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Abstract 

Background: Proteins often assemble into higher-order complexes to perform their 
biological functions. Such protein–protein interactions (PPI) are often experimentally 
measured for pairs of proteins and summarized in a weighted PPI network, to which 
community detection algorithms can be applied to define the various higher-
order protein complexes. Current methods include unsupervised and supervised 
approaches, often assuming that protein complexes manifest only as dense subgraphs. 
Utilizing supervised approaches, the focus is not on how to find them in a network, 
but only on learning which subgraphs correspond to complexes, currently solved 
using heuristics. However, learning to walk trajectories on a network to identify pro-
tein complexes leads naturally to a reinforcement learning (RL) approach, a strategy 
not extensively explored for community detection. Here, we develop and evaluate 
a reinforcement learning pipeline for community detection on weighted protein–pro-
tein interaction networks to detect new protein complexes. The algorithm is trained 
to calculate the value of different subgraphs encountered while walking on the net-
work to reconstruct known complexes. A distributed prediction algorithm then scales 
the RL pipeline to search for novel protein complexes on large PPI networks.

Results: The reinforcement learning pipeline is applied to a human PPI network 
consisting of 8k proteins and 60k PPI, which results in 1,157 protein complexes. 
The method demonstrated competitive accuracy with improved speed compared 
to previous algorithms. We highlight protein complexes such as C4orf19, C18orf21, 
and KIAA1522 which are currently minimally characterized. Additionally, the results 
suggest TMC04 be a putative additional subunit of the KICSTOR complex and confirm 
the involvement of C15orf41 in a higher-order complex with HIRA, CDAN1, ASF1A, 
and by 3D structural modeling.

Conclusions: Reinforcement learning offers several distinct advantages for com-
munity detection, including scalability and knowledge of the walk trajectories defin-
ing those communities. Applied to currently available human protein interaction 
networks, this method had comparable accuracy with other algorithms and notable 
savings in computational time, and in turn, led to clear predictions of protein function 
and interactions for several uncharacterized human proteins.
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Background
Protein–protein interactions (PPIs) are essential to nearly all cellular functions and 
biological processes. From antibodies binding antigens to block infections, to pro-
tein filaments comprising cellular cytoskeletons, protein interactions are an important 
organizational principle across biological scales and organisms. Such multi-protein 
complexes may additionally bind other molecules, such as DNA, RNA, or metabolites, 
and play critical roles in cellular processes ranging from DNA replication to transcrip-
tion, multicellular interactions, and tissue organization.

As a consequence, a growing variety of experimental techniques have been developed 
to determine PPIs at a large scale, notably including affinity purification/mass spectros-
copy (AP/MS), co-fractionation/mass spectrometry (CF/MS), cross-linking/mass spec-
trometry (XL/MS), proximity labeling, and yeast two-hybrid assays (Y2H), which are 
collectively reviewed in [1–5]. The resulting PPIs define (often weighted) networks of 
interactions, in which each node represents a protein, an edge represents the interaction 
confidence, and certain proximal groups of nodes and edges correspond to multiprotein 
complexes. Importantly, the experimental methods are not completely accurate and suf-
fer both false positive and negative observations. Hence, integrating PPIs across multiple 
experiments, e.g. the networks hu.MAP 1.0 [6] and hu.MAP 2.0 [7] that integrate over 
9000 and 15000 mass spectrometry experiments respectively from AP/MS [8–11] and 
CF/MS data [12–15], can help to mitigate the effects of experimental errors. Combining 
such approaches with algorithms to cluster proteins and identify complexes from the 
PPI network should result in a more accurate determination of protein complexes. Com-
munity detection algorithms can be applied to a PPI network to identify its communi-
ties, i.e., protein complexes [16].

Community detection methods can be unsupervised, i.e., not use any information 
from known communities in a network and instead rely only on the network topology 
to cluster it into its communities. Currently, existing unsupervised community detection 
algorithms tend to rely on many assumptions regarding the topological structures of 
communities. MCODE (Molecular COmplex DEtection) is an unsupervised method of 
detecting protein complexes running on the assumption that dense regions of a network 
represent complexes [17]. Another unsupervised algorithm, CMC (cluster-based on 
maximal cliques), assumes that communities are mainly in the shape of cliques (again, 
highly dense subgraphs) [18]. This pattern of similar assumptions carries on to other 
unsupervised methods such as COACH (core-attachment-based method) [19], Clus-
terONE (clustering with overlapping neighborhood expansion) [20], and GCE (greedy 
clique expansion) [21], among others.

The FCAN-MOPSO algorithm is an enhanced clustering method that optimizes 
communities based on fuzzy clustering logic and multi-objective particle swarm opti-
mization (MOPSO) techniques [22]. It clusters complexes by assigning membership 
degrees to nodes, allowing for soft assignments, and captures the overlapping nature 
of clusters. However, there are disadvantages to this algorithm, including computa-
tional complexity, sensitivity to parameter settings, and limited applicability to data-
sets where clusters are expected to be distinct and non-overlapping. Another current 
community detection algorithm applies the alternating direction method of multipli-
ers (ADMM) to find complexes in a parallel manner [23]. The algorithm decomposes 
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the protein complex detection task into subtasks and applies the ADMM framework 
to find complexes based on topological and biological assumptions. Though this is 
computationally efficient, the use of assumptions limits the finding of new protein 
complexes. HiSCF leverages higher-order structures in biological networks by con-
sidering higher-order relationships among nodes and identifies clusters that capture 
complex patterns and functional modules [24]. The algorithm utilizes Markov cluster-
ing (MCL) and iteratively updates and refines clusters based on the expanding inflate 
operation until groups are well-defined. Other existing algorithms are generally lim-
ited to handling only specific connectivity patterns, however, HiSCF was designed to 
target a wider range of possible patterns [24]. However, HiSCF may face challenges 
when applied to large interaction networks due to memory requirements and com-
putational complexity. Recent unsupervised algorithms include PC2P, which uses 
a greedy approximation algorithm based on biclique subgraph properties [25], and 
MP-AHSA which uses a fitness function for biological similarities within complexes 
and optimizes a core-attachment-based algorithm for complex identification [26]. 
Another method, DPCMNE recursively compresses PPI networks, learns multi-level 
protein embeddings, and applies a core-attachment approach based on the embed-
dings’ similarities [27].

On the other hand, supervised community detection methods do consider different 
topological features of communities apart from density, and learn a community fitness 
function (i.e., the probability of being a community) from known complexes using differ-
ent learning algorithms. One such approach uses a support vector machine (SCI-SVM) 
and a Bayesian network (SCI-BN) [28]. For both models, subgraphs are represented 
using 33 features, and a local subgraph growth process is employed starting from a seed 
node, with the subgraph growth regulated by limited growth rounds, score improve-
ment over iterations, and extent of overlap with other candidate communities. Clus-
terSS, a cluster with supervised and structural information, is a supervised algorithm 
using a neural network, 17 subgraph features, and a structural scoring function [29]. 
All three methods, SCI-SVM, SCI-BN, and ClusterSS use a greedy heuristic algorithm 
for selecting the neighbor to add to the subgraph in the growth process, with ClusterSS 
considering only the top neighbors by degree for speed improvements. However, since 
the methods use serial candidate community sampling, this negatively impacts their 
scalability to large networks like hu.MAP 1.0 [6] with ~ 8k proteins and ~ 60k interac-
tions, and hu.MAP 2.0 [7] with ~ 10k proteins and over 40k interactions. To combat this, 
Super.Complex (supervised complex detection algorithm) was developed for high scal-
ability and accuracy [30]. By using AutoML (Automated Machine Learning), it explores 
different supervised algorithms to utilize the optimal one learned from known com-
munities. Then, it samples candidate subgraphs using the learned fitness function by 
growing them with an epsilon-greedy heuristic, along with one of four additional heu-
ristics (pseudo metropolis, clique—pseudo metropolis, iterative simulated annealing, 
and greedy). However, the AutoML pipeline can take a long computation time and the 
method can still be improved in terms of accuracy.

While current supervised learning methods learn community fitness functions, they 
do not learn trajectories on the network that can lead to a protein complex, potentially 
missing complexes that cannot be traversed using the heuristics employed, for instance 
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in a greedy setting where the community fitness function is maximized at each step. We 
can apply reinforcement learning to learn paths traversed on a graph to recall known 
complexes with high accuracy. MARL (Multi-Agent Reinforcement Learning) uses 
Q-learning to form clusters in networks based on a multi-agent environment [31]. In this 
algorithm, each node is viewed as an agent and each agent chooses actions to grow into 
a cluster. A team reward is given to train the action-value function, based on the modu-
larity of the partition, which again assumes that all communities are dense subgraphs. 
The team reward can also lead to unstable learning of each agent’s behaviors, apart from 
taking a long time to compute. Nevertheless, MARL has suggested that there is a lot of 
potential for the use of reinforcement learning in community detection algorithms.

Rather than using a multi-agent approach with a team reward based on modularity, 
an unsupervised measure, we use a single-agent approach (where a subgraph is viewed 
as an agent) with a supervised reward from training communities based on whether the 
agent selects the right neighbor to grow the subgraph. The rewards are used to train a 
value iteration algorithm to learn an optimal value function that is used to predict new 
communities. During the prediction phase, we implement a parallel method with a sin-
gle agent on each core (process) to increase the speed of the algorithm by predicting 
communities in a distributed fashion. Applying the reinforcement-learning (RL) algo-
rithm on a human PPI network after learning from experimentally characterized com-
plexes, we can identify candidate protein complexes, and these candidates can then be 
experimentally characterized. We can create reliable models of protein complexes that 
allow us to extract more information about their stability, affinity, and specificity.

In the current work, we formulate community detection as a reinforcement learning 
task and implement a value iteration algorithm, learning from known communities. The 
RL algorithm accurately and efficiently predicts candidate complexes by learning and 
using a value function from known communities, which maps the density of a subgraph 
to the probability (score) that traversing the subgraph will yield a protein complex. The 
algorithm trains on known complexes that have nodes and edges from the network, to 
accurately optimize scores for the various densities that could occur on the network. 
Then, the RL pipeline uses these scores to traverse the network by starting with different 
seed nodes to create candidate complexes in parallel.

The RL pipeline for community detection presents various advantages when compared 
to its unsupervised and supervised counterparts. Unlike unsupervised methods that rely 
on assumptions regarding communities such as ‘communities are dense subgraphs of a 
network’, the RL algorithm takes a more flexible approach by learning trajectories on the 
network to find known communities having different topologies. To sample candidate 
communities from the network (an NP-hard problem), while supervised methods have 
previously used pre-defined heuristics, the RL algorithm learns the correct heuristic to 
use. Compared to supervised machine learning methods such as neural networks and 
AutoML methods which require sufficient hyper-parameter tuning and have high train-
ing time, the RL pipeline uses the simple value iteration algorithm with few parameters, 
achieving comparable results in a fraction of the time. Combined with its parallel imple-
mentation utilizing multiple cores, the RL pipeline is a fast community detection algo-
rithm enabling efficiency and scalability to large networks. In this paper, we demonstrate 
the algorithm’s utility by applying it to a high-quality human PPI network (consisting 
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of 8k proteins and 60k pairwise protein interactions) and learn 1,157 candidate protein 
complexes. These candidates include complexes containing uncharacterized proteins, 
for which we can suggest possible functions based on ‘honor by association’ with their 
co-complex members.

Methods
Reinforcement learning

Reinforcement learning (RL) uses machine learning to enable an agent to make a 
sequence of decisions based on rewarding desired behaviors and punishing undesired 
ones. These rewards reinforce the right decisions so that the agent repeats them. Over 
time, the algorithm finds the best possible decision or action to take in each situation. 
Thus, RL is an intuitive method for community detection, as decision-making for the 
long-term goal of finding a protein complex is needed during the process of traversing a 
network to grow a complex from a node.

There are three main variables in RL: a state, value function, and reward. A state is a 
“position” the agent is in, in an environment. A value function is a score given to a state 
that estimates how beneficial it is for the agent to be in that state to achieve the goal. 
Lastly, a reward is an incentive that tells the agent if the decision made was correct or 
not. For example, consider a computer playing against a human in a game of tic tac toe. 
The AI player is an agent created to perform certain actions on the tic tac toe grid (the 
environment) based on what state the environment is in, in real-time. After each action 
taken, the agent receives a reward based on the four possible outcomes of what the state 
could result in: it wins, the opposing player wins, a draw, or continues the game. If the 
agent wins, it will receive a positive reward (i.e., 1), and if the opposing player wins or 
if there is a draw—it will receive a negative reward (i.e., -1), and if the game continues 
there will be no reward (i.e., 0 or None). The AI player continues to make moves based 
on what state it currently is in to maximize its cumulative reward or return. This cycle, 
also known as an episode, terminates when the game ends. While trying to maximize its 
rewards, the agent will learn the optimal policy, i.e., the best action to be taken in a par-
ticular state. The optimal policy is learned by starting with an initial policy and adapting 
it based on its experience encountering various states.

Value iteration

The optimal policy at a state is performing an action that takes the agent to the next 
best state that will maximize the probability of achieving the goal. In other words, the 
optimal policy, out of the states available, moves the agent to the state having the high-
est value function. The true or optimal value function, i.e., a map of the states to their 
values can be learned using the value iteration algorithm, a classic reinforcement learn-
ing method for problems where a model of the environment dynamics is known, usu-
ally with a small number of discrete states. The algorithm is a dynamic programming 
method that solves the Bellman Optimality Equation (Eq. 1) iteratively, converging to the 
optimal value function V*.

(1)V ∗(st) = max
at

�st+1
p(st+1|st , at) R(at , st)+ γV ∗(st+1)
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Here, R is the defined reward associated with performing an action at when the state 
is st, γ is a discount factor and p is the transition probability from st to st+1 when it per-
forms action at.

The value iteration update rule, starting with a value of 0 for all states is given by 
Eq. (2):

Here, Vk (st) is the value function of the current state (at time t in the episode) in the 
current iteration k (of the value iteration algorithm) and Vk-1 (st +1) is the value function 
(from the previous iteration k-1) of the next possible state.

Formulating community detection as a reinforcement learning problem

To build an RL pipeline for the problem of community detection, the algorithm is first 
trained on known training communities or complexes. Once the training is deemed to 
be successful, the learned value function from the training is then used to find com-
plexes on a network.

To learn the value function, each episode consists of starting with a seed node from a 
training complex and iteratively adding neighbors to grow the subgraph into the com-
plex. This process is then repeated with a new seed node from the training complex. 
Once all the nodes of the complex have been used as seeds, training moves to the next 
complex. In this scenario, the agent and environment are defined as the current sub-
graph in the growth process and the full graph including all its neighbors, respectively. 
We represent the state of the agent, i.e., the current subgraph by its topological feature, 
density. The state (density d) of the current subgraph is the ratio of the actual number 
of edges in a subgraph to the total possible number of edges and can be calculated with 
Eq. (3).

Here m is the sum of the edge weights of the edges in the subgraph and n is the num-
ber of nodes in the subgraph.

For a wide representation of the feature space, the states are discretized into 20 inter-
vals ranging from 0 to 1. The actions performed by the agent comprise adding a neigh-
bor to the current subgraph or terminating the growth process. Choosing a neighboring 
node in the known complex will provide the agent with a positive reward of + 0.2, and a 
negative reward of -0.2 is given if the node chosen is not present in the known complex. 
The rewards aid the agent in avoiding previous mistakes for it to find an optimal path to 
create a complex. These rewards allow the state to develop a value function represent-
ing the probability of the state resulting in a final community. If none of the remaining 
neighbors are in the complex, the agent is encouraged to learn to terminate the growth 
process by receiving a reward of 0, as opposed to choosing a neighbor giving a reward of 
− 0.2.

Once the training completes and an optimal value function is learned, the agent learns 
candidate complexes on the entire network by starting with seed nodes in parallel and 

(2)Vk(st) = max
at

(

�st+1p(st+1|st , at)
(

R(at , st)+ γVk−1(st+1)
))

(3)d =
2m

n(n− 1)
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adding neighbors giving the highest value function at each iteration, until the action of 
terminating a growth process gives a higher value than adding any of the neighbors.

Proof of applicability of RL to community detection

The environment is deterministic and the next state the subgraph moves into, (st+1), is 
only dependent on the previous state (st), the current subgraph. It does not depend on 
any other states previously encountered by the agent, satisfying the Markov property 
(Eq. 4) with a memoryless process.

Here, on the left-hand side, p is the conditional probability of achieving a state given 
only the previous state, while on the right-hand side, the probability is conditional on 
all the previous states encountered. Therefore, with this formulation, community detec-
tion can be treated as a Markov Decision Process (MDP) and solved using reinforcement 
learning methods.

Value iteration for community detection

The value iteration update rule with our formulation of the community detection prob-
lem is given by Eq. (5):

Vk (st) is the value function of the current state (at time t in the episode) in the current 
iteration k (of the value iteration algorithm), R is the defined reward, γ is the discount 
factor (0.5), and Vk-1 (st +1) is the value function (from the previous iteration k-1) of the 
next possible state. We obtain this simple update rule, derived from the Bellman opti-
mality equation (Eq. 6) using a transition probability p(st+1|st, at) of 1 in Eq. (1) due to 
the deterministic nature of this problem, i.e., the state transitions from st to only st+1 
when action at is taken.

Here, V* is the optimal value function, which the algorithm’s value function converges 
to after a few iterations using the value iteration update rule (Eq. 5), starting with a value 
of 0 for all states.

Reinforcement learning community detection algorithm

Overview

There are three main steps for community detection on a network using reinforcement 
learning:

1. Training the algorithm to walk across training complexes by learning a value func-
tion corresponding to each state (subgraph) encountered in the process.

2. Finding candidate complexes by using the learned value function to walk on the pro-
tein–protein interaction network.

(4)p(st+1|st) = p(st+1|st , st−1, ...s0)

(5)Vk(st) = maxat
(

R(at , st)+ γVk−1(st+1)
)

(6)V ∗(st) = maxat
(

R(at , st)+ γV ∗(st+1)
)
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3. Benchmarking learned complexes against known complexes.

Training the algorithm

For training the RL pipeline, we use the known training complexes and represent each 
complex as a target subgraph of the protein-interaction network. The agent, i.e., the cur-
rent subgraph expands by adding, at each step, the neighbor that yields the highest value 
for the current subgraph (the value is calculated using the reward given for adding this 
node and the value of the next state, as shown in Eq. 5). The algorithm updates the value 
of the density of the current subgraph to this new value (Eq. 5). Each time a state (den-
sity) is encountered in the process of training on multiple training complexes, the value 
of that state is updated using the update rule (Eq.  5), moving towards convergence of 
the value function and eventually learning a value function mapping densities to their 
probability of leading to a protein complex. Figure 1 shows an example of learning the 
value function while traversing a single known complex, and Algorithm 1 (Fig. 2) sum-
marizes the training procedure. The initial subgraph or seed is an edge between an initial 
random node of the complex and the node’s neighbor with whom the node shares an 
edge with the highest edge weight. To calculate the potential value of the current sub-
graph, i.e., the term within the max () in Eq. 5 for each neighbor of the current subgraph, 
each neighbor is temporarily added to the subgraph. The density of that temporary sub-
graph is calculated, followed by querying the value function for that state along with the 
reward based on whether the neighbor is present in the final protein complex. After cal-
culating the potential value function, the neighbor is removed from the subgraph for this 
process to be repeated for the rest of the neighbors. Once all the neighbors have been 
evaluated, the value function of the current state is updated and the neighbor yielding 
the state that provided the maximum value function is added to the subgraph. This new 
subgraph will be the new "seed" as this process repeats itself. The subgraph, or complex, 
will be "complete" and the algorithm stops adding nodes if all the neighboring nodes 
return lower value functions than the action of terminating the growth process, repre-
sented by adding an imaginary node with reward 0, leading to the same state as before, 
indicating that no new neighbors should be in the complex. Note how a reward of 0 
encourages the algorithm to terminate the growth process when all other options are 
adding wrong nodes, i.e., choosing actions that have a reward of -0.2. Conversely, if a 
correct node is available, its reward of 0.2 encourages choosing that node over terminat-
ing growth. Once a subgraph is deemed as complete, the process is repeated starting 
with a different node of the same complex, so that other trajectories to build the same 
complex are explored and the value function is updated accordingly. After starting with 
each of the nodes of a complex as seeds, training moves to the next complex, starting 
with a random new seed from this complex, and the process repeats.

Finding candidate complexes

Once we observe that the value functions of different states have converged in the 
training process, we can use the learned value function to walk paths on the network 
to find complexes. For each node of the network, we choose its corresponding high-
est edge-weight as a seed edge to grow a candidate complex. For each seed edge, the 
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neighbors are evaluated and the neighbor yielding the subgraph with the maximum 
value function is added. The growth process stops when adding any neighbor lowers 
the value function of the current subgraph. For instance, consider a subgraph with a 
value function of 0.2. If on evaluating each of the subgraph’s neighbors, each of them 
returns a value function lesser than 0.2, the algorithm terminates, and the subgraph 
will be considered a candidate complex. This process is repeated for the next seed 
edge in the network. These steps are detailed in Algorithm 2 (Fig. 3) and an example 
of finding a complex on the network is shown in Fig. 4.

Fig. 1 Example trajectory of training the RL pipeline on a network by learning a value function. A This 
network comprises 7 nodes and 11 weighted edges B A known complex consists of the nodes A, B, C, 
and E. C First, a seed edge (A, B) is identified, where the state (density) is  S1 = 0.8 and the value function is 
V(0.8) = 0 (all densities are initialized to 0). Once a node is added, a reward of + 0.2 is given if the node is in the 
training complex and − 0.2 if absent. D We evaluate all possible neighbors i.e., C and D, to add to the current 
subgraph {A,B}. Using the value iteration update rule (with γ = 0.5), we compute a corresponding value for 
the current state by adding each neighbor. E Adding node C updates V(0.8) = 0.2. F Adding node D updates 
V(0.8) = − 0.2. G The neighbor providing the highest value function (C) is added to the candidate complex 
and the original state’s value function  S1{A,B} = 0.8 is now + 0.2. H Again, we evaluate all possible neighbors 
of the updated complex  S2{A,B,C} = 0.57, i.e., D, E, and G. (I) Node D updates V(0.57) = − 0.2. J Node E updates 
V(0.57) =  + 0.2. K Node G updates V(0.57) = − 0.2. L Node E is added to the complex and V(0.57) is updated 
to + 0.2. This process is repeated until growth termination by adding an imaginary node with reward 0. As 
the remaining neighbors D, F, and G have a reward of − 0.2, the imaginary node is chosen as it results in 
the highest value function (0.1). The candidate complex is then finalized. A new seed edge is chosen from the 
network and this process repeats
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Post‑processing and evaluation

Once we have found all the candidate subgraphs corresponding to the specified seed 
nodes (in our experiments we use all the nodes of the graph as seed nodes), we perform 
a post-processing step to merge highly overlapping complexes. Adapting the pairwise 
merging algorithm in Super. Complex [30], if the overlap of two complexes is more than 
a specified threshold, we retain the complex with the highest value function of the two 
complexes and the merged variant and remove the others. To obtain the optimal overlap 
threshold, similar to [30], we test various thresholds for the Qi overlap measure (Eq. 7) 
and choose the threshold which gives the highest F-similarity-based Maximal Matching 
F-score (FMMF).

Here, t is the user-specified overlap threshold, Cp is a predicted complex and Ck is a 
known complex.

(7)Qi overlap measure :

∣

∣Cp ∩ Ck

∣

∣

|Cp|
> t and

∣

∣Cp ∩ Ck

∣

∣

|Ck |
> t

Fig. 2 Algorithm 1 outlines the training process for the RL algorithm
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To gauge the accuracy of the RL algorithm, we use different evaluation measures to com-
pare learned complexes with known complexes. The learned complexes are compared with 
the known complexes after removing nodes missing in the set of known complexes. We 
employ a variety of evaluation measures such as the FMMF, Community-wise Maximum 
F-similarity-based F-score (CMMF), and Unbiased Sn-PPV Accuracy (UnSPA) defined 
in Super.Complex [30], in addition to the Qi et  al. F-score [28], F-grand k-clique and 
F-weighted k-clique [6].

As discussed in [30], one of the more accurate methods for comparison is the FMMF 
which combines an adapted Maximal Matching Ratio (MMR) with its corresponding 
precision. The adapted MMR is computed as the fraction of known complexes matching 
predicted complexes, where the matches are computed as the sum of edge weights of a 
maximal matching in a bipartite graph between learned and known complexes. The edge 
weights used in the graph, matching learned and known complexes, are the F-similarity 
scores (F1) computed as follows.

(8)p′ =

∣

∣Cp ∩ Ck

∣

∣

∣

∣Cp

∣

∣

(9)r′ =

∣

∣Cp ∩ Ck

∣

∣

|Ck |

Fig. 3 Algorithm 2 outlines the steps in the RL algorithm to identify candidate complexes
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Here, Cp is a derived complex and Ck is a known complex.

Results
To demonstrate the effectiveness of the RL algorithm, we show the algorithm’s perfor-
mance on synthetic and real datasets and discuss the human protein complexes learned 
by the algorithm. We first evaluate the algorithm on a synthetic toy dataset to help pro-
vide intuition for how the RL process works on a simple system that can be fully visual-
ized. Then, we apply RL to the current full-scale human protein interaction network, 
focusing here specifically on the discovery of higher-order physical protein assemblies. 
For this purpose, we analyzed the hu.MAP networks (hu.MAP 1.0 [6] and hu.MAP 2.0 
[7]), which were originally developed to maximize the quality and scale of protein inter-
actions derived from mass spectrometry proteomics experiments and which have been 
independently shown to capture true protein interactions to a significant degree [32, 

(10)
2

F1
=

1

p′
+

1

r′

Fig. 4 Example trajectory for finding a complex with the RL pipeline using a learned value function. A This 
network comprises 7 nodes and 11 edges, each with corresponding with an edge weight. B In this network, 
a known complex consists of the nodes A, B, C, and E. The goal is to predict this known complex from the 
network using the learned value function. C A seed edge is identified to begin the walk (edge AB). At this 
seed edge, the complex is at state (density)  S1 = 0.8. D Then, we evaluate all possible neighbors of nodes A 
and B, i.e., C and D. Adding node C gives a temporary complex {A, B, C} with  S2 = 0.57, and a learned value 
V({A, B, C}) = 0.35, while adding node D gives a temporary complex {A, B, D} with  S2 = 0.33, V({A, B, D}) = 0.25. 
E The neighbor with the highest value function is node C and hence, node C is added resulting in  S2 = 0.57, 
V({A, B, C}) = 0.35. F The next neighbors are evaluated, i.e., D, E, and G. Adding node D leads to  S3 = 0.35, 
V({A, B, C, D}) = 0.2, node E results in  S3 = 0.38, V({A, B, C, E}) = 0.36, and node G leads to  S3 = 0.35, V({A, B, 
C, G}) = 0.2. G Since the neighbor yielding the highest value function is node E, this node is added to the 
complex resulting in  S3 = 0.38, V ({A, B, C, E}) = V(0.38) = 0.36. H Each neighbor (D, F, and G) results in a value 
function less than the current complex {A, B, C, E}. Thus, no neighbor is added, and the predicted community 
is complete
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33]. Finally, we analyzed the set of derived complexes for uncharacterized proteins and 
complexes.

In this section, we start with the details of experiments carried out, and then examine 
the value functions learned in these experiments as these are the key part of the algo-
rithm, signifying how to learn trajectories on the network corresponding to communi-
ties. Then, we present the evaluation metrics of the experiments including comparisons 
with state-of-the-art methods. In conclusion, we analyze the derived complexes from 
the experiment on the human protein interaction network, highlighting the complexes 
with uncharacterized proteins.

Experimental details—synthetic and protein interaction datasets

We first evaluate the RL algorithm on a synthetic toy network (Fig. 5) with 62 nodes and 
78 edges, comprising 14 complexes. Of these 14 complexes, 7 are used as training com-
plexes and 7 are used as testing complexes. The testing and training evaluation results 
can be found in Additional file 1: Table S1. The results showed consistently high scores 
across various evaluation metrics, indicating strong precision and accuracy in predicting 
both training and testing toy complexes.

Next, we apply the RL algorithm on a human protein interaction network (hu.
MAP 1.0 [6]) comprising 7778 nodes and 56,712 edges to learn candidate complexes 
using 188 known complexes; these complexes are obtained by pre-processing the 
CORUM protein complex database [34]. The pre-processing (see methods section 
of Super.Complex [30]) primarily involves discarding complexes that are internally 

Fig. 5 A synthetic disconnected toy network of complexes. Complexes A–G are used for training and H–N 
are used for evaluating the RL algorithm
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disconnected or have fewer than 3 nodes. We also merge complexes with a pairwise 
overlap of more than 0.6 Jaccard coefficient to remove redundancy, since the CORUM 
set of complexes includes multiple non-independent complexes, e.g., the 19S and 20S 
proteasomes are subcomplexes of the larger 26S proteasome. We merge these highly 
interdependent complexes to help reduce ambiguity while training the RL agent. 
Since we train on only one complex in each episode, reducing non-independent com-
plexes will reduce negative rewards being given when the RL agent adds a neighbor 
that does not belong to the complex, but belongs to another overlapping complex. 
We  also discuss an alternate reward scheme in the conclusions section for overlap-
ping community detection.

For a perfect comparison, we use the same pre-processing steps as in Super.Com-
plex for both the network and complexes, as well as the same training and testing 
complexes (all input data was obtained from the Super.Complex input data [30]). 
Since we only use the density feature in our algorithm, we also run the Super.Complex 
pipeline with only the density feature. The testing and training evaluation results can 
be found in Additional file 1: Table S2.

The RL algorithm is also tested on hu.MAP 2.0 [7], a human PPI network consist-
ing of 10,433 nodes and 43,581 edges, obtained by considering only the edges with 
a weight of at least 0.02. Again, to compare with Super.Complex, we use the same 
training and testing complexes from hu.MAP 1.0, and the same preprocessing steps. 
We perform two experiments; in the first experiment, we transfer the value function 
trained on hu.MAP 1.0 and in the second, we train a new value function on hu.MAP 
2.0. The testing and training evaluation results for hu.MAP 2.0 can be found in Addi-
tional file 1: Table S3.

The value function converges in the training phase

In this section, we examine the value functions learned in the experiments, as these 
signal the key heuristic learned to identify trajectories on the network leading to com-
munities. During the training phase, we track the value for each encountered state 
(density) over time. Once the value of each of the states starts to converge, it can be 
assumed that the value has reached its optimum. Figure 6 demonstrates the success-
ful convergence of the value for each density in hu.MAP 1.0.

We also investigate the relationship between a state’s density and its value. Figure 7 
shows that on the path to a final complex, subgraphs of higher densities are favored 
since they have higher values.

The learned value functions for the synthetic dataset and hu.MAP 1.0 enable us 
to accurately predict complexes on the respective networks, as shown in the next 
section. Further, employing transfer learning, we use the value function learned 
on hu.MAP 1.0 to accurately predict complexes on hu.MAP 2.0 (Additional file  1: 
Table  S3). This demonstrates that the value functions learned by the RL algorithm 
can be transferred for community detection problems on similar networks. We also 
directly train a value function on hu.MAP 2.0 using the same training complexes and 
find that predicting complexes on hu.MAP 2.0 with this value function also gives 
accurate results (Additional file 1: Table S3).
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The RL algorithm learns accurate communities on synthetic and real datasets

Having learned accurate values of different states (subgraphs) encountered in the pro-
cess of reconstructing known communities, we now use the value functions learned to 
find communities on the whole network. Recall the synthetic dataset containing 14 com-
munities used to evaluate the RL algorithm. The performance of the algorithm across 
different evaluation measures is excellent as summarized in Table 1. Next, we apply the 
algorithm to the real dataset, hu.MAP 1.0, by training it on 132 complexes. We test dif-
ferent Qi overlap thresholds (Fig. 8A), in the RL algorithm, to merge highly overlapping 
complexes. The peak in Fig. 8A occurring at 0.325 Qi overlap measure corresponds to 
the best FMMF score. For this value of the Qi overlap measure, the RL algorithm learns 
1,157 complexes. We also analyze the complex size distribution (Fig. 8B) and examine 
the best  known complex  matches for derived complexes and the best  derived com-
plex matches for known complexes using F1 score distributions (Fig. 8C).

For a perfect comparison, Super.Complex is evaluated on hu.MAP 1.0 using only 
the subgraph feature density. The best results from Super.Complex are obtained using 
a k-nearest neighbors’ classifier (with k = 76) to train a community fitness function, 
and from a search process for candidate complexes using maximal cliques as starting 
seeds and a pseudo-metropolis heuristic (with a probability of 0.1) for complex growth 
(with  an exploration probability ϵ of  0.01). The candidate complexes are then merged 
with an overlap threshold of 0.2 Jaccard coefficient to yield 798 final complexes. In con-
trast, the RL algorithm predicts a higher number (1157) of complexes possibly explaining 

Fig. 6 Convergence of the value for each density. Each density (0.4 through 1) encountered in the training 
for hu.MAP 1.0 is plotted to see how its value updates over iterations. Although the values fluctuate initially, 
they converge eventually indicating successful training
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the slightly higher (FMM) recall measure (Table 2). The RL method achieves compara-
ble performance to the supervised method, Super.Complex and tends to outperform 4 
recent unsupervised community detection methods, ClusterONE + MCL [6], PC2P [25], 
MP-AHSA [26], and DPCMNE [27] (Table 2), demonstrating the potential of applying 
reinforcement learning to community detection.

Comparing Tables 1 and 2, we observe better accuracies for the algorithm on the 
toy dataset than those on hu.MAP 1.0. This could be attributed to the algorithm being 
better suited to finding non-overlapping communities, such as the toy communities, 
when compared to finding overlapping communities, such as the CORUM complexes 

Fig. 7 Higher values favor higher densities. A The graph on the toy network shows a positive correlation 
between value function and density and therefore, complexes and trajectories with higher densities are 
favored. The density histogram for the training phase shows a higher frequency for higher density subgraphs. 
B For hu.MAP 1.0, the graph shows a stronger correlation between density and value function. The density 
histogram again shows that higher densities are more frequently observed

Table 1 RL algorithm has strong performance on a synthetic toy dataset

The algorithm was trained on 7 toy complexes from a synthetic network of 62 nodes and 78 edges. It predicted 14 
complexes which are evaluated against the 14 true complexes

FMM, F-similarity-based Maximal Matching; CMMF, Community-wise Maximum F-similarity-based F-score; UnSPA, Unbiased 
Sn-PPV Accuracy; SPA, Sn-PPV Accuracy

FMM 
Precision

FMM 
Recall

FMM 
F-score

CMMF UnSPA Qi et al. 
F1 score

SPA F-Grand 
K-Clique

F-weighted 
K-Clique

RL Algo-
rithm

0.963 0.963 0.963 0.963 0.969 1.00 0.959 1.00 1.00

Super.
Complex

0.999 0.999 0.999 1.00 0.999 1.00 0.998 1.00 1.00



Page 17 of 27Palukuri et al. BMC Bioinformatics          (2023) 24:306  

on hu.MAP 1.0. We also evaluated the RL algorithm without merging overlapping 
communities in the predicted complexes, resulting in an FMM F1-score of 0.102 and 
a Qi et al. F1-score of 0.255. A comparison with the scores obtained when employing 
the merging operation (Table  2) reveals a significant improvement in metrics after 

Fig. 8 Evaluating the predictions of the RL algorithm on hu.MAP 1.0. A The optimal Qi threshold is 0.325. 
We tested various overlap thresholds, i.e., Qi values (Eq. 7) between 0.2 and 0.9 in 0.25 intervals. B Size 
distributions of known and predicted complexes. This graph shows that the distribution of the sizes (no. of 
proteins) of the predicted and known complexes is very similar. C F1 score distributions of the best-predicted 
match for known complexes and vice-versa. In both cases, higher F1 scores have higher counts indicating 
accurate predictions

Table 2 The RL algorithm yields competitive accuracy compared to other community detection 
algorithms on hu.MAP 1.0

The learned complexes on hu.MAP 1.0 are evaluated against all the known cleaned CORUM complexes

FMM, F-similarity-based Maximal Matching; CMMF, Community-wise Maximum F-similarity-based F-score; UnSPA, Unbiased 
Sn-PPV Accuracy; SPA, Sn-PPV Accuracy

FMM 
Precision

FMM 
Recall

FMM 
F-score

CMMF UnSPA Qi et al. F1 
score

F-Grand 
K-Clique

F-weighted 
K-Clique

RL Algo-
rithm

0.612 0.482 0.547 0.654 0.772 0.559 0.789 0.988

Super.
Complex

0.835 0.457 0.591 0.720 0.803 0.658 0.991 0.999

Cluster-
ONE + MCL

0.471 0.686 0.579 0.797 0.911 0.794 0.77 0.967

PC2P 0.535 0.589 0.562 0.625 0.571 0.418 0.627 0.891

MP-AHSA 0.421 0.498 0.459 0.424 0.513 0.397 0.516 0.823

DPCMNE 0.457 0.048 0.086 0.408 0.454 0.132 0.609 0.608
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eliminating overlapping complexes. Removing overlapping complexes reduces any 
redundancies in the dataset, enhancing the accuracy and efficiency of the algorithm.

While accuracies are comparable, we note that the RL algorithm achieves faster 
running time relative to Super.Complex (Table  3). Specifically, the RL algorithm 
trains for ~ 9  s on one core of a personal computer (M1 chip @ 3.2  GHz), making 
the training significantly faster than Super. Complex’s training with the AutoML pipe-
line, which runs for ~ 540  s on 20 cores of a supercomputer (Intel(R) Xeon(R) CPU 
E5-2699 v3 @ 2.30  GHz). Growing the candidate communities took ~ 300  s when 
running in parallel across 8 cores (3.2 GHz) for the RL algorithm, compared to ~ 20 s 
when running in parallel across 72 cores (2.3  GHz) for Super.Complex. This indi-
cates that growing new complexes is also fast in the RL algorithm due to the simple 
inference using the value function lookup. We employ the four heuristics available in 
Super.Complex, with default parameters, to find the best one and perform a param-
eter sweep of 7 thresholds for merging overlaps with each heuristic. In total, we eval-
uate 28 heuristic-parameter combinations in Super.Complex; the same number of 
overlap thresholds used in the RL method. Overall, with the best parameters, the RL 
algorithm took ~ 350 s on the personal computer with 8 cores (note that only the pre-
diction step is parallelized here), compared to Super.Complex which took ~ 650 s on a 
supercomputer with 72 cores (note that both the learning and the prediction step are 
parallelized here).

The average time complexity of the prediction phase of the RL algorithm is 
O
(

G2K 2S/P
)

 , where G is the average number of nodes in a complex, K is the average 
degree of the network and S is the number of seeds chosen (in our experiments, S is 
the number of nodes in the network). For Super.Complex with all subgraph features, 
the time complexity of the prediction phase is O

(

XG4KS/P
)

 . We note that the pre-
diction phase of the RL algorithm scales better than that of Super.Complex. This is 
because the complexity of the subgraph feature extraction step reduces from O

(

G3
)

 
in Super.Complex to O(GK ) in the RL algorithm; this reduction happens since the 
RL algorithm uses only the feature density with a constant model inference time (X). 
The time complexity of the RL training algorithm is O

(

G3K 2T
)

 , where T is the num-
ber of training complexes. In contrast, the training complexity of Super.Complex is 
O
(

G3Tgpm/c
)

 , where g is the number of generations, p is the population size, m is the 
number of machine learning models and feature preprocessor types tried, and c is the 
number of processes on the single compute node running the AutoML step.

Table 3 The RL algorithm achieves a faster running time when compared to Super.Complex

The time reported here corresponds to runs using the best overlap threshold found for both methods and using the best 
heuristic found in the case of Super.Complex

Method Processor 
specifications

Training Prediction Post-processing Total time 
(s)

No. of 
cores

Time (s) No. of 
cores

Time (s) No. of 
cores

Time (s)

RL Algo-
rithm

M1 chip @ 
3.2 GHz

1 9 8 320 1 11 340

Super.
Complex

Intel(R) Xeon(R) 
E5-2699 v3 @ 
2.30 GHz

20 540 72 17 1 112 669
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We note that the RL algorithm can be especially useful in community detection prob-
lems with a small number of known complexes, as demonstrated in our experiments (7 
and 132 training complexes in the synthetic and real datasets respectively). Even if the 
number of known complexes is small, for each complex, the value iteration procedure in 
the RL algorithm explores several trajectories to learn the complex, incidentally, increas-
ing the size of the training dataset used to learn the complexes. On the other hand, 
existing supervised community detection methods train on a dataset with a size equal 
to the number of training complexes. Other benefits of the RL algorithm include the 
lack of need for extensive hyperparameter tuning and the ability to predict complexes 
that do not contain smaller complexes. For comparison, in Super.Complex, at each stage 
of growth in a candidate complex, the pipeline seeks to yield a final protein complex, 
attempting 4 different heuristics, each with 1–2 hyperparameters. Contrastingly, the RL 
pipeline learns and traverses the optimal trajectory to find a complex without optimizing 
for intermediate complexes, and without the need for heuristics, thus saving on search-
ing for parameters in the candidate complex growth step. Thus, the RL algorithm finds 
the best sequence of steps to grow a complex, while also being efficient.

In summary, relative to more sophisticated supervised ML strategies, the simplic-
ity of the value iteration algorithm and the comparable accuracy along with improved 
efficiency demonstrates the great potential of the RL algorithm for solving community 
detection problems.

The learned clusters suggest functions for uncharacterized proteins

Importantly, the RL algorithm returns many well-known human protein complexes 
accurately (as would be expected from the precision measurements on withheld test 
complexes), several of which are illustrated in Fig. 9.

Moreover, a noteworthy feature of the RL algorithm is that it adds a protein to a com-
plex only if the protein increases or maintains the value function of the complex. For 
example, this can be seen when building the learned complex in Fig. 9D. When the seed 
edge is WASF2-ABI1, the algorithm chooses CYFIP1 as its first neighbor to add, result-
ing in a value function of 0.39. As the algorithm loops through various neighbors, the 
only neighbors added to the candidate complex are those that maintain the 0.39 value 
function of the complex. Interestingly, though in most cases the density of the complex 
is increasing, there are some additions to the complex that decrease the complex density 
such as when adding NCK2. This is unlike traditional greedy complex detection algo-
rithms that favor higher-density protein complexes. Similarly, this pattern occurs when 
building the candidate complex with proteins, C15orf41, CDAN1, ASF1A, and HIRA 
(Fig.  11). Notably, the algorithm also identifies several additional interaction partners 
and even potential new subunits within these systems, such as, for example, clustering 
the guanine nucleotide exchange factor RCC1L with proteins of the mitochondrial ribo-
some large subunit, consistent with a known role for RCC1L in mitochondrial ribosome 
biogenesis [35]. Similarly, the RL algorithm recapitulates the nutrient-response-related 
KICSTOR complex (SZT2, KPTN, ITFG2, and C12orf66) [36] on both hu.MAP 1.0 
(SZT2, KPTN, ITFG2, TMCO4 and C12orf66) and hu.MAP 2.0 (SZT2, KPTN, ITFG2, 
TMCO4, BMT2, and KICS2), suggesting the uncharacterized transmembrane protein 
TMCO4 to be a potential new interaction partner, and it reconstructs the WAVE1/
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WAVE2 protein complexes, known regulators of actin filament and lamellipodia forma-
tion [37, 38] while also suggesting involvement of KIAA1522, consistent with a recent 
suggestion for its involvement by Cho and colleagues [39]. To investigate the identified 
complexes interactively, visualizations are available for the 1157 learned complexes on 
the supporting website (see the Code and data availability section).

Of particular interest are complexes corresponding to proteins with low annotation 
scores, as finding the proteins in complexes with better-annotated proteins may help 
suggest potential functions for these otherwise minimally characterized proteins [40]. 
We searched specifically for such cases and highlighted complexes with uncharacterized 
proteins based on available UniProt annotations [41]. Some examples of learned com-
plexes with uncharacterized or minimally characterized proteins are provided in Fig. 10.

For example, in Fig. 10A, C4orf19 (chromosome 4 open reading frame 19) is broadly 
expressed across human cell types and tissues [42], with high protein levels in the kid-
ney, liver, and GI tract [43, 44] and while little is known about its function, an observed 
relationship between C4orf19 and colorectal cancer suggests that high expression levels 
might have some value as a marker for colorectal cancer [45], although elevated C4orf19 
expression is also reported to show a favorable association with renal cancer survival 
[43, 44]. Notably, four of the other proteins in this cluster (PDCD10, STK24, STK25, 
STK26) are known to associate into a complex with roles in maintaining epithelial integ-
rity [46, 47] and kidney water balance by regulating aquaporin trafficking and abundance 

Fig. 9 Learned complexes from the RL pipeline. A The large (39S) subunit of the mitochondrial ribosome 
is present in the RL-determined complexes, but broken up into multiple complexes, one of which is shown 
here. Note the presence of the guanine nucleotide exchange factor RCC1L, which is known to be essential 
for mitochondrial ribosome biogenesis [30]. B RL recapitulates the KICSTOR complex (C12orf66, KPTN, ITFG2, 
and SZT2), a multiprotein complex known to regulate mTORC1 and cells’ responses to available nutrient 
levels [31], but finds one additional putative subunit, the uncharacterized transmembrane protein TMCO4. 
C The exosome RNA processing complex is well-reconstructed by RL, with additional interactions observed 
to the tRNA synthetase FARSB and to FAM98B, a component of tRNA splicing ligase, consistent with possible 
associations among these systems [35]. D The WAVE1/WAVE2 protein complexes, known to regulate actin 
filament and lamellipodia formation [32, 33], are reconstructed by RL, along with evidence for interaction 
with the uncharacterized protein KIAA1522. Notably, KIAA1522 was recently suggested by Cho and 
colleagues to bind WAVE and participate in a community of associated actin-organizing proteins [34]
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in kidney tubule epithelial cells [48], suggesting a potential role for C4orf19 in normal 
kidney function. As for C4orf19, many of the proteins have been reported as potential 
biomarkers for bladder, gastric, pancreatic, and colorectal cancers [49–52].

As another example of a minimally characterized protein, C18orf21 (chromosome 18 
open reading frame 21) is reported to possibly regulate the Rnase/Mrp complex, a ribo-
nucleoprotein complex involved in RNA processing [53]. Both RL algorithm and Super.
Complex concur on a connection for C18orf21 to RNA processing: from the learned 
complexes of Super.Complex, C18orf21 was found to be a part of a complex with a 50% 
overlap to the Rnase/Mrp complex, comprising all the proteins found in the RL algo-
rithm’s learned complex (Fig.  10B), adding support for this protein’s possible function 
in ribonuclease P RNA binding. Further, the RL algorithm learns a similar complex 
(C18orf21, IBTK, RPP30, POP4, and RPP25L) on hu.MAP 2.0, adding additional sup-
port to C18orf21’s function from the learned complexes on hu.MAP 1.0.

Somewhat more information can be gleaned for C15orf41 (chromosome 15 open read-
ing frame 41), which, while minimally characterized, has recently been detected to inter-
act with Codanin-1 (CDAN1) in human cells, and this interaction forms a tight, near 
stoichiometric complex [54]. Moreover, these studies reveal that mutation of C15orf41 
can lead to the development of Congenital Dyserythropoietic type 1 disease (CDA-
1) [54]. While its function is unknown, studies have noted a high sequence similarity 
between C15orf41 and archaeal Holliday junction resolvases, which are DNA repair 
enzymes that remove Holliday junctions [54], and it has been implicated in erythro-
cyte differentiation [55]. Its putative interaction partners within the complex (Fig. 10C), 
HIRA and ASF1A, cooperate to promote chromatin assembly [56], and HIRA, ASF1A, 
and UBN1/2 form a complex and function in histone deposition of variant H3.3 into 
chromatin, independent of DNA replication [57]. CDAN1 and C15orf41 mutations lead 
to similar erythroid phenotypes and they were both eliminated from the same animal 
taxa, suggesting that these 2 proteins may participate in a shared pathway [58].

To obtain more support for the overall physical association of proteins in this clus-
ter, we modeled the 3D structure of the C15orf41-CDAN1 interaction using AlphaFold-
Multimer [59], as implemented in Google Colab [60]. The AlphaFold model indicated a 
high-confidence interface spanning two distinct domains of CDAN1, one contributed 
from a domain spanning amino acids 1017–1203 and one covering one face of the larger 
N-terminal domain (2–997) centered on amino acids 427–472 and 843–997; these, in 

Fig. 10 Participation in protein complexes by the uncharacterized proteins C4orf19 and C18orf21 and the 
minimally characterized protein C15orf41. A We find C4orf19 to belong to a larger complex composed of 
KIF20A, C4orf19, PDCD10, STK25, ZNF598, STK26, and STK24. B C18orf21 is found in a complex with 50% 
similarity to the Rnase/Mrp complex. C C15orf41 is found in a complex with 30% similarity to the cytosolic 
Codanin-1-Asf1-H3.1-histone H4–importin-4 complex
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turn, interact with opposing surfaces of C15orf41 (Fig. 11). The predicted structure is 
consistent with the prior experimental observation that the C-terminal 227 residues of 
CDAN1 (residues 1000–1227) are critical for the interaction [54]. To investigate the pos-
sibility of additional direct interactions between the C15orf41-CDAN1 heterodimer and 
one or more of the remaining proteins in the cluster, we took advantage of an available 
X-ray crystal structure that delineated the ASF1A interaction with HIRA residues amino 
acids 446–466 (PDB entry 2I32) [56] to further evaluate a larger complex. Using AF2-
multimer, we modeled C15orf41, CDAN1 residues 2–74 and 286–1203 (omitting the 
intrinsically disordered segments, as determined by [60]), ASF1A residues 1–155 (omit-
ting the intrinsically disordered tail), and HIRA residues 421–479, a somewhat larger 

Fig. 11 Structural modeling supports C15orf41, CDAN1, ASF1A, and HIRA participating in a large 
multiprotein complex. Using AlphaFold-multimer, we find that all four proteins can be simultaneously 
accommodated within a single multiprotein complex, here showing C15orf41’s modeled interaction with 
CDAN1 residues 2–74 and 286–1203, ASF1A residues 1–155, and HIRA residues 421–479. For illustration 
purposes, the known crystal structure of HIRA 446–466 [56] has been superimposed onto the AlphaFold 
model, which is available in full from the supporting GitHub repository with accompanying quality 
measurements
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segment known to be critical for the interaction with ASF1A [55]. As illustrated in full in 
Fig. 11, AlphaFold suggested a binding site for ASF1A distinct from the C15orf41 bind-
ing site that, importantly, did not occlude the experimentally determined HIRA binding 
site, which AlphaFold also recapitulated. Thus, 3D structural modeling confirmed that 
four of the proteins in this cluster can be accommodated within the same overall multi-
protein complex.

Finally, C11orf42 was found as a subunit in a complex (C11orf42, SNX1, SNX5, VPS29, 
SNX2, COMMD9) that corresponds to a subcomplex of the Retromer or SNX/BAR 
complex (e.g. as in [61]), with supporting independent evidence from a learned complex 
from Super.Complex (C11orf42, SNX1, SNX5, and VPS29). This indicates that C11orf42 
may be involved in trafficking with Retromer complex proteins, a notion supported by 
its localization to intracellular vesicles similar in nature to the other proteins in the com-
plex [43, 62–66]. Another example, C16orf91 constituted a complex (C16orf91, UQCC1, 
COX20, UQCC2) resembling a learned complex from Super.Complex (C16orf91, 
UQCC1, COX20).

Conclusions
In conclusion, we asked if reinforcement learning could be applied to learn to walk tra-
jectories on a protein interaction network, and in this way more accurately determine 
protein complexes. Application of the method to currently available human protein 
interaction networks performed competitively with other algorithms, with comparable 
accuracy but notable savings in computational time, and in turn led to clear predictions 
of protein function and interactions for several uncharacterized human proteins. We 
could support at least one of these, C15orf41, with independent evidence from 3D struc-
tural modeling.

Three main avenues can be explored to improve the RL community detection algo-
rithm: improving the subgraph representations, the RL formulation, and the candidate 
community search process.

We currently represent a subgraph by a single feature, its density, which gives a 
problem formulation with a small state space. While performance may be negatively 
impacted, to improve accuracy, more subgraph features could be included in addition 
to density. Examples of other subgraph features that could be added include edge weight 
statistics, node clustering coefficient statistics, and degree correlation statistics. How-
ever, as the number of features increases, the state space increases exponentially. For 
instance, if we incorporate 18 topological features with a discretization of each feature 
into 10 bins, we increase the number of states to 1018 . Different sample-based reinforce-
ment learning methods could be applied to address this challenge and potentially give 
more accurate results.

The RL formulation could be modified to better accommodate overlapping community 
detection, by giving a positive reward if, while growing a seed node, a neighbor is pre-
sent in any of the training complexes that can be built, rather than considering only one 
training community at a time. Note that in this scenario, the reward for a neighbor can 
change dynamically based on the possible communities that can be built from that step. 
Due to the dynamic rewards that need to be computed for each neighbor at each itera-
tion, by checking whether the new subgraph is a part of any of the training communities, 
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computational time would increase significantly compared to the current static reward 
system, however, it may improve accuracy. Also, different rewards and discount factors 
can be experimented with in the training phase of the algorithm.

Finally, in the candidate community search process, there may be scenarios where 
there are multiple highest-scoring neighbors to add at an iteration in the growth process 
of a subgraph. Currently, we have only added one of the highest-scoring neighbors to 
grow the complex. Each of the other highest-scoring neighbors can be added as well to 
grow complexes we may have missed in the current method.
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