor. More details for the exist-
ing computational approaches are summarized in two previous studies [21, 22]. 
Although the existing computational approaches attained reasonably good perfor-
mances, their performance is still not yet satisfactory in terms of the independent 
test dataset. For example, PSRTTCA, which performed best among various TTCA 
predictors, could provide an accuracy (ACC) of 0.827 and Matthew’s correlation 
coefficient (MCC) of 0.654.

The objective of this study is to present a stacking ensemble learning-based 
framework, called as StackTTCA, for the precise and comprehensive detection of 
TTCAs. The procedure of the StackTTCA development is described in Fig. 1. First, 
we employed 12 different feature encoding schemes from various aspects to extract 
the information of TTCAs, including composition information, reduced amino acid 
sequences information, pseudo amino acid composition information, and physico-
chemical properties. Second, we trained 13 individual ML methods by using each fea-
ture encoding. As a result, 156 baseline models were obtained and used to create a 
156-D probabilistic feature vector. Finally, the feature selection strategy was utilized 
to optimize this probabilistic feature vector and then used as the optimal feature vec-
tor for the construction of the stacked model. After conducting extensive comparative 
analysis through an independent test, it was found that StackTTCA demonstrated 
superior performance in identifying TTCAs when compared to several ML classifiers 
and existing methods. In order to better understand the remarkable performance of 
StackTTCA, we have utilized the Shapley Additive exPlanation algorithm to enhance 
model interpretation and identify the most significant features of StackTTCA. Finally, 
an online web server (http:// 2pmlab. camt. cmu. ac. th/ Stack TTCA) was created to 
facilitate high-throughput screening of novel TTCAs, maximizing user convenience.

Table 1 Summary of existing computational methods for the prediction of QSPs

a ET Extremely randomized trees, QDA Quadratic discriminant analysis, RF Random forest, SVM Support vector machine
b The JFB2019, PC2020, and JHB2021 datasets (TTCAs, non-TTCAs) consist of (553, 369), (470, 318), and (592, 592), 
respectively

Methods/tools Year Methoda Type Benchmark 
 datasetb

Reliable 
negative 
dataset

Web server 
availability

TTAgP1.0 [17] 2019 RF Single JFB2019 Yes No

iTTCA-Hybrid [18] 2018 RF Single PC2020 No Yes

TAP1.0 [19] 2021 QDA Single JHB2021 Yes Yes

iTTCA-RF [20] 2021 RF Single PC2020 No Yes

iTTCA-MFF [21] 2022 SVM Single PC2020 No No

PSRTTCA [22] 2023 RF Ensemble JHB2021 Yes Yes

StackTTCA This study ET Ensemble JHB2021 Yes Yes

http://2pmlab.camt.cmu.ac.th/StackTTCA
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Materials and methods
Overall framework of StackTTCA 

A comprehensive illustration of the steps involved in the development and perfor-
mance evaluation of StackTTCA is provided in Fig.  1. Firstly, robust training and 
independent test datasets were gathered. Subsequently, a collection of baseline mod-
els was established by employing 13 machine learning methods in combination with 
12 feature encoding techniques. The resulting baseline models were then used to gen-
erate a feature vector comprising 156 probabilistic features with a range of 0 to 1. 
The feature vector was further optimized through a feature selection scheme to con-
struct the meta-classifier, i.e., StackTTCA. The efficacy of the StackTTCA was eval-
uated using tenfold cross-validation, independent testing, and case studies. Finally, 
an online web server for StackTTCA was developed to enhance its accessibility and 
usability.

Benchmark dataset

In fact, there are two popular benchmark datasets, which were originally collected by 
Charoenkwan et  al. [18] and Herrera-Bravo et  al. [19]. However, the dataset in [18] 
involved incorrect negative samples [19, 22]. Thus, in this study, we employed the 
remaining benchmark dataset for assessing the performance of our proposed approach. 
This dataset was used for training several existing methods (i.e., iTTCA-Hybrid [18], 
TAP1.0 [19], iTTCA-RF [20], and PSRTTCA [22]). To be specific, the number of unique 
TTCAs and unique non-TTCAs are 592 and 593, which are considered as positive and 
negative samples, respectively. The training dataset from Herrera-Bravo et al. [19] were 
constructed by randomly selecting 474 TTCAs and 474 non-TTCAs, while the remain-
ing TTCAs and non-TTCAs were employed as the independent test dataset.

Fig. 1 The overall workflow of our proposed approach StackTTCA, which includes five major steps: (i) 
datasets collection, (ii) baseline model construction, (iii) meta-classifier development, (iv) performance 
evaluation, and (v) web server deployment
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Stacking ensemble learning‑based framework

Instead of simply selecting an optimal single ML model, this study aims to build a stack-
ing ensemble learning-based framework [14–16, 23, 24] by taking advantage of several ML 
models for the improved prediction performance of TTCAs. Figure 1 illustrates the over-
all framework of StackTTCA. It comprises of three main steps, including baseline model 
construction, probabilistic feature optimization, and meta-classifier development. In brief, 
we first applied the state-of-the-art ML methods and feature encoding schemes to create 
a pool of baseline models. Second, the output of these baseline models are generated and 
optimized using the feature selection scheme. Finally, the optimal feature set is employed to 
develop a meta-classifier.

At the first step, TTCAs and non-TTCAs were encoded based on 12 different feature 
encoding schemes (see Table 2). After that, we trained 13 individual ML methods by using 
each feature encoding scheme. As a result, we obtained 156 baseline models (13 ML × 12 
encoding). In addition, we employed a grid search to determine the optimal parameters of 
ADA, ET, LGBM, LR, MLP, RF, SVMLN, SVMRBF, and XGB classifiers in conjunction with 
the tenfold cross-validation procedure to maximize their performances (see Additional 
file 1: Table S1). All the baseline models were created using the Scikit-learn v0.24.1 package 
[25].

At the second step, we conducted the tenfold cross-validation procedure for each base-
line model to generate a new probabilistic feature for extracting the crucial information of 
TTCAs. After performing this process, we obtained a 156-D probabilistic feature vector 
(APF). The APF can be represented by

(1)APF = PF1,1, PF1,2, PF1,3, . . . , PFi,j, . . . , PF13,12

Table 2 Summary of 12 different feature encodings along with their corresponding description and 
dimension

a AAC  Amino acid composition, AAI Amino acid index database, APAAC  Pseudo amino acid composition, CTD Composition–
transition–distribution, DPC Dipeptide composition, PCP Physicochemical properties, PACC  Pseudo amino acid composition, 
RS Reduced amino acid sequences

Order Descriptorsa Description Dimension References

1 AAC Frequency of 20 amino acids 20 [26]

2 AAI Different biochemical and biophysical properties extracted 
from the AAindex database

531 [27, 28]

3 APAAC Amphiphilic pseudo-amino acid composition 22 [27, 28]

4 CTD Composition, transition and distribution 147 [27, 28]

5 DPC Frequency of 400 dipeptides 400 [27, 28]

6 PCP Different biochemical and biophysical properties extracted 
from the AAindex database

11 [27, 28]

7 PAAC Pseudo amino acid composition 21 [27, 28]

8 RSacid Reduced amino acid sequences according to acidity 32 [29]

9 RScharge Reduced amino acid sequences according to charge 50 [29]

10 RSDHP Reduced amino acid sequences according to DHP 32 [29]

11 RSpolar Reduced amino acid sequences according to polarity 32 [29]

12 RSsecond Reduced amino acid sequences according to secondary 
structure

40 [29]
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where PFi,j is the probabilistic feature (PF) generated from the ith ML method in con-
junction with the jth feature encoding. Although the dimension of the APF is 156, some 
of them are not effective and provide noisy information. Therefore, we conducted the 
feature optimization process based on our developed genetic algorithm (GA), termed 
(GA-SAR) [27, 30–32], for determining m import PFs (m < 156). The m-D probabilistic 
feature vector is referred as BPF. The chromosomes of GA-SAR consist of two parts, 
including binary and parametric genes. Herein, the parameters and their values for the 
GA-SAR contain rbegin = 5, mstop = 20, Pm = 0.05, and Pop = 20 [27, 28, 32]. The procedure 
of the feature importance selection based on the GA-SAR method is described as fol-
lows. First, we randomly constructed a population of Pop individuals and comprehen-
sively evaluated the performance of all Pop individuals using the fitness function and the 
tenfold cross-validation scheme. Second, we used the tournament selection to obtain the 
best Pop for the construction of a mating pool. Third, we performed the self-assessment-
report operation (SAR) between the best Pop and each other individual Pop to obtain 
the new children. In this study, we treated 20 generations as the stop condition. Further 
information regarding this algorithm has been provided in our previous studies [32–35].

In the last step, we used ET method as the meta-classifier (called mET) for the devel-
opment of the stacked model. We trained individually stacking ensemble models by 
using two probabilistic feature vector, including APF and BPF. The binary and paramet-
ric genes of the mET predictor consisted of n = 156 PFs and n_estimators ∈ {20, 50, 100, 
200, 500} (see Additional file 1: Table S1). Here, we selected the best-performing feature 
vector in terms of MCC in order to construct StackTTCA.

Evaluation metrics

In order to show the effectiveness of our proposed approach, its prediction performance 
was assessed by using four standard evaluation metrics, including ACC, MCC, specific-
ity (Sp) and sensitivity (Sn) [36]. These evaluation metrics are computed as follows:

where TN and TP are the number of negative and positive samples predicted to be neg-
ative and positive, respectively. In the meanwhile, FN and FP are the number of posi-
tive and negative samples predicted to be negative and positive, respectively [37–40]. 
Furthermore, we utilized area under the receiver operating characteristics (ROC) curve 
(AUC) to assess the robustness of the model [41, 42].

(2)ACC =
TP+ TN

(TP+ TN+ FP+ FN)

(3)MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(4)Sp =
TN

(TN+ FP)

(5)Sn =
TP

(TP+ FN)
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Results
Optimization of stacked models

In our stacking framework, two new probabilistic feature vectors (i.e., APF and BPF) 
were generated based on a pool of ML classifiers and then used to construct stacked 
models. Here, we assessed and compared the impact of these two vectors using mET 
classifiers in TTCA identification. As mentioned above, the APF was represented by 
the 156-D probabilistic feature vector, while the BPF was obtained by using the GA-
SAR method for the selection of m import PFs. After performing the feature selec-
tion, the optimal number of m was 10. Specifically, the 10 import PFs were generated 
based on 10 different ML classifiers, including ET-RSAcid, LR-RSAcid, ET-DPC, 
SVMLN-CTD, XGB-CTD, ET-APAAC, ADA-APAAC, RF-PCP, SVMLN-AAI, and 
PLS-AAI. The performance comparison results between the APF and BPF are shown 
in Table 3. In case of the tenfold cross-validation results, it could be noticed that both 
APF and BPF exhibits impressive overall performance in terms of ACC, MCC, and 
AUC with ranges of 0.867–0.879, 0.737–0.760, and 0.933–0.935, respectively. In the 
meanwhile, we observed that the BPF outperformed the APF in terms of all five met-
rics used. Furthermore, on the independent test dataset, the BPF’s ACC, MCC, and 
Sn were 3.38, 6.85, and 5.08%, respectively, higher than the APF. As a results, the BPF 
was selected to construct our final stacked model.

Performance comparison with other ensemble strategies

To verify the necessity of the stacking strategy, we compared its performance with 
that of related ensemble strategies [16, 33, 34, 43], namely, the average scoring and 
majority voting. In brief, the average scoring and majority voting involves using the 
prediction outputs from 156 baseline models to create corresponding ensemble mod-
els by averaging and voting the probabilistic scores, respectively. Table 4 summarizes 
the performance comparison of different models trained based on various ensemble 
strategies. In Table 4, both the cross-validation and independent test results demon-
strate that the stacking strategy exhibits impressive overall performance across all five 
evaluation metrics. For example, in terms of the independent test results, the stacking 
strategy outperforms the two compared ensemble strategies by 10.92–11.77, 19.53–
20.38, and 21.47–23.42% in ACC, Sn, and MCC, respectively. These results indicate 
that the stacking strategy is an effective approach for improving the prediction of 
TTCAs.

Table 3 Cross-validation and independent test results for ET classifiers trained with three different 
features

Evaluation strategy Feature Number of 
feature

ACC Sn Sp MCC AUC 

Cross-validation APF 156 0.867 0.884 0.850 0.737 0.933

BPF 10 0.879 0.896 0.861 0.760 0.935

Independent test APF 156 0.899 0.907 0.891 0.798 0.958

BPF 10 0.932 0.958 0.908 0.866 0.962
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Performance comparison with conventional ML classifiers

In this section, the performance of all 156 constituent baseline models are assessed 
and presented in Fig. 2 and Additional file 1: Tables S2 and S3. As shown in Fig. 2, 
we noticed that the top ten baseline models having the highest MCC consist of XGB-
CTD, LGBM-CTD, ET-CTD, RF-CTD, ADA-CTD, MLP-CTD, SVMRBF-CTD, ET-
RSPolar, SVMLN-CTD, and LR-RSAcid. In the meanwhile, eight out of the top ten 
baseline models were developed based on the CTD descriptor, highlighting that the 
CTD descriptor was crucial in TTCA identification. For the XGB-CTD’s cross-vali-
dation results, Table 5 shows that this classifier exhibits the highest ACC and MCC 
of 0.848 and 0.698, respectively. XGB-CTD still outperformed other compared ML 
classifiers in terms of ACC and MCC on the independent test dataset. This evidence 
implies that XGB-CTD was the best ML classifier among all the compared ML clas-
sifiers. Therefore, we further compared the performance of StackTTCA against the 
top five baseline models (i.e., XGB-CTD, LGBM-CTD, ET-CTD, RF-CTD, and ADA-
CTD) to elucidate the advantages of the stacking strategy (Table 4). StackTTCA dem-
onstrated superior performance on both the training and independent test datasets, 
outperforming all other methods across all five evaluation metrics. Impressively, in 
the context of the independent test dataset, the ACC, Sn, and MCC of StackTTCA 
were 2.95, 4.24, and 5.99%, respectively, higher than XGB-CTD. Additionally, among 
the top five baseline models, StackTTCA exhibited the highest number of true posi-
tives and the lowest number of false negatives (Fig.  3). Furthermore, to understand 
the reason behind the better performance of StackTTCA, we utilized t-SNE to gen-
erate six boundary plots for our model and the top five baseline models [44, 45]. 
These plots depict TTCAs and non-TTCAs as red and blue dots, respectively. The 
visualization in Fig. 4 reveals that StackTTCA accurately classified majority of dots, 
whereas several dots from the top five baseline models were misclassified. Taking into 
account both cross-validation and independent test outcomes, StackTTCA exhibits 
improved and consistent prediction performance compared to several conventional 
ML classifiers.

Performance comparison with state‑of‑the‑art methods

In this section, we compared the performance of StackTTCA against the state-of-
the-art methods by conducting an independent test. To conduct a fair performance 

Table 4 Performance comparison of different models trained based on different ensemble 
strategies

Evaluation strategy Ensemble strategy ACC Sn Sp MCC AUC 

Cross-validation Average score 0.792 0.726 0.858 0.589 0.887

Majority voting 0.782 0.734 0.831 0.568 0.887

Stacking 0.879 0.896 0.861 0.760 0.935

Independent test Average score 0.823 0.754 0.891 0.651 0.910

Majority voting 0.814 0.763 0.866 0.632 0.905

Stacking 0.932 0.958 0.908 0.866 0.962
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comparison, the state-of-the-art methods involving iTTCA-Hybrid [18], TAP1.0 
[19], iTTCA-RF [20], and PSRTTCA [22] were selected for the comparative analy-
sis herein. All prediction performances of these four methods are directly obtained 
from the PSRTTCA study [22]. Figure 5 and Table 6 show the performance compari-
son results of StackTTCA and the four state-of-the-art methods. Among these four 
compared methods, the most effective one was PSRTTCA, which clearly outper-
formed other related methods. By comparing with PSRTTCA, StackTTCA achieved 
a better performance in terms of ACC, Sn, Sp, and MCC. To be specific, the ACC, 
Sn, Sp, and MCC of StackTTCA was 10.55, 13.56, 7.56, and 21.21%, respectively, 

Fig. 2 MCC values of 156 baseline models in terms of tenfold cross-validation (A) and independent (B) tests
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higher than PSRTTCA. In addition, we also performed case studies to verify the pre-
dictive reliability in realistic scenarios. All 73 experimentally verified TTCAs were 
retrieved from the PSRTTCA study [22]. Additional file 1: Table S4 lists the predic-
tion results of StackTTCA and the four compared methods. As can be seen from 
Additional file  1: Table  S4, StackTTCA secured the best performance in terms of 
the case studies. Specifically, 60 out of 73 TTCAs (ACC of 0.822) were correctly 
predicted by StackTTCA, while the four compared methods could correctly predict 
45 – 55 peptide sequences to be TTCAs (ACC of 0.616–0.753). These results high-
light the effectiveness and generalization ability of the proposed model, highlighting 
that StackTTCA can help to precisely and rapidly identify true TTCAs for follow-up 
experimental verification.

Table 5 Performance comparison of StackTTCA and top five ML classifiers

Evaluation strategy Method ACC Sn Sp MCC AUC 

Cross-validation ADA-CTD 0.816 0.829 0.803 0.636 0.893

RF-CTD 0.832 0.854 0.810 0.667 0.912

ET-CTD 0.833 0.848 0.818 0.669 0.917

LGBM-CTD 0.847 0.861 0.833 0.697 0.921

XGB-CTD 0.848 0.852 0.843 0.698 0.920

StackTTCA 0.879 0.896 0.861 0.760 0.935

Independent test ADA-CTD 0.827 0.822 0.832 0.654 0.918

RF-CTD 0.895 0.949 0.840 0.794 0.942

ET-CTD 0.869 0.881 0.857 0.739 0.945

LGBM-CTD 0.899 0.898 0.899 0.797 0.951

XGB-CTD 0.903 0.915 0.891 0.806 0.946

StackTTCA 0.932 0.958 0.908 0.866 0.962

Fig. 3 Confusion matrices of StackTTCA and top five ML classifiers in terms of the independent test dataset. 
ADA-CTD (A), RF-CTD (B), ET-CTD (C), LGBM-CTD (D), XGB-CTD (E), StackTTCA (F)
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Feature importance analysis

In this section, we explore the impact of the 10 essential PFs used to create StackTTCA. 
We used the SHAP method to interpret the StackTTCA’s TTCAs identification. These 
PFs were generated from 10 different ML classifiers that were selected using the GA-
SAR method. The classifiers used were ET-RSAcid, LR-RSAcid, ET-DPC, SVMLN-CTD, 

Fig. 4 t-distributed stochastic neighbor embedding (t-SNE) distribution of positive and negative samples 
on the training dataset, where TTCAs and non-TTCAs are represented with red and blue dots, respectively. 
ADA-CTD (A), RF-CTD (B), ET-CTD (C), LGBM-CTD (D), XGB-CTD (E), StackTTCA (F)

Fig. 5 Heat-map of the prediction performance of StackTTCA and the state-of-the-art methods in terms of 
the independent test dataset
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XGB-CTD, ET-APAAC, ADA-APAAC, RF-PCP, SVMLN-AAI, and PLS-AAI. Figure 6 
illustrates the feature ranking of the 10 essential PFs based on their Shapley values. A 
positive SHAP value indicates a high likelihood of the prediction outputs being TTCA, 
while a negative value suggests a low probability of the outputs being TTCA. The top 
five crucial PFs were determined to be those based on XGB-CTD, ET-DPC, SVMLN-
CTD, ET-APAAC, and LR-RSAcid, all of which exhibited positive SHAP values. Con-
sequently, XGB-CTD had a relatively high probabilistic score for most TTCAs, while it 
had a relatively low score for most non-TTCAs. In contrast, PLS-AAI had a relatively 
high score for most non-TTCAs and a relatively low score for most TTCAs.

Discussion
Discovery and characterization of new TTCAs via experimental technologies are 
expensive and time-consuming. Therefore, computational approaches that can identify 
TTCAs using sequence information alone are highly desirable to facilitate community-
wide efforts in analyzing and characterizing TTCAs. Although a variety of computa-
tional approaches have been proposed for TTCA identification, their performance is 
still not satisfactory. To overcome this shortcoming, this study presents StackTTCA, 
a stacking ensemble learning-based framework, for accurately identifying TTCAs and 

Table 6 Performance comparison of StackTTCA and the state-of-the-art methods on the 
independent test dataset

Method #Feature ACC Sn SP MCC

iTTCA-Hybrid 224 0.498 0.958 0.042 − 0.001

TAP1.0 10 0.738 0.676 0.786 0.483

iTTCA-RF 341 0.540 0.975 0.109 0.167

PSRTTCA 7 0.827 0.822 0.832 0.654

StackTTCA 10 0.932 0.958 0.908 0.866

Fig. 6 Feature importance from StackTTCA, where positive and negative SHAP values indicate the high 
probability that the prediction outputs are TTCA and non-TTCA, respectively
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facilitating their large-scale characterization. In the present study, we conducted the 
three comparative experiments to compare the performance of StackTTCA against con-
ventional ML classifiers, related ensemble strategies, and existing state-of-the-art meth-
ods. These experiments aimed to reveal the effectiveness and robustness of our proposed 
approach. The comparative experiments on the independent test dataset and case stud-
ies indicate that StackTTCA is capable of providing more accurate and stable prediction 
performance. Although the developed StackTTCA approach achieves improvement in 
TTCA identification, this study still has some shortcomings that can be addressed in 
future work. Firstly, the limited number of available TTCAs might restrict the prediction 
performance [46, 47]. Thus, we are motivated to collect additional TTCAs and combine 
them to construct an up-to-date dataset. Secondly, the discriminative power of the fea-
ture representation directly influences the model’s performance. In the future, we plan to 
combine our probabilistic features with other informative and powerful features, such as 
fastText, GloVe, and Word2Vec [48, 49].

Conclusion
In this research, we have introduced a novel stacking ensemble learning framework, 
called StackTTCA, for identifying TTCAs accurately and facilitating the large-scale 
characterization. The major contributions of StackTTCA are as follows: (i) StackTTCA 
utilized various feature encoding methods from different perspectives to extract infor-
mation related to TTCAs, including composition information, reduced amino acid 
sequence information, pseudo amino acid composition information, and physicochemi-
cal properties. Thirteen individual ML methods were used to establish 156 different 
baseline models, which generated a 156-D probabilistic feature vector. This feature vec-
tor was optimized and used to construct the optimal stacked model; (ii) Through a series 
of benchmarking experiments, we demonstrated that StackTTCA outperformed sev-
eral conventional ML classifiers and existing methods in terms of independent testing, 
achieving an accuracy of 0.932 and Matthew’s correlation coefficient of 0.866; (iii) We 
employed the interpretable SHAP method to analyze and elucidate the identification of 
TTCAs by StackTTCA; and (iv) To facilitate high-throughput screening of new TTCAs, 
we developed an online web server (http:// 2pmlab. camt. cmu. ac. th/ Stack TTCA) for user 
convenience.
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