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Abstract 

Background: Accurate estimation of the effective reproductive number ( Re ) of epi-
demic outbreaks is of central relevance to public health policy and decision making. 
We present estimateR, an R package for the estimation of the reproductive number 
through time from delayed observations of infection events. Such delayed observa-
tions include confirmed cases, hospitalizations or deaths. The package implements 
the methodology of Huisman et al. but modularizes the Re estimation procedure 
to allow easy implementation of new alternatives to the currently available meth-
ods. Users can tailor their analyses according to their particular use case by choosing 
among implemented options.

Results: The estimateR R package allows users to estimate the effective reproduc-
tive number of an epidemic outbreak based on observed cases, hospitalization, death 
or any other type of event documenting past infections, in a fast and timely fashion. 
We validated the implementation with a simulation study: estimateR yielded esti-
mates comparable to alternative publicly available methods while being around two 
orders of magnitude faster. We then applied estimateR to empirical case-confirmation 
incidence data for COVID-19 in nine countries and for dengue fever in Brazil; in parallel, 
estimateR is already being applied (i) to SARS-CoV-2 measurements in wastewater data 
and (ii) to study influenza transmission based on wastewater and clinical data in other 
studies. In summary, this R package provides a fast and flexible implementation to esti-
mate the effective reproductive number for various diseases and datasets.

Conclusions: The estimateR R package is a modular and extendable tool designed 
for outbreak surveillance and retrospective outbreak investigation. It extends 
the method developed for COVID-19 by Huisman et al. and makes it available for a vari-
ety of pathogens, outbreak scenarios, and observation types. Estimates obtained 
with estimateR can be interpreted directly or used to inform more complex epidemic 
models (e.g. for forecasting) on the value of Re.
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Background
The coronavirus disease 2019 (COVID-19) pandemic has demonstrated that reliable 
quantification of pathogen transmission is key to an informed and timely public health 
response during an epidemic [1]. Moreover, accurate knowledge of pathogen transmis-
sion is essential for retrospective evaluation of the effectiveness of pharmaceutical and 
non-pharmaceutical interventions against spreading pathogens [2–4].

The reproductive (or reproduction) number corresponds to the average number of 
secondary infections caused by an infected individual. The time-varying effective repro-
ductive number Re (or Rt ) is a measure of the pathogen transmission in a population. 
Several methods have been proposed for its calculation, including those that monitor 
changes in near real-time [5–10]. The reproductive number provides a interpretable 
indicator of epidemic dynamics: Re > 1 corresponds to a growing outbreak while Re < 1 
corresponds to a declining outbreak. This threshold also gives an intuitive understanding 
of the reduction in transmission that is necessary for the epidemic to be curbed, which 
is particularly useful to public health authorities in epidemic contexts [11]. Moreover, Re 
estimates can be linked to changes in policy, population behavior and immunity, patho-
gen evolution, and other factors [1, 3, 12–14].

The COVID-19 pandemic revealed that pre-pandemic methods were not equipped 
to monitor ongoing outbreaks (as opposed to revisiting past outbreaks) or to deal with 
delayed and incomplete observations of infection events [1]. Thus, new methods were 
developed to fill this gap [15–18].

Here, we present estimateR, an R package to estimate Re from delayed and incom-
plete observations of infection events. This is the first package-based implementation 
of the methodology developed in Huisman et al. [18]. While their software pipeline was 
extensively used and tested during the COVID-19 pandemic, its implementation was 
not optimized for usability by third parties. Instead, the estimateR package offers a fully-
documented and accessible implementation of the method to any R user. It was designed 
specifically for ease of use in a variety of infectious disease outbreak contexts. Because of 
its modularity, it can easily be extended as new Re estimation methods become available.

Implementation
Method summary

The estimateR R package provides tools to estimate the effective reproductive number 
in a timely fashion based on observational time series data from an epidemic. The core 
method implemented by estimateR is an improved version of the methodology devel-
oped for COVID-19 by Huisman et  al. [18]. A full description of the method imple-
mented in estimateR is provided in “Appendix A” section.

In brief, this method consists of 4 separate steps chained together to estimate Re and 
the associated 95% confidence interval from noisy and delayed observations of infection 
events. These observations include case confirmations, hospital admissions, intensive 
care unit admissions or deaths. The delay between an infection event and a recording 
depends on the observation type. In the first step, the input data is smoothed to reduce 
the effect of observation noise on the resulting Re estimates. “Noise” refers to any ran-
domness that is not related to infection dynamics or stochastic reporting delays (e.g., 
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from missing data, incomplete reporting, imported cases from abroad and other such 
sources of variability). Second, a time series of infection events is reconstructed from the 
smoothed observation data. Each observation is modelled as the result of an infection 
event combined with a waiting time drawn from a delay distribution (describing the time 
from infection to observation). To reconstruct the original series of infection events, the 
delay distribution is removed (deconvolved) from the observation data using an expec-
tation-maximisation algorithm [19]. Third, Re is estimated from the inferred series of 
infection events, using the EpiEstim R package [8]. Finally, to estimate the uncertainty 
around the Re point estimates, bootstrap replicates are built from the original data. Each 
replicate goes through the three steps described above, allowing the construction of a 
confidence interval.

Package structure

Each of the four analysis steps described above (1. smoothing, 2. deconvolution, 3. Re 
inference and 4. bootstrapping) is built as an independent module and can be used as 
a building block in an analysis pipeline. The standard use case, i.e. estimating Re from a 
time series of noisy and delayed observations of infection events, requires all four build-
ing blocks. However, we also accommodate different use cases: for instance, a user might 
be interested in recovering a time series of infection events rather than Re (i.e., using 
only steps 1, 2, 4) while another user may rely on incidence data that does not require 
smoothing (using only steps 2, 3, 4). The modular structure is complemented by a num-
ber of so-called “pipe functions”. Each of these functions corresponds to a particular type 
of analysis that can be carried out with estimateR.

Furthermore, within each module, one or multiple methods are provided for users to 
choose from. For instance the Re estimation module implements both an option to esti-
mate Re as a continuous function of time and an option to estimate it as a piecewise 
constant function of time (step-function). In the future, we plan to continue to extend 
the possibilities offered by estimateR by implementing additional options for the various 
modules. Others are also invited to build on the existing code base by implementing new 
options, whether for their own use or for the community.

In summary, the code is structured to give as much freedom as possible to users and 
method developers, while providing sensible default configurations to ensure a high 
level of usability.

Inputs and outputs

In the standard use case of estimateR, Re values are estimated from noisy delayed obser-
vations of infection events. Required inputs are a time series of observations, the genera-
tion time distribution of the outbreak (distribution of time elapsed between successive 
cases in a transmission chain), and the distribution of the delay between infection events 
and recorded observations. These delays can be expressed as a single probability dis-
tribution or can combine several independent delay distributions. For instance, the 
delay between infection and hospital admission may be broken down into two succes-
sive delays: one from infection to symptom onset (incubation period) and another from 
symptom onset to hospital admission.
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The default output of an estimateR analysis is a dataframe containing Re estimates 
through time, along with 95% confidence interval boundaries. When relevant, a date of 
reference can be passed as input, corresponding to the date of the first recorded inci-
dence. A date column is then included in the output. Optionally, results from intermedi-
ate steps of the analysis can also be included in the output.

There are many more inputs to the main estimateR functions. These are associated 
with sensible default values applicable to a wide range of use cases, and are well-docu-
mented to allow users to alter them when required. Specific use cases of estimateR may 
require adapted inputs. As estimateR can handle delay distributions that vary through 
time, the delay information can also be input as a table containing records through time 
of individually-recorded delays. Such a table can be derived from a line list of the out-
break of interest. This information can also be passed as a matrix specifying delay dis-
tributions through time. These options are described in more detail in the estimateR 
documentation.

Handling issues relating to incomplete data

Epidemic case data is intrinsically complex, as the true infection time is often unknown 
and observed with a certain delay, and time series of observations may be truncated or 
incomplete. We describe three new features, implemented in estimateR to improve the 
method described by Huisman et al. [18] in the face of these issues.

Handling truncated incidence data

In some outbreaks, the window for which incidence data is available excludes the begin-
ning of the outbreak. This may happen for a number of reasons. For instance, cases may 
not have been properly recorded and centralized before a particular date. Or public 
health authorities may change the way incidence is recorded at some point during an 
outbreak, rendering early data difficult to combine with newer data. To better handle 
such issues, whenever smoothing incidence data at the beginning of the time series, esti-
mateR extrapolates incidence in the past assuming a growth rate corresponding to the 
observed average growth rate over the first few data points. This allows the smoothing 
function to reconstruct a trend at the beginning of the time series closer to the most 
plausible trend. To avoid biasing downstream computations, the extrapolated data 
points are discarded after the smoothing step (see “Appendix A” section for details).

Inference of the series of infection events

The deconvolution step to infer infection events from delayed observations is imple-
mented using an expectation-maximisation algorithm. This algorithm iteratively 
improves on an initial guess for the time series of infection events. In estimateR this 
initial guess is built from the series of delayed observations shifted towards the past 
by a number of time steps. The gap left by this shift is filled by extrapolating the series 
of observations assuming a constant growth rate equal to the last observed rate (see 
“Appendix A” section for details).



Page 5 of 26Scire et al. BMC Bioinformatics          (2023) 24:310  

Dealing with partially‑delayed observations

In estimateR, when combining partially-delayed and fully-delayed observations (see 
“Appendix B” section for definition and details), the nowcasting of partially-delayed 
observations is performed before the partially-delayed series of observations is 
smoothed.

Results and discussion
Validation of the estimateR implementation on simulated data

Basic validation

To validate the implementation of estimateR we first tested its ability to monitor Re on a 
number of simulated scenarios. We simulated infection events through time, according 
to five representative trajectories the reproductive number could follow during an out-
break (see Fig. 1). These scenarios were designed to test how accurately the reproductive 
number is estimated (1) during phases when Re is constant or gradually changing, (2) 
when Re increases or decreases abruptly and (3) close to the present. The full simula-
tion procedure is detailed in “Appendix C” section. For these simulations the delay from 
infection to observation was fixed through time and had a median of 14 time steps.
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Fig. 1 Summary of Re inference on simulated data. Each row corresponds to a different scenario of Re 
changes through time. Values shown in blue correspond to data simulated without additional observation 
noise whereas the green values correspond to data simulated with an auto-correlated noise model. The first 
column shows estimated Re values, with the ground truth as a black line. For each noise model, the median 
(over 100 replicates) estimate is shown as a line and the 95% confidence interval is shown as a ribbon. The 
second column shows corresponding coverage values (fraction of replicates for which the ground truth is 
inside the confidence intervals) and the third column shows the root mean squared error (RMSE)
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First, we considered a case without observation noise, with only Poisson noise from 
the infection process itself (see “Appendix C” section for details). This constitutes an 
ideal case where we expect Re estimation to work best and no smoothing step is neces-
sary when estimating Re . Results are summarized in Fig. 1, along with coverage of the 
95% confidence intervals and the root mean squared error (RMSE). Re estimates are gen-
erally of good accuracy, with coverage close to 1, corresponding to a slight over-cover-
age. Abrupt changes in the true reproductive number are slightly smoothed over, which 
leads to a reduced coverage and higher RMSE in regions of abrupt changes. This slight 
smoothing is because Re(t) correspond to the average estimated Re over 3 time steps (see 
subsection Estimation of the effective reproductive number Re in “Appendix A” section).

We then considered a more realistic scenario by adding observation noise to the 
simulated observations. Auto-correlated noise was generated using an auto-regressive 
noise model of order 4 (AR(4)). The noise model and its coefficients were selected to 
approximate country-level empirical COVID-19 incidence data [18], where testing 
showed a clear weekly pattern. Now, observations were smoothed prior to the Re estima-
tion. Again, the recovered Re estimates (column A) are highly similar to the true value 
assumed in the simulations. Compared to the scenario without noise, the coverage is 
slightly reduced and the error is slightly increased (e.g., a coverage of 0.85 rather than 
1 in scenario with a linearly-decreasing Re ; Fig. 1 panel 4B). Overall, these simulations 
confirm the general validity of the estimateR implementation.

Note that, when using estimateR, it is not recommended to smooth observations 
that do not exhibit strong observation noise, as this decreases the ability to detect rapid 
changes in Re trends. Additional file 1: Fig. S1 shows the simulations without observa-
tion noise, where we estimated Re with and without an (unnecessary) smoothing step. 
We see that the unnecessary smoothing of observations causes a stronger smoothing of 
Re trends, resulting in comparably lower coverage of the estimates in time windows with 
abrupt Re changes (see Additional file 1: Fig. S1, scenarios 2 and 5). Similar conclusions 
were reached when testing the original software pipeline in Huisman et al. [18].

Validation on simulated data containing partially‑delayed observations

We performed a variation on the simulation study presented above and investigate the 
effect of combining partially- and fully-delayed observations. As described in greater 
detail in “Appendix B” section, a pair of types of observations can be called “partially-
delayed” and “fully-delayed” when one type of observations (the partially-delayed obser-
vations) is an intermediary step between infection and the other type of observations 
(the fully-delayed observations). For instance, onset of symptoms is often an interme-
diary step between infection and case confirmation. The advantage of partially-delayed 
observations is that they, by definition, are less delayed and thus allow for Re estimates 
closer to the present. In addition, the narrower delay distribution spreads out observa-
tions less and thus paints a less blurred picture of the underlying infection incidence.

We simulated pairs of partially-delayed and fully-delayed time series as described 
in “Appendix C” section. We tested four scenarios with varying fractions of partially-
delayed observations p: 0,  0.3,  0.6,  1. The parameter setting p = 0 corresponds to the 
scenario where we only had access to fully-delayed observations (e.g., only dates of 
case confirmations). Conversely, with p = 1 , we obtain a scenario where we have only 
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partially-delayed observations (e.g., dates of symptom onset were recorded for all con-
firmed cases). Additional auto-correlated observation noise was included in this analysis.

From these simulated observations, we used estimateR to recover the dynamics of Re 
through time. Results (estimates, coverage and RMSE values) are summarized in Fig. 2. 
The higher the proportion of partially-delayed observations (e.g., symptom onsets) the 
better the Re estimates follow real Re values around abrupt Re changes, as seen in by 
the lower RMSE values (column C in Fig. 2; especially row 1, 2, and 5). The relative cov-
erage is slightly lower for higher values of p in the first (stable period before Re drop) 
and fourth scenario, but RMSE values do not increase compared to lower values of p. 
The decreased coverage seems to be attributable to slightly more jittery Re estimates as 
p increases, which could be addressed by increasing the smoothing parameter σ (see 
“Appendix A” section for additional details). Overall, when partially-delayed observa-
tions are available, including them can improve the Re estimation during periods of rapid 
Re changes. Precision in estimates during these periods is particularly relevant to out-
break monitoring.
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Fig. 2 Summary of Re inference on simulated data combining partially-delayed and fully-delayed 
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Validation on simulated data generated with time‑varying delay distributions

Finally, we investigated the effect of time-varying delay distributions on the estimation 
of Re . Delays between infection events and case observations can shorten or lengthen 
throughout the course of an outbreak [18], and estimateR can account for these 
variations.

To test and validate this capability, we simulated outbreaks with time-varying delay 
distributions, as described in “Appendix C” section. The delay from infection to obser-
vation gradually changed from a short to a long delay (or vice versa) over the course of 
the simulated outbreak. Auto-correlated observation noise was added to the simulated 
observations. We then estimated Re from the simulated case incidence, using either a 
constant delay distribution (corresponding to the delay distribution at the start of the 
outbreak or at present time) or the correct time-varying distribution.

We summarise the Re estimates in Fig.  3 and report coverage and RMSE values in 
Additional file  2: Fig.  S2. When estimating Re with correctly specified, time-varying 
delay distributions (last column in Fig. 3, panels A, B), Re estimates behave well for the 
entire time span. Instead, when Re is estimated with a constant delay distribution, this 
constitutes a method misspecification with respect to the simulations. As a result, the 
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estimates are only accurate for the time period where the constant delay distribution is 
close to the time-varying one (e.g., the short delay distribution is similar to the start of 
a simulation with a delay distribution varying from short to long, Fig. 3 panel B). To our 
knowledge, estimateR is the only package that allows the specification of time-varying 
delay distributions in the estimation, and thus to avoid such bias.

In summary, our simulation study demonstrates the validity of the estimateR imple-
mentation. Results obtained are in line with those presented on the original implemen-
tation of the Huisman et al. [18] method. Estimates are accurate, both in reconstructing 
past outbreak dynamics and close to the present, which highlights the suitability of esti-
mateR for outbreak monitoring. Nevertheless, simulations also show the limitations 
previously described for this method [18]: we observed situations of over- and under-
coverage and the smoothing required to account for the observation noise can smooth 
abrupt variations in Re.

Improvements to the method of Huisman et al.

In the “Implementation” section, we described three improvements estimateR made 
over the Huisman et al. implementation for handling incomplete data. For each of these 
features, we compared Re estimates obtained with the estimateR method and the Huis-
man et al. method. Simulations were performed as above (see “Appendix C” section for 
details) with the same parameter values for both methods and including auto-correlated 
observation noise.

Handling truncated incidence data

To investigate the impact of extrapolating observation counts that were truncated off, we 
assumed a constant Re , simulated 100 outbreaks and truncated the simulated observa-
tions, removing all data points before the 30th time step (Fig. 4A). Early values of Re are 
difficult to estimate because an important part of the data informing these estimates is 
missing. The results show that early Re values are overestimated compared to the ground 
truth. Still, these estimates are less biased with estimateR than with the Huisman et al. 
method.
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Inference of the series of infection events

To investigate the impact of extrapolating future observations in the initial step of the 
deconvolution algorithm, we assumed a sharply increasing Re before a stabilization close 
to the present—similar to the “Abrupt increase” scenario of our simulation study—and 
focused on the most recent Re estimates from both implementations (Fig. 4B). Re esti-
mates are close to the ground truth with estimateR whereas a stronger upward bias is 
observed with the Huisman et al. method.

Dealing with partially‑delayed observations

Finally, we investigated the impact of nowcasting unseen partially-delayed observa-
tions before smoothing instead of after. To do so, we performed simulations of partially-
delayed and fully-delayed observations with p = 1 : all infections have an associated 
partially-delayed observation. We assumed a reproductive number evolving as in the 
“Linear increase” scenario of our simulation study, and report results in Fig.  4C. We 
observe a downward bias on Re estimates with the Huisman et al. method, whereas no 
such bias appears with estimateR.

Comparison with other methods

Comparison on simulated data

We compared the accuracy of estimates from estimateR against epidemia [15] and 
EpiNow2 [16], two prominent and recently-developed R packages for Re estimation, on 
our simulated data.

As before, we simulated outbreaks following five different Re trajectories to compare 
performance in different contexts (simulation details in “Appendix C” section). We 
restricted the analysis to 50 replicates (instead of 100) for epidemia and EpiNow2 due to 
the time taken by computations. We could not generate meaningful results with either 
package on simulated data with an auto-correlated observation noise model, as used in 
the simulation study above. Thus, we used log-normal distributed multiplicative noise 
instead, with independent values drawn from one time step to the next. Parameter speci-
fications are listed in Table 1.

The results of our comparison are summarized in Fig.  5. Figure  5A presents the 
median of mean estimates and 95% confidence intervals across all analyzed replicates. 
For EpiNow2, we only show non-nowcast results for easier comparison with estimateR. 
Performance metrics (coverage and RMSE) are plotted in Additional file 3: Fig.  S3.

On this simulated data, all three methods yield comparable results, with estimateR 
performing most accurately. It achieves a consistently high coverage and low error, and 
more accurately follows abrupt Re changes than the other two packages, both in the past 
and close to the simulated present-time. We find that epidemia overestimates Re in parts 
of the first, fourth and fifth scenarios whereas EpiNow2 slightly underestimates Re in 
parts of the first, fourth and fifth scenarios. Moreover, epidemia uncertainty intervals are 
very wide, leading to an over-coverage (coverage above 0.95 for a 95% confidence inter-
val; Additional file 3: Fig. S3A) for some data windows.

We note that a certain degree of model misspecification could explain the compara-
tively worse performance of epidemia and, to a lesser extent, of EpiNow2. For both 
packages, we specified negative binomial observational models, whereas noise in the 
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simulated data results from Poisson noise when generating infections combined with 
log-normal noise when generating observations. epidemia offers the option to specify 
a log-normal observation model, but we did not manage to set up an analysis with this 
option (the inference either failed or returned diverging Re values). This model mis-
specification is likely the cause of performance issues observed. We note that estimateR 
assumes auto-correlated observation noise, and thus the estimateR analysis is also 
misspecified.

Speed comparison

In addition to comparing estimated values, we compared the computation speed of the 
three methods. Figure 5B shows the distribution of computing time observed when esti-
mating the reproductive number on a single simulated time series of observations. The 
observations were made during the computation of estimates presented in panel A. Here 
we find estimateR to be considerably faster than both epidemia and EpiNow2. In our 

Table 1 Parameter values used for method comparison

R package Parameter Value Notes

estimateR Smoothing parameter σ 9 Time steps

Incubation period Gamma (shape=3.2, scale = 
2.1)

As specified in simulations

Observation delay Gamma (shape=2.7, scale=2.6) As specified in simulations

(from symptoms to confirma-
tion)

Generation time Gamma (mean = 4.8, SD = 2.3) As specified in simulations

Other parameters Default settings

epidemia Generation time Gamma (mean = 4.8, SD = 2.3) As specified in simulations

Observation model family Negative binomial Analyses failed with log-normal

(log-normal fits

simulated noise)

Delay distribution Discretized convolution of As specified in simulations

(from infections to observa-
tions)

Gamma (shape=3.2, scale = 
2.1)

and

Gamma (shape=2.7, scale=2.6)

Hyperprior scale 0.2

on Rt random walk

Other parameters Default settings

EpiNow2 Incubation period Log-normal(µ = 1.68, σ = 0.63) Log-normal fit of

Gamma (shape=3.2, scale = 2.1)

(used in simulations)

Observation delay

(from symptoms to confirma-
tion)

Log-normal(µ = 1.68, σ = 0.67) Log-normal fit of

Gamma (shape=2.7, scale = 2.6)

(used in simulations)

Generation time Gamma(mean = 4.8, SD = 2.3) As specified in simulations

Gaussian process Applied to global mean

Observation model family Negative binomial

Other parameters Default settings
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simulation study (on a MacBook Pro, with a 2.3 GHz Dual-Core Intel Core i5, with 4 
logical CPU cores), analyzing a time series of observations took on average 9 s with esti-
mateR, whereas it took 14 min (850 s) with epidemia and 25 min with EpiNow2 (1520 s).

The need for epidemia and EpiNow2 to carry out Bayesian posterior distribution sam-
pling via Markov chain Monte Carlo likely explains why estimateR is much faster in 
comparison. Indeed, the computations performed by estimateR are much simpler and 
much less computationally-intensive, as they do not involve any sampling of posterior 
distributions. In particular, estimateR makes use of EpiEstim for the final Re estimation 
step, taking advantage of the analytic solution derived for the posterior distribution of Re 
by Cori et al. [8].

We note that this comparison only provides a qualitative evaluation of differences in 
speed, as the computational effort to run each method can vary with the specific data 
and estimation settings. For example, we here used the default approach of estimating 
uncertain delay distributions in EpiNow2, while it is also possible to fix the delay distri-
butions to speed up computation. On the other hand, it should be noted that we ran the 
Markov chains in epidemia and EpiNow2 with 4 cores in parallel, while estimateR only 
requires a single core. Thus, when using estimateR, one could use e.g. 4 cores at once to 
estimate the reproductive number of 4 different time series in parallel, further increasing 
the speed advantage of the package.
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Feature comparison

Like epidemia [15] and EpiNow2 [16], estimateR accounts for delays between infec-
tion events and observations, which is essential for outbreak monitoring [1]. In con-
trast however, estimateR also allows for delay distributions that vary through time, and 
can directly combine incidence data from partially-delayed and fully-delayed observa-
tions. As demonstrated in simulations, both of these features improve the accuracy of 
the estimates. In general, the availability of high-quality data, in particular of line lists 
rather than aggregated data, is necessary to harness the power of these features. While 
EpiNow2 can directly integrate uncertainty of user-specified delay distributions in its 
model [16], such uncertainty must rather be accounted for through sensitivity analyses 
when using estimateR. Moreover, in contrast to the epidemia and EpiNow2 packages, 
estimateR does not permit any forecasting of future epidemic dynamics [15, 16].

Application to empirical data

COVID‑19

To test estimateR on empirical data, we analysed COVID-19 incidence data from 9 
countries between July 1, 2020 and September 15, 2021 using estimateR. We compared 
the results with publicly available estimates by Huisman et al. [18], which were produced 
during the COVID-19 pandemic (Fig. 6). The analyses for estimateR were parameterized 
with the same serial interval and delay distributions as described in Huisman et al. As 
expected, estimateR produced estimates very similar to the pipeline by Huisman et al., 
which has the same underlying methodology. Minor differences observed are due to the 
method improvements described above. In particular, differences are most pronounced 

Fig. 6 Re estimates through time on COVID-19 case data (between July 1, 2020 and September 15, 2021) 
from nine countries (A–I). Each plot shows point estimates (lines) and uncertainty intervals (ribbons) from 
estimateR (purple), the Huisman et al. software pipeline (green), and EpiNow2 (blue)
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for Switzerland (Fig. 6A), where line list data were available to estimate Re . The differ-
ent ways of extracting the time-varying delay distributions from the line list led to slight 
discrepancies between estimateR and Huisman et al. (details for estimateR are described 
in “Appendix A” section). For all other countries, no line list data was available and con-
stant delay distributions were assumed.

For comparison, we also obtained estimates from the publicly available EpiForecasts 
dashboard by Abbott et  al. [20], which uses EpiNow2 as an underlying Re estimation 
method [16]. The trend of the EpiForecast estimates qualitatively agrees with the esti-
mates from estimateR and Huisman et al., however they are generally less volatile and 
have lower uncertainty. Such differences likely result from the different approaches to 
smoothing case counts and Re estimates, as well as the default values used for method 
hyperparameters. There is currently no way to know how smoothly Re varies during real 
infectious disease outbreaks. By running these two Re estimation packages side by side, 
researchers can study multiple hypotheses and ultimately reach a deeper understanding 
of the underlying disease transmission dynamics.

Dengue fever

As an example of an endemic disease with seasonal patterns and indirect transmission 
mechanism, we further applied estimateR to incidence data from two seasonal waves of 
dengue fever in Rio de Janeiro, Brazil (between December 1, 2011 and October 1, 2013). 
Here we used incubation period and generation interval distributions from the litera-
ture [21, 22], and an empirical reporting delay distribution as estimated from line list 
data [23] (see “Appendix E” section for details). For comparison, we also produced esti-
mates using EpiNow2, with the same delay distribution and epidemiological parameters 
as for estimateR. As shown in Fig. 7, both methods clearly track the two seasonal waves 
observed in the analyzed time frame, with Re estimates significantly above the exponen-
tial threshold of 1. During the 2011/2012 seasonal wave, estimates from both approaches 
generally agreed in the magnitude and trend of Re , with estimateR inferring a slightly 
earlier and more uncertain peak in Re than EpiNow2. In the 2012/2013 wave, estimateR 
inferred considerably higher Re values than EpiNow2, however both approaches agreed 
closely on the start and end date of the exponential growth phase (timing of Re crossing 
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the threshold of 1). In between the two seasonal waves, estimateR produced estimates 
more confidently below the epidemic threshold EpiNow2.

Influenza in wastewater

In addition to incidence data collected by public health authorities, estimateR can also 
be used to estimate the effective reproductive number from longitudinal measurements 
of virus in wastewater. After establishing this use case for SARS-CoV-2 [24], we have 
extended the work to monitor the dynamics of seasonal influenza in the wastewater of 
three major Swiss cities and compared it to estimates obtained from influenza case data 
[25].

Limitations

The estimation method implemented in estimateR is subject to known limitations [1, 
18]. In particular, we emphasize that properly accounting for the specific transmissibility 
of imported cases can be important when a large fraction of cases recorded are not local 
cases [26]. Like EpiEstim, estimateR can account for a segregation of local and imported 
cases whereby imported cases do not result from infection by existing local cases, but 
contribute to future infections. Unlike the method presented by Tsang et al. [26], esti-
mateR does not allow for a difference in transmissibility between local and imported 
cases.

In its current version, estimateR can only handle non-negative delay distributions 
which can be a limitation when handling specific types of observed events (such as 
pre-symptomatic case observations). Moreover, estimateR makes strong simplifying 
assumptions on the outbreak studied. First, it assumes a constant serial interval when 
estimating Re from reconstructed infection events [8], whereas relaxing this assump-
tion can improve estimates [1, 10]. Also, a constant ascertainment rate is assumed for all 
observations. When the ascertainment rate changes in time, Re estimates are unreliable 
until the ascertainment rate is stable again.

Conclusions
We present estimateR, an R package for estimating the reproductive number through 
time from incidence data. This software is a new and improved implementation of the Re 
estimation pipeline in Huisman et al. [18]. Compared with two existing software pack-
ages, estimateR is substantially faster and more accurate in the tested simulation scenar-
ios. estimateR offers simple-to-use functions to monitor an ongoing outbreak, to revisit 
past outbreaks, and to inform epidemic models that require Re estimates as input. With 
its modular design, it exposes the inner steps of the analysis; more experienced users can 
use these functions as building blocks, combining them or using them individually in 
their own analyses. The package is structured to make it as simple as possible for users to 
implement their own extensions and upgrades. Our goal is that estimateR can serve as a 
collaborative tool for the scientific community.
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Appendix
Appendix A: method description

This section contains a full description of the base method implemented in estimateR. 
This method was developed by Huisman et  al. and the text of Appendix A is adapted 
from the original method publication [18], with modifications specific to estimateR 
(main modifications are listed in the “Handling issues relating to incomplete data” section 
of the main text).

Smoothing of noisy observations

To smooth the incidence data, estimateR implements local polynomial regression 
(LOESS). By default, estimateR performs LOESS smoothing with 1st order polynomi-
als and a smoothing parameter σ set such that 21 time steps in the local neighbour-
hood of each point are included.

Importantly, σ should be adapted by estimateR users to the level of noise observed 
in their raw incidence data. This can be done by smoothing the raw observations with 
varying σ values until the smoothed trend matches expectations.

Before smoothing, the raw time series of observations (O0, . . . ,ON ) is padded at its 
left boundary with values extrapolating the initially observed trend (see the “Handling 
issues relating to incomplete data” section of the main text). To extrapolate these val-
ues, we first compute the average ratio between the incidence observed on a time step 
and the previous time step:

n being the number of time steps included in this average, by default it is set to 5 in 
estimateR.

Then, we build the padding values (O−y, . . . ,O−1) by

The number of padding values y is proportional to the length of the raw time series N 
and to the smoothing parameter σ.

After padding, LOESS smoothing is applied, and the smoothed values (S−y, . . . , S−1) 
are discarded to keep (S0, . . . , SN ) , the smoothed observations. Finally, the smoothed 
observations are normalised so that their sum is equal to the total number of raw 
observations ( i≥0Oi).

Estimation of the infection incidence through deconvolution

To recover the non-observed time series of infection incidence from a time series 
of (optionally-smoothed) observations, estimateR implements a deconvolution 
algorithm. This algorithm deconvolves the time series of observations with a delay 
distribution specific to the type of observations (case confirmations, hospital admis-
sions, deaths), to recover an estimate of the time series of infection events. It is an 

(1)a =
1

n

n−1∑

i=0

Oi+1

Oi
,

(2)O−i = O0 × a−i.
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expectation-maximisation algorithm, generalised from the description made by 
Goldstein et al. [19], which is itself an adaptation of the Richardson-Lucy algorithm 
[27, 28].

Formally, the method infers a deconvolved output time series (�1, . . . , �N ) from an 
input time series (D̄K , . . . , D̄N ) , where K ≥ µ ( µ being the median of the delay distri-
bution) and D̄i indicates the (smoothed) number of observations on time step i (e.g., 
confirmed cases, hospitalisations, or deaths). Let mj

l be the probability that an infec-
tion on time step j takes l ≥ 0 time steps to be observed. If no time-variation of the 
delay distribution is assumed mj

l = ml . Let qj be the probability that an infection that 
occurred on time step j is observed during the time-window of observations, i.e. is 
counted towards (D̄K , . . . , D̄N ) . Then:

Let Ei be the expected number of observed cases on time step i, for a given infection 
incidence (�k):

The deconvolution algorithm uses expectation maximisation [29] to find a final infection 
incidence estimate, which has the highest likelihood of explaining the observed input 
time series. To do so, it starts from an initial guess of the infection incidence time series 
�0 = (�01, . . . , �

0
N ) , used to compute E0

i  according to Eq. 4, and updates the estimate in 
each iteration n according to the following formula:

The iteration proceeds until a termination criterion is reached. Here, we follow Gold-
stein et al. and iterate until the χ2 statistic drops below 1 [19]:

or 100 iterations have been reached.
For the initial estimate of the incidence time series �0 , the time series of observa-

tions is shifted backwards in time by the median of the delay distribution µ . However, 
this leaves a gap of unspecified values at the start and end of the time series �0 . We 
augment the shifted time series with the first observed value ( D̄K  ) on the left. On the 
right side, we replace the missing values with an extrapolation of future observations. 
This extrapolation is specific to estimateR; it is done as follows:

(3)qj =

N−j∑

l=K−j

m
j
l .

(4)Ei =

{∑i
j=1 �j m

j
i−j for K ≥ i ≥ N

0 for 0 < i < K .

(5)�
n+1
j =

�
n
j

qj
·

N∑

i=K

m
j
i−jD̄i

En
i

.

(6)χ2 =
1

N − K + 1

N∑

i=K

(En
i − D̄i)

2

En
i

,

(7)�N−i = D̄N ×

(
D̄N

D̄N−1

)µ−i

,
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for 0 ≤ i < µ.
Time-varying delay distributions When information on the time variation of delays 

between symptom onset and observation is available (e.g., through a line list), esti-
mateR can take it into account during the deconvolution step. In this explanation, 
we need to break down the delay from infection to observation into two successive 
delays: an incubation period, which we assume to be fixed in time for simplicity, and 
a delay from onset of symptoms to observation which we allow to vary through time.

Recall that mj
ℓ is the probability that an event occurring at time j (corresponding here 

to the onset of symptoms at time j) takes ℓ time steps to be observed. The (mj
0, . . . ,m

j
ℓmax

) 
time-varying delay distributions from onset of symptoms to observation are determined 
as follows: for each date j, the n0 most recent recorded delays between symptom onset 
and observation, with onset date before j, are taken into account; ℓmax being the highest 
observed delay (over all time steps). In estimateR, n0 is, by default, at least 500 and up to 
20% of all observations (both are flexible parameters).

The incidence data is right-truncated, meaning that, close to the present, hosts with 
recent onset of symptoms and with longer delay until observation have not been cap-
tured yet. Thus, the raw distribution of observed delays is biased towards shorter delays 
close to the present. To circumvent this effect, we fix the distribution for the reporting 
delay ( mj

ℓ ) after a certain time step j, so that delay distributions are not downward biased 
for infection dates close to the present. Let (m̄0, . . . , m̄ℓmax ) be the overall empirical delay 
distribution (aggregated over the entire window of observations) and n the 99th percen-
tile of this distribution (n is the smallest integer for which 

∑n
i=1 m̄i ≥ 0.99 ). For symptom 

onset dates z that are closer to the present than n (i.e., N − z < n , where N is the index 
of the last available data point), we fix (mz

0, . . . ,m
z
ℓmax

) to be equal to (mN−n
0 , . . . ,mN−n

ℓmax
).

Finally, the fixed incubation period and the time-varying delay from symptom onset to 
observation are convolved to generate a time-varying delay distribution from infection 
to observation.

Estimation of the effective reproductive number Re
estimateR implements a wrapper around the method developed by Cori et al. [8], imple-
mented in the EpiEstim R package, to estimate Re from a time series of infection events.

Disease transmission is modelled with a Poisson process. An individual infected at 
time t − s is assumed to cause new infections at time t at a rate Re(t) · ws , where ws is the 
value of the infectivity profile s time steps after infection. The infectivity profile sums to 
1, and can be approximated by the (discretised) serial interval distribution [8]. The likeli-
hood of the incidence It at time t is thus given by:

The Re inference is performed in a Bayesian framework, and an analytical solution can 
be derived for the posterior distribution of Re(t) (see [8]; Web Appendix 1). By default 

(8)P(It |I0, . . . , It−1,Re(t)) =
(Re(t)�t)

It e−Re(t)�t

It !
,

(9)where �t =

t∑

s=1

It−sws.
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in estimateR, the prior on Re(t) is a gamma distribution with mean 1 and standard 
deviation 5. The mean of the posterior distribution of Re is reported as being the point 
estimate.

Two options are available to estimate Re : either it is treated as gradually changing 
through time or it is treated as a step-wise function of time. In the former case, the 
reported Re estimate for time step T summarises the average estimated Re over a period 
of τ time steps ending on time step T. By default in estimateR, τ = 3 . In the latter, Re is 
assumed to be constant on a number of intervals spanning the entire epidemic time win-
dow. The boundaries of these intervals must be given as user input.

Uncertainty estimation

To account for the uncertainty in the raw case observations, a 95% bootstrap confi-
dence intervals is constructed for Re . First, the case observations are re-sampled as fol-
lows: given the original case observations Dt , t = K , . . . ,N  , LOESS smoothing is applied 
to the log-transformed data log(Dt + 1) to obtain the smoothed values ĥt and additive 
residuals et . Here log-transformation is used to stabilise the variance of the residuals.

From et , residuals are re-sampled to get e∗t  . This is done by an overlapping block boot-
strap method to account for the time series nature of the data. Specifically, given the 
original residuals (eK , . . . , eN ) , we first sample a block (e∗11 , . . . , e∗1b ) with default block 
length b = 10 . Weekly patterns in case observations can optionally be accounted for, if 
relevant. If so, the sampled block is built to start on the same day of the week (e.g., Tues-
day) as the original case observations DK  . That is, we keep the longest part (e∗1m1

, . . . , e∗1b ) 
from (e∗11 , . . . , e∗1b ) such that e∗1m1

 has the same day of the week as DK  . Then, we sample a 

new block (e∗21 , . . . , e∗2b ) and keep the longest part (e∗2m2
, . . . , e∗2b ) of (e∗21 , . . . , e∗2b ) such that 

the corresponding day of e∗2m2
 follows on e∗1b  (i.e. has the next day of the week if weekly 

patterns are accounted for). We glue these two sampled blocks together to get the tem-
poral re-sampled residuals (e∗1m1

, . . . , e∗1b , e∗2m2
, . . . , e∗2b ) . We repeat this process of adding 

blocks until the length of the re-sampled residuals is equal to or larger than the original 
residuals. In the latter case, we cut the last part of the re-sampled residuals to make sure 
its length is the same as the original residuals.

Finally, the bootstrap case observations are obtained by

The smoothing-deconvolution-estimation method is applied to the bootstrap case 
observation to obtain an estimate for Re(t) , denoted by θ̂∗(t) . By repeating the above 
steps B times ( B = 100 by default), we obtain θ̂∗1 (t), . . . , θ̂

∗
B(t) . Then, we construct a Nor-

mal based bootstrap confidence interval for each time point t by:

where θ̂ (t) denotes the estimated Re(t) based on the original case observations, qz(1− α
2 ) 

denotes the 1− α
2 quantile of the standard normal distribution, and ŝd(θ̂∗) denote the 

empirical standard deviation of θ̂∗1 (t), . . . , θ̂
∗
B(t) , (by default α = 0.05 , to obtain 95% con-

fidence intervals).

(10)D∗
t = max(exp(ĥt + e∗t )− 1, 0).

(11)
[
θ̂ (t)− qz

(
1−

α

2

)
ŝd(θ̂∗(t)), θ̂ (t)+ qz

(
1−

α

2

)
ŝd(θ̂∗(t))

]
,
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An implicit assumption for the above bootstrap confidence interval to be reasonable, is 
that the variance of the residuals et is a constant over time t and does not depend on the 
value of the log-transformed data log(Dt + 1) . This assumption roughly holds when the 
case incidence is high. During periods of low case incidence however, this assumption 
is no longer appropriate. Therefore, to be conservative and rather err on the side of too 
large uncertainty intervals, we also consider the credible interval of Re which is obtained 
by taking the 0.025 and 0.975 quantiles from the posterior distribution of Re using Epi-
Estim based on the original data Dt . The final reported interval is then the union of the 
credible interval and the 95% bootstrap confidence interval.

Appendix B: combining types of observations

In real life outbreaks, more than one observation event can originate from a single infec-
tion event. For instance, for a diseased patient who eventually dies after having been 
admitted in the hospital due to an infection, a single infection event can give rise to a 
number of successive observations such as: a case confirmation event, a record of hospi-
tal admission, of ICU admission, and of death. In total in this example, a single infection 
event gave rise to four delayed observations.

In the framework estimateR adopts, different types of observation events cannot in 
general be combined into the estimation of a single Re value [18]. If four types of obser-
vations are made, as in the example above, we would recommend independently esti-
mating Re from each type of observation assuming that the delay distribution specific to 
each type of event is known. This recommendation is made because each type of obser-
vation event is associated with its own (different) inherent sources of biases and its own 
subgroup in the infected population, with smaller or larger overlaps [18].

Let us consider a specific context, with similarities to the context of data gathering of 
several countries during the COVID-19 pandemic. For simplicity, we ignore all hospi-
tal- and death-related observation events: we assume that the entire fraction of infection 
events which ends up being recorded is observed via a case confirmation event. Also, we 
assume that all confirmed cases are symptomatic. Moreover, when infected individuals 
are tested positive to the infection of interest, they are asked to report the date at which 
their symptoms started (the symptom onset date). For various reasons, not all positively-
tested individuals report this data. We assume the data is collected into a line list of all 
confirmed cases, with optional symptom onset date attached.

One could treat the confirmed cases and the symptom onset dates as two different 
observation types, yielding two distinct Re estimates. However, in this example, symp-
tom onset observation events represent only a subset of all confirmed cases and we have 
no reason to believe that symptom onset observations do not carry all reporting biases 
associated with confirmed cases plus other biases specific to their own reporting. Thus, 
we attempt to make use of the information on symptom onset events differently.

We assume that the delay from infection to case confirmation can be broken down 
into two independent successive delays: a first delay from infection to symptom onset 
(the incubation period) and a subsequent delay from onset of symptoms to case con-
firmation. Symptom onset events can be seen as intermediary steps between infections 
and case confirmations. As the random delay associated with each observation event is 
similar to a blurring effect, symptom onset observation events provide a less-blurred 
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image of the original infection events than the case confirmations do. Thus, if the symp-
tom onset date of an individual is known, their date of infection can be better pinpointed 
than if only their case confirmation date is known. The better the infection events are 
reconstructed, the better the outbreak dynamics can be reconstructed and the more 
accurate the Re estimates.

Thus, when an observation event is an intermediary step on the path to a final obser-
vation event, it is desirable to use the former event as the starting point to the infec-
tion event reconstruction instead of the latter. estimateR allows to do so by combining 
the incidence of these two types of events: the intermediary events (we call them “par-
tially-delayed observations”) and the final observation event (we call them “fully-delayed 
observations”). Symptom onset events and case confirmations as described in the above 
lines are examples of a pair of partially-delayed and fully-delayed observation events.

When partially-delayed observations are independent from their corresponding fully-
delayed observations, i.e. they are not contingent on the corresponding fully-delayed 
observations, it is straightforward to combine the two types of observations to estimate 
Re . One simply needs to treat them as two different observation time series, from which 
to independently infer infection events. The two resulting time series of infection events 
can then be summed up to build a single time series, from which Re can be estimated. 
The only caveat is that there must be no overlap between the two types of observations: 
each infection event should be recorded as either a partially-delayed or a fully-delayed 
observation.

In many cases, however, a partially-delayed observation is not independent from, but 
contingent on, its corresponding fully-delayed observation being observed. In that case, 
when combining the two types of observations, one needs to account for the fact that 
each partially-delayed observation is only known once a fully-delayed observation of the 
same infection event is made. This is precisely the case in the example described above: 
symptom onset dates are only known once a symptomatic individual is tested positively; 
symptom onset dates are only known retrospectively, and contingent on a case confir-
mation. Therefore, recordings of symptom events for time steps close to the present 
represent only a fraction of the eventual recordings made for these time steps (once all 
corresponding case confirmations have been made). Thus, the incidence of symptom 
onsets (and of all partially-delayed observations with similar properties) close to the pre-
sent underestimates the real incidence and it must be transformed to correct for this 
effect. A so-called nowcasting procedure is applied to such partially-delayed observa-
tions, this procedure accounts for yet-to-be-recorded events: partially-delayed events 
that have already happened, but have not yet been recorded. To do so, we compute the 
maximum-likelihood estimator of the eventual number of partially-delayed observa-
tions for a particular time step by dividing the number of observations made so far by 
the probability of such an observation to have been recorded before present [30, 31]. 
As in the case where partially-delayed are independent from fully-delayed observations, 
the nowcast partially-delayed observation incidence and fully-delayed incidence can be 
then be used to independently reconstruct latent infection events, and the two resulting 
time series of infection events can be summed up into a single series. Again, there must 
no be any overlap in recorded cases between the partially-delayed and fully-delayed 
observations.
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Appendix C: simulation procedure

We simulate observations using the following procedure.

Simulating infection events

An Re trajectory is first constructed over 150 time steps, each trajectory translating one 
of the five scenarios of interest. For each scenario, we simulate 100 outbreaks. Each out-
break is seeded with one imported case per time step for five consecutive time steps. The 
number of infection events on day t, It , is drawn from a Poisson distribution with mean 
Re(t)�t , with �t as defined in Eq. 9. For the infectivity profile ws , we use the discretised 
serial interval for SARS-CoV-2: a draw from a Gamma(shape =2.73, scale=1.39) + 1 
[32].

Generating delayed observations

Basic validation Observations are derived from the simulated infections by convolving 
the infection incidence with a delay distribution, representing the distribution of delays 
from infection to observation. In the basic validation set up, the delay distribution is the 
result of the convolution of two delay distributions: a Gamma(shape=3.2, scale=2.1) 
distribution which could represent an incubation period, and a Gamma(shape=2.7, 
scale=2.6) distribution which could represent a delay from symptom onset to case con-
firmation (or hospital admission, or any other type of observation).

Validation on simulated data generated with time-varying delay distributions When 
generating observations with time-varying delay distributions, the delay distribution 
with which the infection incidence is convolved gradually moves from a shorter delay 
distribution to a longer one, or vice-versa. This change happens regularly from the 
start of the simulated outbreak to the simulated present time. Delays are composed of 
a Gamma (shape = 3.2, scale = 2.1) distribution for the initial incubation period, and a 
distribution for the delay between onset of symptoms to case confirmation (short delay: 
Gamma (shape = 2, scale = 2); long delay: Gamma (shape = 2, scale = 8).

Validation on simulated data containing partially-delayed observations We generate 
pairs of partially-delayed and fully-delayed observation series with a slightly different 
procedure. First, a partially-delayed observation event is generated for each infection 
event, drawing a sample from a gamma-distribution meant to represent an incubation 
period Gamma (shape = 3.2, scale = 2.1). Then, from each partially-delayed observa-
tion, we simulate a fully-delayed observation event by drawing a sample from a delay dis-
tribution representing a delay from symptom onset to case confirmation Gamma (shape 
= 3, scale = 5). Partially-delayed observations are assumed to be contingent on their 
associated fully-delayed observation. Thus, we discard partially-delayed observation 
events with a fully-delayed observation event posterior to the simulated present time, as 
those partially-delayed observation have not been recorded yet.

We then build two incidence series, the first one for partially-delayed observations and 
the second for fully-delayed observations. For each infection event, we record the par-
tially-delayed observation event with a probability p in the first incidence series. Other-
wise, we record the fully-delayed observation event in the second incidence series.
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Including additional observation noise

To increase the realism of the generated observations [18], we combine them with auto-
correlated noise. This noise νt is generated using an autoregressive noise model of order 
4 (AR(4)), with coefficients (ar1 = 0.05, ar2 = 0.05, ar3 = −0.02, ar4 = −0.02) and 
standard deviation 0.05. Coefficients are selected to loosely approximate country-level 
empirical COVID-19 incidence data. The number of observations made on time step t, 
with noise, Ot is computed from the generated observations Dt with:

When comparing estimateR to similar existing methods, we use a different type of noise, 
as we did not manage to obtain meaningful estimates with epidemia and EpiNow2 with 
the autocorrelated noise. In this case, the noise factor for each time step t ( νt ) is an inde-
pendent random draw from a normal distribution with mean 0 and standard deviation 
0.1.

Appendix D: default settings

In estimateR, by default, the most recent Re estimate produced corresponds to the time 
step N − µ , with N being the most recent available time step and µ being the median of 
the delay distribution. This truncation is done as posterior Re estimates are too uncer-
tain. When dealing with a combination of partially and fully delayed data, the default 
setting is slightly more complex. In this case, the most recent Re estimate corresponds 
to the time step (N − Y )− µ with Y being the 33rd percentile of the delay distribution 
between partially-delayed and fully-delayed observation, N and µ carry the same mean-
ing as previously. In other words, we first exclude the Y most recent time steps for which 
a partially-delayed observation has a probability less than 0.33 to be fully observed 
before the most recent time step. The default threshold of 0.33 was chosen as a trade-off 
between certainty in the result and timeliness of the most recent Re estimate.

Appendix E: parameterization for dengue fever

We used line list data of cases with dengue fever in Rio de Janeiro, Brazil, to fit a para-
metric distribution for the delay between the date of symptom onset and the date of 
recording in the Brazilian Information System for Notifiable Diseases [23]. Since we 
found no substantial change in reporting delay during the relevant time period, we fit-
ted the same delay distribution for the full time horizon, yielding a log-normal distribu-
tion with parameters µ = 2.90 and σ = 0.83 . For the intrinsic (i.e. human) incubation 
period, we used a log-normal distribution with a mean 5.90  days and standard devia-
tion of 1.60 days [21]. In the case of dengue fever, generation intervals are likely to be 
temperature-dependent [22]. For simplicity, we here used a generation interval for the 
transmission from human to human via a mosquito vector that is in line with the aver-
age annual temperature in Rio de Janeiro ( 27.2◦C ), although we note that in practice, 
higher accuracy may be obtained by using time-varying intervals [33]. Specifically, we 
used a gamma distribution with a mean of 23 days and a standard deviation of 8.5 days 
[22]. Due to the long generation interval and delays, we chose the LOESS smoothing 

(12)Ot = Dt × eνt .
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parameter σ in estimateR such that a broad time window of 10  weeks is covered. We 
used EpiNow2 with default settings and a day-of-the week effect for the reported cases.

Abbreviations
AR(n)   Autoregressive model of order n
COVID-19   Coronavirus disease 2019
LOESS   Locally estimated scatterplot smoothing
Re   Effective reproductive number
RMSE   Root mean square error
SARS-CoV-2   Severe acute respiratory syndrome coronavirus 2
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