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Abstract 

Background: Modern genome sequencing leads to an ever-growing collection 
of genomic annotations. Combining these elements with a set of input regions (e.g. 
genes) would yield new insights in genomic associations, such as those involved 
in gene regulation. The required data are scattered across different databases mak-
ing a manual approach tiresome, unpractical, and prone to error. Semi-automatic 
approaches require programming skills in data parsing, processing, overlap calculation, 
and visualization, which most biomedical researchers lack. Our aim was to develop 
an automated tool providing all necessary algorithms, benefiting both bioinformati-
cians and researchers without bioinformatic training.

Results: We developed overlapping annotated genomic regions (OGRE) as a compre-
hensive tool to associate and visualize input regions with genomic annotations. It does 
so by parsing regions of interest, mining publicly available annotations, and calculating 
possible overlaps between them. The user can thus identify location, type, and num-
ber of associated regulatory elements. Results are presented as easy to understand 
visualizations and result tables. We applied OGRE to recent studies and could show 
high reproducibility and potential new insights. To demonstrate OGRE’s performance 
in terms of running time and output, we have conducted a benchmark and compared 
its features with similar tools.

Conclusions: OGRE’s functions and built-in annotations can be applied as a down-
stream overlap association step, which is compatible with most genomic sequencing 
outputs, and can thus enrich pre-existing analyses pipelines. Compared to similar 
tools, OGRE shows competitive performance, offers additional features, and has been 
successfully applied to two recent studies. Overall, OGRE addresses the lack of tools 
for automatic analysis, local genomic overlap calculation, and visualization by providing 
an easy to use, end-to-end solution for both biologists and computational scientists.
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Background
Modern genome sequencing produces ever-growing numbers of large genomic datasets 
for multiple organisms. Consequently, processing and putting these data into biologi-
cally meaningful context remains a challenge. Databases like Ensembl and UCSC store 
this information and list an increasing amount of annotation data [1, 2]. In the human 
genome, there are now over 20,000 known protein-coding, 40,000 micro (miRNA), and 
19,000 long non-coding (lncRNA) RNA genes, 252,000 transcripts, 30 million CpG 
sites, and 5 million single nucleotide polymorphisms (SNPs) [3, 4]. Apart from this, the 
amount of available data on the location of epigenetic markers—such CpG islands (CGI), 
histone modifications, and chromatin 3D structure—and regulatory regions—e.g. pro-
moters and enhancers—has also grown in recent years [5, 6]. These genomic elements 
can occupy regions from a few base pairs up to several mega base pairs and are not ran-
domly distributed throughout the genome. Regions that are overlapping or neighboring 
each other might interplay and perform potential regulatory functions. A prime example 
are promoter regions, typically located upstream from the transcription start site (TSS) 
[7] and involved in the regulation of gene expression (8, 9), which often include tran-
scription factor binding sites (TFBS) and CGIs.

Techniques such as RNA sequencing, methylome analysis, chromatin immunopre-
cipitation (ChIP) sequencing, and whole genome association studies often result in a 
set of candidate genes or a collection of interesting genomic regions, which need to be 
further investigated by researchers who are not always trained in using bioinformatic 
and data processing tools. Especially, the validation and further downstream analysis 
of candidate genes resulting from differential gene expression analysis benefits from 
information about the various regulatory elements controlling gene transcription. This 
requires acquiring, mining, and parsing multiple datasets for the overlap of regions 
with e.g. promoters, TFBS, CGIs, and other regulatory elements. A manual approach to 
identify TFBS and CGIs within a gene’s promoter region, for instance, is not trivial. The 
first step—to mine published annotations for overlaps with a list of candidate genes—
requires obtaining genomic coordinates for each candidate and manually searching for 
the features of interest in one of the various genome browsers (e.g. UCSC or Ensembl). 
One would then need to make sure to obtain annotations for all regulatory elements of 
interest and visualize them using appropriate software (e.g. IGV browser), which might 
not be easily achievable. In the next step, overlapping or neighboring regulatory elements 
need to be identified and annotated. Finally, genomic locations, results, and graphics 
must be ponderously exported for further processing. This manual approach can be 
tiresome, unreliable, and prone to errors, especially for long candidate lists. It further 
leads to non-comparability and varying results depending on the person conducting the 
manual analysis. In addition, most researchers might not have the bioinformatics exper-
tise necessary for retrieving and visualizing the results. Nevertheless, this kind of analy-
sis remains a key element in understanding the interplay between regulatory elements 
and thus the observed gene expression changes under different experimental conditions. 
Therefore, a tool allowing researchers to identify the presence of regulatory elements 
for a set of genomic regions in a user friendly and platform-independent way is urgently 
needed. To our knowledge, no software tool is available that allows the automation of 
these tasks, and such a complex analysis still requires the help of a bioinformatician or 
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computational scientist to do the necessary data parsing and programming. Therefore, 
we developed OGRE (Overlapping annotated Genomic Regions) as a user friendly and 
easily accessible tool to perform automatic overlap analysis, export tabular results, and 
visualize genomic regions based on publicly available annotations. In addition, the user 
interface SHREC (SHiny interface for REgion Comparison) provides accessibility for 
biologists without computational training.

Implementation
Workflow

Internally OGRE methods are structured in three modules listed as follows: (1) Data-
set module, (2) Processing module, and (3) Visualization module (Fig. 1). We further 
define an OGREDataSet as a list of datasets with additional metadata information that 
serves as input for each module. The Dataset module reads user-generated local tabu-
lar data like .CSV and .GFF files which often result from OMICS experiments. Once 
the user defines a directory, it is scanned for suitable file types, which are attached 
to the OGREDataSet, enabling read-in of multiple datasets at once. External datasets 
show a wide range of file formats, structures, format, and naming conventions and 
are therefore not immediately ready for an overlap analysis. OGRE offers a growing 
number of built-in annotations for promoters, genes, CpG islands, SNPs, and TFBS. 
This is achieved by parsing functions that scan those datasets for duplicates, chro-
mosome naming conventions, genome build and version differences. In addition, we 
provide instructions on how to process datasets from different origins. As illustrated 
in Fig.  1, the user is able to add and modify datasets within the Dataset module at 
any point. Integrated convenience functions allow resizing of input elements, making 
it possible to focus on specific regulatory regions like promoters or other up/down-
stream areas. For instance, dataset coordinates can be modified relative to the start/

Fig. 1 OGRE workflow. OGRE’s architecture is divided into three modules: Datasets (red), Processing (blue), 
and Visualization (green) Database access is interconnected with key processes, data generation, results 
generation, and visualization. Decision junctions (rhombus shaped) display the user’s options to influence 
number and type of datasets, dataset manipulation and visualization parameters
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end positions, taking the DNA strand information into account (e.g. (−) 1200 bp from 
TSS). Next, overlap calculation is started by the Processing module, which operates 
on any supplied OGREDataSet and can be adjusted for multiple parameters like the 
minimum overlap required for two regions, type of overlap (i.e. full or partial), and 
strand-specific overlaps. The resulting hits, a pair of overlapping regions, is then fur-
ther annotated by extracting genomic coordinates for each involved region pair, and 
used to generate tables containing comprehensive information underlying each over-
lap. In detail, the table contains genomic coordinates for both region pairs and for 
the overlapping region itself, length of overlap, and reports the overlapped nucleotide 
fraction with respect to the original input region. Some regions exhibit low overlap 
numbers whereby others, for example in promoter-TFBS or intergenic regions-SNP 
associations, typically show multiple overlaps. OGRE offers routines for extracting 
all elements overlapping a single region and thus identifies regions with many or few 
overlaps. Some genomic elements cluster around regulatory regions such as TFBSs 
upstream of genes. We therefore expect distinct coverage profiles, caused by an over-
lap enrichment at certain areas. To measure this, we divide all regions of a dataset of 
interest into 100 equally sized bins. In a next step we sum up all elements of a second 
dataset that fall into each of the bins. For a genes-TFBS dataset, this means every 
gene body is split into 100 bins, whereby the first bins start with the gene transcrip-
tion start site and the last bins end with the gene transcription termination site. A 
matrix stores this information for all first dataset’s regions and a vector is defined 
containing the accumulated overlap coverage along the bins. A summary table dis-
plays informative statistics such as minimum, lower quantile, mean, median, upper 
quantile, and maximum number of overlaps per region and per dataset. The last mod-
ule, Visualization, illustrates the summary table’s information as bar plots and gener-
ates histograms to display overlap distributions by grouping the number of overlaps 
into predefined bins. Chromosome, strand, start, and end coordinates of all datasets 
are then used to generate tracks for a local genomic visualization representing a user-
defined genome window. Optionally, multiple layers of datasets, that were not directly 
part of the overlap calculation, can be displayed alongside the initially selected data-
sets. Appearance like colors, shapes, and labeling types can be adjusted and taken into 
account by the user. As an alternative exploration method, we implemented an inter-
face to display overlapping regions on public genome browsers.

On the technical side, OGRE was programmed in R 4.1.0 [10] using the RStu-
dio integrated development environment [11] and visualization is done with Shiny 
[12]. OGRE’s structure is displayed in Fig.  2, where input, processing, and output 
are interconnected with annotations from public databases. Most functionalities 
were implemented with the R base code and the use of additional packages, namely 
GenomicRanges [13] to calculate overlap between input regions and public annota-
tions, DataTable [14] for efficient data storage, AnnotationHub to obtain public anno-
tations [15], Gviz [16] and ggplot2 [17] for result visualization and region plotting in 
genomic space, and shinyBS [18] for user tooltips. OGRE is available on Biocoductor 
(https:// bioco nduct or. org/ packa ges/ devel/ bioc/ html/ OGRE. html), GitHub (https:// 
github. com/ svenb ioinf/ OGRE), and we developed SHREC (SHiny interface for 
REgion Comparison) as a user-friendly interface from which OGRE can be accessed 

https://bioconductor.org/packages/devel/bioc/html/OGRE.html
https://github.com/svenbioinf/OGRE
https://github.com/svenbioinf/OGRE
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under any operating system’s default internet browser using R. The tool’s vignette 
offers users an example run and a frequently asked question section. On GitHub, we 
provide additional documentation, installation options (Docker, GitHub), and a tuto-
rial video on how to use OGRE and its graphical user interface.
Input With OGRE, one or multiple genomic regions (e.g. genes) can be supplied to the 

input text field, selected from built-in annotations, or alternatively supplied as tabular 
files containing genomic regions. The tool is compatible with regions in BED or GFF for-
mats, such as those obtained from ChIP-Seq, methylome sequencing, and public anno-
tations with chromosome, start, and end information. Next, several regulatory elements 
must be selected or, alternatively, uploaded by the user as a tabular file with genomic 
ranges. By default, OGRE offers promoter (Ensembl) [19], CpG islands (UCSC) [20], 
and TFBS [21] annotations. Different parameters can be set to modify already uploaded 
regions by extending their start/end positions, focus on regions of interest (e.g. promoter 
regions of genes), or subset the data (e.g. focus on cell-specific TFBS).
Processing Depending on input data and settings, the tool extracts genomic coordi-

nates from user-supplied internal (by reading local files) or external data (by connecting 
to public databases). User-supplied tabular files are parsed and stored as GenomicRanges 
objects for easy access during the session. External datasets are available on the Anno-
tationHub web resource, which hosts genomic annotations from various sources. OGRE 
can access these files through an internal interface and provides a number of default 
regulatory element annotations already optimized for analysis. Like this, annotations 
are packaged separately and independent from the actual software tool. Parsing and 
filtering operations ensure homogeneous naming and structure schemes between the 

Fig. 2 Graphical representation of OGRE’s functionality. Input of genomic regions of interest and public 
annotations by reading in local files or connecting to AnnotationHub. Input data is processed and results 
are presented as output in the form of tables, genomic visualization, charts, and a UCSC genome browser 
interface
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different annotation files. Once all information is available, overlaps between the input 
regions and all selected annotations are computed, whereby both complete and partial 
overlaps are considered. For this analysis, OGRE as well as other similar tools uses the 
efficient findOverlaps() implementation of the GenomicRanges package to conduct pair-
wise comparisons between query (input regions) and subject (public annotations). A hit 
describes the overlap of query and subject in at least one nucleotide base. Chromosome, 
start, end position, and overlap (in percentage and number of base pairs overlapping) of 
each hit are stored in a data table for downstream analysis (Additional file 5: Table S2, 
Additional file 6: Table S3). In addition, OGRE reports the number of query regions, cal-
culates the total number of annotation types found among query regions, regions with at 
least one regulatory element, and the average number of regulatory elements per query. 
Results are internally stored as data tables, which can be exported (Fig. 3B, Additional 
file  5: Table  S2, Additional file  6: Table  S3) and are in turn the input for visualization 
with ggplot2 and Gviz (Fig. 3A, C). Shiny is used to set up the convenient user inter-
face SHREC. In more detail, we visualize input and output data with the ggplot2 [17] 
R package to create basic bar plots with information on the number of submitted que-
ries/genes. Furthermore, the total and average number of subjects/regulatory elements 
found for every input is computed. OGRE makes extensive use of the DT [14] R package 
to display results as HTML tables, which can also be set to display detailed informa-
tion for single elements. Those tables are integrated within OGRE’s user interface, can 
be exported in a variety of file formats like .CSV and .PDF, and offer interactive filtering 

Fig. 3 Application of OGRE for a list of genes following a differential gene expression experiment and display 
of user interface SHREC. A OGRE’s graphical user interface with a histogram chart displaying a distribution of 
EGR4 binding sites with median as dashed black line. Y-axis: EGR4 binding site frequency, x-axis: Number of 
EGR4 binding sites per gene. B Gene checkbox listing regulatory element presence; promoter, CGI, and TFBS 
in a set of input genes. C Genomic view window of FAM228B with strand information and promoter, CGI and 
TFBS without strand information
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capability (Fig. 3B). Each query element (e.g. gene) can be explored in detail using the 
UCSC genome browser interface [22] or OGRE’s genomic visualization feature, which 
displays the region of interest and additional user-defined genome tracks (Fig. 3C).
Output Results can be downloaded or accessed as various table formats like .CSV and 

.PDF files and graphical representations like PNG and JPEG files. Long and wide for-
mat tables provide different levels of information whereby the former contains compre-
hensive information of all regions with additional details and the latter offers a quick 
overview of the regions with all associated regulatory features in one line. Metrics (e.g. 
average/min/max number of overlaps) are displayed within a summary chart and the 
query/gene checkbox provides compact information on the overlap distribution, which 
can also be individually explored in the genomic visualization feature. Once a query/
gene is selected the genomic coordinate information is used to create a static local image 
focused on the query region, showing all subject/regulatory elements with multiple 
adjustable parameters for an optimal visualization. The same information is sent to the 
UCSC genome browser interface, as an external exploration tool.

Results
In order to test and show the OGRE’s application to real biological data, we used the tool 
on two studies with publicly available datasets, which were originally analyzed using dif-
ferent methods.

Transcription factor binding sites within differentially expressed genes’ promoters

In a recent in-house study, Di Persio et al. [23] performed single-cell RNA sequencing 
on human germ cells with normal and impaired spermatogenesis. As a result, 61 genes 
were uniquely differentially expressed for undifferentiated spermatogonia between the 
two conditions. In an analysis using SCENIC [24], 23 of those genes were included in the 
EGR4 regulon. Therefore, the authors hypothesized that EGR4 could serve as a poten-
tial spermatogonia regulator. To evaluate if EGR4 TFBSs could be found in the same 
proportion of genes using OGRE, we loaded the list of differentially expressed genes 
(DEGs) as input. Following original sequencing parameters, we used GENCODE v30 
release gene annotations [25] and TFBS information from the built-in JASPAR annota-
tions, filtered for EGR4. Any potential overlap (partial and complete overlap and ignor-
ing strand information) between DEGs and EGR4 binding sites was considered a hit. 
After a successful run, the tool provided location information and distribution of hits. 
Interestingly, the DEGs show a high presence of possible EGR4 TFBSs resulting from the 
calculated gene-TFBS overlap. In fact, 57 DEGs (93%) contain at least one EGR4 bind-
ing site with a median of 4 EGR4 binding sites per gene (min = 0, max = 30). The gene 
with most binding sites for EGR4 is ST3GAL4, whereby no overlaps could be found for 
genes C1QTNF12, ENHO, MAGEB2, and RPL36A. The same analysis was carried out for 
all GENCODE v30 release genes resulting in a mean of 3 EGR4 binding sites per gene 
(min = 0, max = 439), which, when compared to DEGs, is significant (p value ≤ 0.05) 
using a Wilcoxon rank-sum test (Additional file 3: Fig. S2). In addition, when we com-
pared the list of OGRE’s output genes with EGR4 regulated genes reported by Di Persio 
and Tekath et al., we could identify all genes except for one (ENHO; Fig. 4).
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Overlapping protein‑coding genes in the human genome

Overlapping genes are defined as two or more genes sharing the same location by par-
tially or entirely overlapping with each other. They exist mostly in compact genomes 
like those of virus and bacteria, however they are also found in the human genome. 
Their close genomic proximity results in sharing the same chromatin domains or 
compartments, which in turn leads to parallel regulation and transcription [26]. In 
a recent study Chen et al. [27] analyzed 19,200 well-annotated protein-coding genes 
and determined that 4951 (26%) of those overlapped with adjacent genes, with the 
biggest cluster containing 22 overlapping genes. In an effort to match the original 
analysis parameters, we used Ensembl’s GRCh38.p12 gene annotation release from 
April 2018 and filtered the dataset for protein-coding genes with description only. 
After running OGRE with this similar dataset of 19,308 protein coding genes, we 
report a total of 5407 (28%) genes overlapping with at least one other gene. These are 
456 genes, 2% more than those identified by the authors. Both partial and complete 
overlaps were considered as hits, reported independently from DNA strand notation 
(i.e. forward and reverse), and were displayed using OGRE’s local visualization feature 
(Fig.  4C). On average, OGRE reported 0.3 overlaps per gene (min = 0, mean = 0.3, 

Fig. 4 Analysis output A Overlap between genes analyzed by Di Persio et al. [23] and OGRE. Di Persio and 
Tekath et al. identified 23 genes regulated by EGR4. OGRE identified 22 of the 23 genes and provides EGR4 
binding site information. B Average coverage profile of all genes-gene overlaps, split in 100 bins, which 
represent gene bodies of all 5407 genes. C Overlapping genes. Three representative genes (VPS72, SCNM1, 
TMOD4) with complete (VPS72, TMOD4) and partial overlap (VPS72, SCNM1)
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max = 22), with most overlaps found within the protocadherin gamma family cluster. 
Gene–gene overlaps tend to occur more often around gene start (5′) and end (3′), 
whereby overlaps around the center of the gene are less frequent (Fig. 4B).

Comparison to other tools

An overlap analysis between the user-defined regions and selected genomic anno-
tations should be user-friendly, comprehensive, fully automated, be able to process 
multiple regions at once, provide annotation and detection for common regulatory 
elements e.g. CGI, TFBS, and promoters, and have the options to visualize and export 
results. The research community already offers a range of different algorithms and 
tools to predict or annotate genomic regions. We selected available tools with com-
parable features to OGRE and listed their performance among the different require-
ment categories (Table  1). Most tools are specialized on analyzing regions for a 
certain type of annotation and do not offer support for additional annotations. For 
example, INSECT, CiiiDER, and ConTra v3 feature prediction of TFBSs from posi-
tion frequency matrices (PFM), iProEP focusses on the prediction of promoters and 
GaussianCpG on CGI identification. While these tools try to annotate regions based 
on predictions, Goldmine, regioneR, annotatr, and OGRE make use of already pub-
lished annotations. We have benchmarked these packages for their overlap perfor-
mance using microbenchmark [28], resulting in comparable runtimes (Goldmine 
0.046 s, regioneR 0.040 s, annotatr 0.049 s, and OGRE 0.047 s) using identical input 
datasets, when calculating gene–gene overlap (Additional file 4: Table S1, Additional 
file 2: Fig. S1 and Additional file 1). All four tools report a total overlap of n = 10,014 
by processing a dataset with 20,314 genes. regioneR and annotatr focus on the sta-
tistical analysis of genomic regions and do not offer a graphical user interface and 
genomic overlap plotting. OGRE on the other hand, excels by providing built-in 
annotations, processing of multiple input regions, and visualization of overlap at a 
genomic level, accessible through a convenient user interface (Fig. 3A).

Software tools with similar features were compared to OGRE on their capability to 
manage multiple input regions, built-in annotations, and visualize overlaps.

Table 1 Feature comparison between OGRE and eight similar tools

Tool Multiple input 
regions

Included annotations Local 
genomic 
visualizationCGI TFBS Promoter

INSECT [29] ✓ ✕ ✓ ✕ ✓
Ciiider [30] ✓ ✕ ✓ ✕ ✓
ConTra v3 [31] ✕ ✕ ✓ ✕ ✓
regioneR [32] ✓ ✕ ✕ ✕ ✕
iProEP [33] ✓ ✕ ✕ ✓ ✕
annotatr [34] ✓ ✓ ✕ ✕ ✕
Goldmine [35] ✓ ✕ ✕ ✕ ✕
GaussianCpG [36] ✓ ✓ ✕ ✕ ✕
OGRE ✓ ✓ ✓ ✓ ✓
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Discussion
OGRE was developed as a free and user-friendly tool to associate, overlap, and visu-
alize a list of genomic input regions with publicly available annotations, which are 
stored in databases or are produced by specialized software packages [37–39]. OGRE 
is compatible with their output and can therefore enrich already existing analysis 
pipelines. It can handle multiple annotations with thousands of genomic elements 
and shows a high degree of automation, while at the same time ensuring reproducible 
analysis steps and result outputs. It is easy to install and useable by scientists with-
out computational training, through the use of an intuitive user interface. A custom 
file upload function provides maximum input flexibility for various types of genomic 
regions. In addition, it contains built-in annotations, which can also be expanded in 
the future to include further regulatory elements or regions. Convenience functions 
enable detailed and summary tables, helpful charts, and a local genomic visualization 
and coverage option (Fig. 3A, C).

Comparison to other tools

Our software package meets the existing need for an easy-to-use tool for the anal-
ysis and visualization of input regions and their overlap with genomic annotations. 
While tools to predict or use public annotations for a set of input regions exist, most 
of them lack essential features required for a comprehensive software solution. Not 
all packages are able to process multiple input regions at once or support different 
types of annotation and have them immediately ready for use. This is especially rel-
evant considering the number of input regions that modern omics experiments yield. 
A sequential manual search for every query is not practical for large datasets. Built-
in datasets (e.g. protein coding genes, promoters, single nucleotide polymorphisms, 
CpG-islands) present valuable shortcuts to the otherwise tedious manual download 
and data parsing steps that often hinder analysis progress for users without compu-
tational training. Especially for promoter regions, where most other tools or manual 
approaches define promoters as an arbitrary number of nucleotides upstream/down-
stream of TSS, we offer a built-in alternative. OGRE provides promoter annotations 
taken from Ensembl’s regulatory build, which is based on computationally and experi-
mentally derived TFBS. Apart from the tools in Table 1, overlap analysis such as that 
performed by OGRE is carried out on an individual basis with variable quality and 
reproducibility. This is a direct result of scientists’ varying degrees of computational 
skills. With OGRE, we provide a reproducible workflow for both bioinformaticians 
and scientists without computational training, with a convenient user interface, lack-
ing in most other packages. The annotation-based tools regioneR, Goldmine, anno-
tatr, and OGRE, are all based on the GenomicRanges package and therefore show 
a comparable runtime for overlap calculation and mainly differ in usability, scope 
of application and available features. They all report the same number of overlaps, 
since they share the same overlap calculation implementation. With this in mind, the 
focus of OGRE lies on ease of use, built-in annotations, coverage analysis, and local 
genomic visualization options of the calculated overlap.
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Application to published datasets

To demonstrate OGRE’s use in everyday research and its ability to contribute to real 
research questions, we applied the tool to data from two recent studies. The first study 
demonstrates the tool’s potential as a valuable option/addition for downstream analy-
sis. The authors identified EGR4 as a potential gatekeeper regulating the change in 
transcriptional profiles in spermatogonia [23]. We used OGRE to report and summa-
rize any possible overlaps between the DEGs and EGR4 binding sites. The TFBSs for 
EGR4 were present in 93% of DEGs with a median of 4 TFBSs per gene and present 
in 62% of GENCODE v30 release genes with a median of 3 TFBS per gene, suggesting 
a potential EGR4 regulation of those DEGs genes. In addition, we were able to match 
22 of the 23 EGR4 regulated genes previously identified by the authors, indicating 
OGRE’s good overall reproduction capabilities. One gene (ENHO), was not listed by 
OGRE, since all nearby TFBS did not pass the confidence threshold (p value ≤  10−4) 
given by JASPAR’s default TBFS annotation [21]. To alter this behavior, OGRE sup-
ports additional annotations with alternative thresholds. Moreover, utilizing OGRE’s 
local genomic visualization distribution, the density of EGR4 binding sites can be 
assessed and displayed. Reported genomic coordinates describing where exactly gene-
TFBS overlaps take place, can be the basis of follow-up experiments for those genes.

In the second study evaluated, Chen et al. [27] demonstrated the extent of overlap-
ping protein-coding genes. Here, OGRE was capable of generating similar results to 
an already studied question. Using a similar dataset of 19,308 protein-coding genes 
as input regions, we report a total of 5407 genes overlapping with at least one other 
gene. The 2% observed difference can be accounted to varying input parameters, e.g. 
genome versions and gene/chromosome filtering steps. Nevertheless, using OGRE 
we were able to reproduce the number of reported overlapping protein-coding genes. 
The tool’s overlap coverage feature shows that genes tend to overlap preferably at the 
gene start and gene end and less often within or around the gene body center. It is also 
possible to monitor overlap coverage for forward and reverse oriented genes. Cover-
age profiles generated in this way provide new insights on distribution of genomic 
elements around regions of interest. Visualization on a local scale enables the user to 
better understand the composition and location of all involved elements, as shown in 
Fig. 3.

Conclusions
Overall, OGRE can be applied to a variety of datasets in the field of genomics and is 
especially suited for finding overlapping public annotations for a set of input regions 
that the user is then able to further display and study, using the tool’s rich analysis and 
visualization features. As demonstrated by analyzing two publicly available datasets 
and comparing OGRE to similar software, we could show a competitive performance 
and additional integrated functions in a direct comparison. Particularly, research-
ers without computational training benefit from the tool’s flexibility, ease of use, and 
intuitive interface to produce standardized results from a reproducible workflow.
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Availability and requirements
Project name: OGRE.
Project home page: OGRE is available as Bioconductor package with integrated user 
interface SHREC (https:// bioco nduct or. org/ packa ges/ devel/ bioc/ html/ OGRE. html). 
On GitHub (https:// github. com/ svenb ioinf/ OGRE) tutorials and alternative installa-
tion options (Docker, GitHub) are provided.
Operating system(s): Platform independent.
Programming language: R.
Other requirements: Bioconductor.
License: Artistic-2.0.
Any restrictions to use by non-academics: None.

Abbreviations
CGI  CpG Island
ChIP  Chromatin immunoprecipitation
DEG  Differentially expressed gene
lncRNA  Long non-coding ribonucleic acid
miRNA  Micro ribonucleic acid
OGRE  Overlapping annotated genomic regions
SHREC  Shiny interface for region comparison
SNP  Single nucleotide polymorphism
TSS  Transcription start site
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Additional file 1. Benchmark script. R code used for benchmarking four overlap tools in terms of processing time 
and number of overlaps.

Additional file 2: Figure S1. Computation times. Benchmark of overlap calculation by tools Goldmine, regioneR, 
annotatr and OGRE using two, 20,000 lines long input files with 10 runs each, computation time reported in 
milliseconds.

Additional file 3: Figure S2. EGR4 TFBS. Number of EGR4 TFBS of all genes when comparing DEGs and GENCODE v30 
release genes.

Additional file 4: Table S1. Benchmark statistics. Benchmark statistics of overlap calculation by tools Goldmine, 
regioneR, annotatr, and OGRE showing detailed calculation times (min, lq, mean, median, uq, max).

Additional file 5: Table S2. OGRE tabular output 1. OGRE’s tabular output of gene- TFBS overlap, where each gene is 
listed with all overlapping TFBS using input data from [23].

Additional file 6: Table S3. OGRE tabular output 2. Detailed information on each occurring overlap including 
genomic coordinates for TFBS using input data from [23].
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