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Abstract 

Background: Single-cell RNA sequencing (scRNA-seq) technology has enabled 
assessment of transcriptome-wide changes at single-cell resolution. Due to the hetero-
geneity in environmental exposure and genetic background across subjects, subject 
effect contributes to the major source of variation in scRNA-seq data with multiple 
subjects, which severely confounds cell type specific differential expression (DE) analy-
sis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive 
number of zeroes in the data, which further aggravates the challenge in DE analysis.

Results: We developed iDESC to detect cell type specific DE genes between two 
groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial 
mixed model to consider both subject effect and dropouts. The prevalence of dropout 
events (dropout rate) was demonstrated to be dependent on gene expression level, 
which is modeled by pooling information across genes. Subject effect is modeled 
as a random effect in the log-mean of the negative binomial component. We evalu-
ated and compared the performance of iDESC with eleven existing DE analysis meth-
ods. Using simulated data, we demonstrated that iDESC had well-controlled type I error 
and higher power compared to the existing methods. Applications of those methods 
with well-controlled type I error to three real scRNA-seq datasets from the same 
tissue and disease showed that the results of iDESC achieved the best consistency 
between datasets and the best disease relevance.

Conclusions: iDESC was able to achieve more accurate and robust DE analysis results 
by separating subject effect from disease effect with consideration of dropouts to iden-
tify DE genes, suggesting the importance of considering subject effect and dropouts 
in the DE analysis of scRNA-seq data with multiple subjects.
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Background
Recent advances in droplet-based single-cell RNA sequencing (scRNA-seq) technology 
have enabled investigators to assess transcriptome-wide differences at single-cell resolu-
tion [1–3]. Instead of pooling RNAs from all cells together, droplet-based scRNA-seq 
technology isolates cells using oil droplets, in which each cell is lysed and a cell barcode 
and a unique molecular identifier (UMI) are added onto the amplified cDNAs. Using 
these cell barcodes and UMIs, sequencing reads are demultiplexed into different cells 
and transcripts, which enables single-cell transcriptome profiling without PCR ampli-
fication bias. In recent years, scRNA-seq has been used to study cellular heterogeneity 
and gene expression variability across different cell types in diverse human tissues [4] 
and diseases (chronic diseases [5], infectious diseases [6], autoimmune diseases [7], and 
cancers [8]). These applications have revealed disease-related cell type specific transcrip-
tomic changes [9], rare cell types [10], and cell type composition changes [11], providing 
important insights into disease pathogenesis and facilitating the development of person-
alized treatment of diseases [12, 13].

Despite the great potential of scRNA-seq technology, challenges remain in the cor-
responding data analysis. Specifically, one common task in scRNA-seq data analysis is to 
identify cell type specific differentially expressed (DE) genes between two groups of sub-
jects [14], which can be challenging due to prevalent dropout events and substantial sub-
ject effect, or so-called between biological replicate variation [15]. Dropout refers to the 
event when a given gene is observed at a moderate expression level in one cell but is not 
detected in another cell of the same type from the same sample [16], leading to underes-
timation of gene expression level and overestimation of variation in the data which may 
generate false positive results. Moreover, with the popularity of multi-sample scRNA-
seq datasets from different diseases, tissues, and cell types, many of them have consist-
ently shown that within the same cell type, cells of the same subject cluster together but 
separate well from cells of other subjects [6, 17, 18]. This suggests that there exists a 
large variation across subjects possibly due to heterogeneous genetic backgrounds or 
environmental exposures and this variation is much larger than the within-subject vari-
ation across cells of the same type. Dominant subject effect severely confounds the DE 
analysis of scRNA-seq data because genes driving differences across subjects are likely to 
also be significantly different between two groups [15, 19, 20]. Taken together, in the DE 
analysis of scRNA-seq data with multiple subjects, it is critical to separate subject effect 
from disease effect with consideration of dropout events.

Technical batch effect is one possible reason for the large variation across subjects 
because many studies processed cells and cDNA libraries from different subjects in dif-
ferent batches due to the requirement of sample freshness in certain tissue types and 
early-stage scRNA-seq protocols. This may lead to batch effect in the data so that cells 
of the same type from different subjects have different expression profiles. However, in 
the scRNA-seq dataset from patients with idiopathic pulmonary fibrosis (IPF), the large 
variation across subjects was still present after adjusting for batch effect using scVI [21]. 
In addition, recent advances in combining scRNA-seq with upstream cell cryopreserva-
tion using dimethyl sulfoxide (DMSO) have enabled preservation of cells so that samples 
from different subjects can be processed together [22]. Comparison between scRNA-
seq data from the same sputum sample with and without DMSO preservation showed 
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no significant difference between the fresh and DMSO data but significant separation 
between different subjects was still present (unpublished data). Since the fresh and 
DMSO data from the same sample were generated in two different batches, this con-
firmed that the large between-subject variation was a consequence of biological subject 
effect but not technical batch effect. Therefore, it is inadequate to consider this variation 
as technical batch effect and remove it using batch effect adjustment tools in scRNA-seq 
data. In fact, removing this variation as technical batch effect may remove the disease 
effect of interest because subject effect confounds with disease effect.

Many DE analysis methods for scRNA-seq data have been developed and compared 
[23–25]. They can be classified into two categories depending on whether subject effect 
is considered. Although methods that ignore subject effect have been used in DE analy-
sis, they are more suitable for identification of marker genes for a given cell type, which 
is fundamentally different from DE analysis.

Within the category of methods that ignore subject effect, there are methods specifi-
cally designed for scRNA-seq data and methods adopted from bulk RNA-seq DE anal-
ysis. Among the methods designed for scRNA-seq data, BASiCS [26] and TASC [27] 
require external RNA spike-ins to provide information on technical variation and use 
a Bayesian hierarchical Poisson-Gamma model and a hierarchical Poisson-lognormal 
model, respectively, to fit data. Monocle [28–30] and NBID [31] model UMI counts 
of each gene using a negative binomial distribution without considering dropouts. To 
account for dropouts, a group of methods were developed including DEsingle [32], 
DESCENT [33], SC2P [34], SCDE [16] and MAST [35]. These methods utilize mixture 
models or hierarchical models, mostly zero-inflated, to model dropouts and captured 
transcripts. DEsingle fits a zero-inflated negative binomial model in each group and con-
ducts a likelihood ratio test for significance assessment. DESCENT models UMI counts 
using a hierarchical model which assumes that the true underlying expression follows 
a zero-inflated negative binomial distribution and the capturing process generating the 
observed data follows a beta-binomial distribution. SC2P models dropout events using 
a zero-inflated Poisson distribution and fits the detected transcripts using a lognormal-
Poisson distribution. The assumption in SC2P that the cell-specific dropout rate and 
dropout distribution are shared by all genes may eliminate the natural stochasticity in 
scRNA-seq data. SCDE employs a two-component mixture model with a negative bino-
mial and a low-magnitude Poisson component to model efficiently amplified read-outs 
and dropout events, respectively. The dropout rate for a given gene is determined by its 
true underlying expression level in the cell, which is estimated based on a selected subset 
of highly expressed genes. MAST uses a two-part hurdle model in which dropout rates 
are modeled by a logistic regression model and non-zero expression follows a Gaussian 
distribution. SC2P, SCDE and MAST were originally designed for Transcript Per Kilo-
base Million (TPM) data which has different technical noise and data distribution from 
UMI count data [36]. Multimodality has been observed in scRNA-seq data due to cel-
lular heterogeneity within the same cell type. To consider multimodality, scDD [37] was 
designed to model count data with a Dirichlet process to detect genes with difference 
in mean expression, proportion of the same component, or modality between groups. 
D3E [38], a nonparametric method, fits a bursting model for transcriptional regulation 
and compares the gene expression distribution between two groups. It was previously 
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reported to generate false-positive results on negative control datasets [24]. A recent 
study [23] showed that bulk RNA-seq analysis methods, including DESeq2 [39], limma-
trend [40], and Wilcoxon rank sum test [41], have comparable performance to methods 
designed for scRNA-seq data when applied to the cell-level UMI count data, especially 
after filtering out lowly expressed genes.

All the methods mentioned above treat cells from the same subject as independent, 
which may be efficient for identifying cell type marker genes, but inappropriate for DE 
analysis to identify disease or phenotype associated genes due to the presence of domi-
nant subject effect confounded with disease effect as described above. One simple and 
straightforward solution is to aggregate expression levels of cells from the same subject 
by averaging and then to compare the aggregated sample-level “pseudo-bulk” expression 
levels between two groups of subjects using Student’s t test. We denote this method as 
subject-t-test (subT). Furthermore, two recent studies proposed the following three DE 
analysis methods to consider subject effect in scRNA-seq data. Zimmerman et al. [19] 
developed MAST-RE by adding a subject random effect to the non-zero expression part 
of the hurdle model in MAST. The muscat package [20] provides two approaches to con-
sider subject effect: (1) muscat-PB that aggregates cell-level UMI counts into sample-
level “pseudo-bulk” counts which are then compared between two groups using edgeR 
that was developed for DE analysis in bulk RNA-seq data; and (2) muscat-MM that fits 
a generalized linear mixed model (GLMM) on the cell-level UMI counts to account for 
subject variation. Both muscat-PB and muscat-MM were compared to other methods 
and shown to have power gain by considering subject effect [15].

In this article, we develop a new statistical model to identify DE genes in scRNA-seq 
data with multiple subjects, named iDESC. A zero-inflated negative binomial mixed 
model is used to consider both subject effect and dropouts. iDESC models dropout 
events as inflated zeros by pooling information across genes and assuming that genes 
with similar expression share similar dropout rates. In addition, iDESC allows dropout 
rate to be subject/batch specific. The non-dropout events are modeled by a negative 
binomial distribution. In the negative binomial component, a random effect is used to 
separate subject effect from disease effect. Wald statistic is used to assess the signifi-
cance of disease effect. We compared iDESC with 11 existing DE analysis methods based 
on type I error, statistical power, between-dataset consistency and validation using both 
simulated and real datasets.

Results
Dependency of dropout rate on gene expression

Previous studies reported that the dropout rate of a gene in a given cell depends on the 
expected expression level of the gene in the cell and dropout events are more prevalent for 
genes with lower expression [16]. As expected, in both macrophage and fibroblast across 
the three real datasets, we observed decreasing patterns in the gene-level proportion 
of zeros when the average log-normalized UMI count across all cells increases (Fig. 1a, 
b). Assuming that genes with similar average expression share similar dropout rates, we 
pooled information across genes to obtain an S-shape curve describing the dependency 
of dropout rate on gene expression level using locally estimated scatterplot smoothing 
(LOESS) regression. Heterogeneity of this dependency across different subjects was also 
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observed when we stratified cells by subjects to obtain the subject-level LOESS curves, 
suggesting that dropout rate is likely to be subject/batch specific (Fig. 1c, d).

Method performance evaluation overview

We evaluated and compared the performance of iDESC and eleven existing DE analy-
sis methods (Table 1) using both simulation studies and three real datasets. We divide 
these methods into two categories, based on whether subject effect is considered. The 
first category of methods considers subject effect, including iDESC, MAST-RE, muscat-
PB, muscat-MM and subT. Among them, iDESC, MAST-RE and muscat-MM are mixed 
model-based methods, whereas muscat-PB and subT are aggregation-based methods. 
iDESC and MAST-RE also consider dropouts in scRNA-seq data. The other category 
of methods does not consider subject effect. Within this category, DEsingle, MAST and 
scDD consider dropouts while NBID, DESeq2, limma-trend and Wilcoxon rank sum test 
do not. DEsingle considers dropout in the fitted model but tests for differences in both 
group means and dropout rates instead of difference in group means only. Therefore, 
unlike most DE methods, DEsingle identifies genes with composite differences in group 
means and dropout rates. Comparison of these methods enabled us to assess the benefit 
of considering dropout evens and/or subject effect in the DE analysis of scRNA-seq data.

We compared method performance based on type I error, statistical power, and con-
sistency of the identified DE genes in three independent scRNA-seq datasets on the 
same disease, the Kaminski dataset [18], the Kropski dataset [42] and the Misharin data-
set [17]. All datasets measured scRNA-seq data of whole lung tissue from patients with 
IPF and normal controls.

Fig. 1 Dependency of dropout rate on gene expression. Plots showing the gene-level proportion of 
zeros in relation to the average log-normalize UMI count across all cells in a the Kaminski and Misharin 
macrophage datasets and b the Kaminski and Kropski fibroblast datasets. The LOESS curves (red lines) 
described decreasing patterns of dropout rate on gene expression level. The subject-level LOESS curves 
in c the Kaminski and Misharin macrophage datasets and d the Kaminski and Kropski fibroblast datasets 
demonstrated heterogeneity of this dependency across different subjects
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Type I error assessment

To assess type I error, we permuted the group labels of subjects in both Kaminski and 
Kropski datasets 500 times. All twelve methods were applied to the permuted datasets 
to identify DE genes in macrophages. For each gene, we calculated the empirical type 
I error as the proportion of permuted datasets with a p value < 0.05 and compared it to 
the nominal level 0.05. Figure 2 shows the empirical type I error of each method. In both 
datasets, methods that account for subject effect, including iDESC, MAST-RE, muscat-
MM, muscat-PB and subT, had well-controlled type I error. Among these methods, 
MAST-RE had slightly inflated type I error for some genes, likely due to the deviation 

Table 1 Overview of the twelve DE analysis methods for comparison

Dropout Subject effect Test Model

iDESC ✓ Mixed model Wald test Zero-inflated negative binomial mixed 
model

MAST-RE ✓ Mixed model Likelihood ratio test Two-part hurdle mixed model

Muscat-MM × Mixed model Wald test Negative binomial mixed model

Muscat-PB × Aggregation Quasi-likelihood F-test EdgeR on sample-level aggregated data

subT × Aggregation Student’s T test T test on sample-level aggregated data

DEsingle ✓ × Likelihood ratio test Group-specific zero-inflated negative 
binomial model

MAST ✓ × Likelihood ratio test Two-part hurdle model

scDD ✓ × Kolmogorov–Smirnov test Dirichlet process mixture of normals

NBID × × Likelihood ratio test Negative binomial model with group-
specific dispersion

DESeq2 × × Wald test Negative binomial model with the same 
dispersion between groups

limma × × Moderated T test Linear regression model

Wilcoxon × × Wilcoxon rank sum test Nonparametric test

Fig. 2 Empirical type I error of all methods on the two permuted real datasets. Boxplots showing the median 
(center line), interquartile range (hinges), and 1.5 times the interquartile (whiskers) of empirical type I error at 
the nominal level of 0.05. Confidence interval of type I error is marked by two dashed lines (0.031–0.069)
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of log-normalized UMI counts from the assumed Gaussian distribution. In contrast, the 
type I error of the methods that do not consider subject effect were severely inflated. The 
inflation of type I error was more prominent in the Kropski dataset for these methods, 
indicating a larger subject effect in the data. Among these methods, DEsingle, MAST 
and scDD had the largest inflation in type I error. DESeq2 had the largest variation in 
type I error across all genes. Taken together, these results suggested that it is important 
to consider subject effect for type I error control in the DE analysis of scRNA-seq data 
with multiple subjects.

Power comparison

To compare power, we simulated scRNA-seq data with 150 true DE genes and 300 non-
DE genes under a wide range of parameter settings estimated from the Kaminski mac-
rophage dataset. Expression data of the DE genes was simulated to have a fold-change 
of eβ between the two groups of subjects. The number of cells per subject ( m ), the mag-
nitude of capture efficiency ( δ ) and the log fold change ( β ) were varied at different lev-
els to simulate different datasets. We then applied all twelve methods to each simulated 
dataset for DE analysis. Method performance was assessed by the area under a receiver 
operating characteristic curve (AUC) that describes the sensitivity and specificity of the 
identified DE genes under different significance levels. The sensitivity and specificity 
under the p-value threshold of 0.05 are also demonstrated.

Figures 3 and Additional file 1: S1 show that all methods had improved sensitivity and 
AUC when the number of cells per subject increased except scDD. Under most simu-
lation settings, iDESC performed the best with the highest sensitivity and AUC when 
compared to methods considering subject effect (Fig. 3a, c, d). In the setting with 20 cells 
per subject and negative group effect, iDESC had comparable or higher AUC than other 
methods. When capture efficiency was high ( δ = 0.5 ) corresponding to low dropout rate, 
muscat-MM had the second highest sensitivity and AUC but was better than iDESC in 
the setting with 20 cells per subject and negative disease effect. When capture efficiency 
was low ( δ = 1, 1.5 ) corresponding to high dropout rate, the other four methods that 
consider subject effect, MAST-RE, muscat-MM, muscat-PB and subT, were comparable 
and had lower sensitivity and AUC than iDESC. The specificity of iDESC, muscat-MM 
and sub-T were around 0.95 at the p-value threshold of 0.05, while MAST-RE and mus-
cat-PB had lower specificity especially when the group effect was large (Fig. 3b). When 
we compared iDESC with the other seven methods that do not consider subject effect, 
DEseq2 had comparable or even higher sensitivity and AUC than iDESC when capture 
efficiency was low ( δ = 1, 1.5 ), but performed worse when capture efficiency was high 
( δ = 0.5 ) (Additional file  1: Figs. S1a, S1c and S1d). DEseq2 and Wilcoxon had lower 
specificity especially when capture efficiency was high ( δ = 0.5 ) (Additional file 1: Fig. 
S1b). All other methods had lower sensitivity, specificity and AUC. scDD and NBID had 
compromised performance in most of the simulation settings. In summary, iDESC had 
comparable or the highest sensitivity and AUC, and maintained the correct specificity 
across all simulation settings.
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Consistency and validation of results in three independent scRNA‑seq datasets

We used two cell types, macrophage and fibroblast, from three independent scRNA-
seq datasets (Kaminski, Kropski and Misharin) of whole lung tissue from IPF patients 
and normal controls [17, 18, 42] to demonstrate and compare the between-dataset 
consistency of DE results by different methods. Both cell types have been reported 
to have significant transcriptomic changes in IPF patients [43–50]. Since different 
datasets have different cell type nomenclature, we overlaid the data from all three 
datasets to find subpopulations of cells that overlap well across the three datasets on 
the UMAP of integrated data by Seurat (Figs. 4a and 5a). This step was performed to 
ensure that DE analysis was conducted on the same type of cells across three data-
sets so that results are comparable. For each cell type, we selected datasets with a 
median number of cells per subject larger than 10 to conduct the consistency analy-
sis. Eventually, the DE analysis results in macrophage were compared between the 
Kaminski and Misharin datasets and in fibroblast between the Kaminski and Krop-
ski datasets. Five methods that consider subject effect, including iDESC, MAST-RE, 
muscat-MM, muscat-PB and subT, were applied. After data preprocessing, we had 
7,128 genes in 43,028 macrophages from the Kaminski dataset, and 8,409 genes in 
3,635 macrophages from the Misharin dataset. For fibroblast, we had 10,860 genes 
in 2,290 fibroblasts from the Kaminski dataset, and 9,325 genes in 1,615 fibroblasts 

Fig. 3 Power comparison of methods considering subject effect in simulated datasets. Evaluation criteria 
including a sensitivity and b specificity under the p-value threshold of 0.05, and c area under an ROC curve 
(AUC) to measure the accuracy of identified DE genes under three levels of capture efficiency (δ) and number 
of cells per subject ( m ). d ROC curves and the corresponding AUC scores when β = 0.4, δ = 1,m = 50
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from the Kropski dataset. We further had 7,653 genes in 8,663 macrophages from the 
Kropski dataset for external validation.

At the threshold of p value < 0.01, iDESC identified 5,577 and 1,124 DE genes in 
Kaminski and Misharin macrophage datasets, respectively, and 417 and 534 DE genes 
in Kaminski and Kropski fibroblast datasets, respectively. The top upregulated DE 
genes in IPF macrophage (Fig.  4b), such as FN1, CCL18 and SPP1, were previously 
reported to be upregulated in IPF and related to IPF pathogenesis in macrophages 
[17, 18, 44, 45, 47, 48, 51]. In fibroblast, CXCL14 and SFRP1 were identified among 
the top upregulated DE genes in IPF (Fig. 5b), which were also found to be potential 
signatures of IPF in previous studies [49, 50, 52–54]. iDESC also identified CXCL12, a 
gene potentially related to the pulmonary fibrosis progression [55, 56], to be upregu-
lated in IPF fibroblast. To examine subject variations in these three datasets, we cal-
culated cell-level effect coefficients [20] for each subject in macrophage (Fig. 4c) and 
fibroblast (Fig. 5c). Cell-level effect coefficients summarized the extent to which each 
cell reflects the group-level fold-change. For each cell type, both inter- and intra-
subject variations of effect coefficients are different between the two chosen datasets, 
suggesting that the level of subject variation varies across different datasets poten-
tially due to variations in biological background of subjects.

Fig. 4 DE analysis using iDESC on the two IPF macrophage datasets. a UMAP of nomenclature matched 
macrophages in the Kaminski and Misharin datasets colored by subject (left) and group (right). b Heatmap of 
subject-level average expression for the top 10 upregulated and top 10 downregulated genes. c Violin plots 
demonstrate cell-level contributions to the group fold-change within each subject. Each violin corresponds 
to one subject and is colored by group
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We further evaluated method performance based on the consistency of DE genes 
between datasets. For each method in each cell type, we overlapped the identified DE 
genes from the two chosen datasets (Fig. 6a, b). Fisher’s exact test was conducted to 
assess the significance of overlap and Jaccard index was calculated to measure the 
similarity between the two DE gene lists for each method (Table  2). The higher the 
overlap is, the more consistent the results are between datasets, indicating a better 

Fig. 5 DE analysis using iDESC on the two IPF fibroblast datasets. a UMAP of nomenclature matched 
fibroblasts in the Kaminski and Kropski datasets colored by subject (left) and group (right). b Heatmap of 
subject-level average expression for the top 10 upregulated and top 10 downregulated genes. c Violin plots 
demonstrate cell-level contributions to the group fold-change within each subject. Each violin corresponds 
to one subject and is colored by group

Fig. 6 Consistency and validation of DE genes overlapping between real datasets in macrophage and 
fibroblast. a Barplots showing the number of DE genes identified in the Kaminski (purple), Misharin (yellow) 
datasets and the overlap (grey) between them in macrophage. b Barplots showing the number of DE 
genes identified in the Kaminski (purple), Kropski (yellow) datasets and the overlap (grey) between them in 
fibroblast. c Barplots showing the percentage of IPF-related genes in the Harmonizome database identified in 
both the Kaminski and Misharin macrophage datasets
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performance. Figure 6a shows that iDESC identified the largest number of between-
dataset overlapping DE genes (808 genes) in macrophage. Although iDESC did 
not achieve the most between-dataset overlapping DE genes in fibroblast (Fig.  6b), 
Table 2 shows that iDESC had the most significant between-dataset overlap in both 
cell types (macrophage: p = 1 ×  10–5, fibroblast: p = 4 ×  10–21), followed by muscat-PB 
(macrophage: p = 1 ×  10–5, fibroblast: p = 2 ×  10–7). In contrast, MAST-RE, muscat-
MM and subT did not achieve significant between-dataset overlap in macrophage. 
They had significant overlap in fibroblast while their p-values were much larger than 
iDESC and others. In addition, iDESC had the largest Jaccard Index in both cell types 
(macrophage: JI = 0.137, fibroblast: JI = 0.077), followed by muscat-MM (macrophage: 
JI = 0.108, fibroblast: JI = 0.071).

Lastly, we used a list of 83 IPF-related genes in the Harmonizome database [57] 
to validate the between-dataset overlapping DE genes in each cell type identified by 
each method (Fig.  6c). In macrophage, iDESC had the highest proportion of vali-
dated genes (9.52%), followed by muscat-MM (8.73%), muscat-PB (7.94%), MAST-RE 
(7.14%) and subT (4.76%). In fibroblast, none of the methods had more than 3 genes 
that were found in the Harmonizome gene list, thus the validation results were not 
suitable for comparison.

Table 2 Fisher’s exact test and Jaccard index measuring the DE genes overlapping between the 
two chosen scRNA-seq datasets in macrophage and fibroblast

Method iDESC MAST‑RE Muscat‑MM Muscat‑PB subT

Macrophage  P value 1× 10−5 1.000 0.269 1× 10−5 0.085

 Jaccard Index 0.137 0.061 0.108 0.055 0.028

Fibroblast  P value 4× 10−21 4× 10−6 3× 10−5 2× 10−7 0.011

 Jaccard Index 0.077 0.067 0.071 0.035 0.024

Table 3 DE analysis results using iDESC of the top 10 up-regulated DE genes, identified in the 
Kaminski macrophage dataset, in the three IPF macrophage datasets

NA represents that the gene was filtered and not included in the DE analysis in the corresponding dataset

Gene Kaminski Kropski Misharin

Fold change P value Fold change P value Fold change P value

FN1 2.882 7.01×10−32 2.639 3.69×10−10 NA NA

CCL18 2.528 3.95×10−22 2.594 3.68×10−4 1.725 5.79×10−4

SPP1 2.201 6.39×10−13 2.444 1.63×10−3 NA NA

S100A10 1.827 2.75×10−17 2.418 3.27×10−4 NA NA

VIM 1.807 1.19×10−29 NA NA 1.392 1.14×10−3

CSTB 1.777 2.79×10−21 2.247 3.11×10−8 2.106 2.35×10−3

CD9 1.702 2.71×10−17 1.517 8.90×10−3 1.677 2.44×10−3

LGALS1 1.690 8.79×10−11 2.033 2.22×10−6 1.633 9.19×10−4

ACTB 1.568 6.02×10−9 NA NA 1.597 7.35×10−3

LGALS3 1.508 1.00×10−13 1.929 1.83×10−3 1.530 4.30×10−3
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To validate the top DE genes identified in the Kaminski macrophage dataset, we 
used the Kropski and Misharin macrophage datasets. Table 3 demonstrates that the 
top 10 upregulated DE genes identified using iDESC in the Kaminski macrophage 
dataset, if captured in either of the two validation datasets, were also significant 
(p < 0.01) by iDESC in the Kropski and Misharin macrophage datasets. We also exam-
ined the expression distribution of the top 3 DE genes, FN1, CCL18 and SPP1, iden-
tified in the Kaminski macrophage dataset, in the three IPF macrophage datasets. 
Additional file  2: Figure S2 shows that all three genes were differentially expressed 
between IPF and control (p < 0.01, Wilcoxon rank sum test) in the three IPF mac-
rophage datasets.

In summary, we evaluated method performance using real datasets based on consist-
ency of results across different datasets and validation using previously reported IPF 
associated genes in public database and literatures. Our method, iDESC, achieved the 
best performance based on both evaluation criteria. The top DE genes identified by 
iDESC were highly biologically relevant, well supported by literatures, and validated by 
two other independent datasets.

Computation time

The runtime of iDESC is 33.3 and 24.6 min to analyze the Kaminski and Kropski fibro-
blast datasets, respectively, using a 10-core, 100  GB RAM, Intel Xeon 2.6  GHz CPU 
machine. The computation time of iDESC is relatively long because of the mixed model 
fitting for subject effect and the consideration of dropouts. For a dataset of 50–100 sub-
jects and ~ 2000 cells per sample, iDESC took about 50 h using a 10-core, 100 GB RAM, 
Intel Xeon 2.6 GHz CPU machine. To provide more information on computation time, 
we recorded the time of the five methods that consider subject effect, iDESC, MAST-RE, 
muscat-MM, muscat-PB and subT, on 10 genes in the Kaminski fibroblast dataset that 
includes 2,290 fibroblasts. Additional file  3: Table  S1 displays the runtime on a single 
core. With parallel computing, the runtime of the mixed model-based methods, iDESC 
and muscat-MM, was further reduced to 9.74 and 9.51  s, respectively, on a 10-core 
machine.

Discussion
We have developed a new method, iDESC, to detect cell type specific DE genes between 
two groups of subjects in scRNA-seq data. iDESC fits a zero-inflated GLMM assuming 
dropouts to have zero count and captured expression to have a negative binomial distri-
bution. Information across genes were pooled to model the dependency of dropout rate 
on gene expression level. Subject effect is modeled as a random effect in the log-mean 
of the negative binomial component. Wald test is used to assess the group mean dif-
ference in captured transcripts. We compared the performance of iDESC with elevent 
exiting DE analysis methods using both simulated data and real datasets. Permutation 
analysis using real data demonstrated that the type I errors of methods that consider 
subject effect were well calibrated, whereas the type I errors of methods that ignore sub-
ject effect were highly inflated. Using simulated data based on parameters estimated 
from real datasets, we showed that iDESC achieved comparable or higher power among 
methods that consider subject effect. In three independent scRNA-seq datasets of IPF 
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patients and healthy controls, several of the top DE genes identified by iDESC were well 
supported by literatures regarding their important roles in IPF pathogenesis. Moreo-
ver, iDESC achieved the most consistent and validated results between independent 
datasets and using public database, respectively. These results demonstrated superior 
performance of iDESC over the other existing methods, suggesting the importance of 
considering subject effect and dropouts in the DE analysis of scRNA-seq data with mul-
tiple subjects.

Like most DE analysis methods for scRNA-seq data, iDESC requires accurate cell 
type annotation, which is a key step to ensure the validity and biological relevance of 
the downstream DE analysis. Cell clustering and cell type annotation are commonly per-
formed with the removal of technical (batch) or biological (subject) effects through data 
integration. During this step, group/disease effect will be removed along with subject 
effect. Therefore, the downstream DE analysis will be performed on the original count 
or normalized data in each annotated cell type instead of the integrated data. Inaccurate 
cell typing may lead to data distribution deviated from the negative binomial distribu-
tion or with multiple modes. Possible remedies to reduce the negative impact of inaccu-
rate cell type annotation include the following strategies. First, we strongly recommend 
examining the cell distribution through data visualization using UMAP and/or t-SNE 
plots and performing cell clustering to detect potential incorrect cell annotations. Sec-
ond, a goodness-of-fit test for iDESC and/or replacing the negative binomial distribution 
with a multi-modal distribution or a mixture model may improve model fitting.

Despite the advantages of iDESC over the other DE analysis methods shown in this 
article, iDESC can be improved in several directions. First, in some cell types, when the 
cell-to-cell heterogeneity of certain genes is high or heterogeneous cell subtypes exist, 
negative binomial distribution may not fit the data well. Especially when heterogeneous 
cell subtypes are present in the data, the distribution of expression may be multi-modal. 
Data transformation, a goodness-of-fit test for iDESC and/or replacing negative bino-
mial distribution with a multi-modal distribution or a mixture model may improve the 
model fitting. Second, estimation of dispersion parameter in a negative binomial distri-
bution has been shown to be challenging. Multiple dispersion correction approaches [39, 
58–60] that have been developed to improve accuracy can be used to further improve 
the performance of iDESC.

The computational speed of iDESC is relatively slow due to its consideration of drop-
outs and subject effect, which are critical for iDESC to achieve significant improvement 
in performance. Besides implementing parallel computing on high performance com-
puters, the following two future work can potentially reduce the runtime of iDESC. First, 
the “glmmTMB” package uses the Template Model Builder (TMB) framework to calcu-
late the first and second order derivatives of the likelihood function by automatic differ-
entiation (AD). It is possible to speed up the algorithm by specifying the calculation of 
first and second order derivatives for the quasi-likelihood function of our model to skip 
this process. Second, the objective function of iDESC was optimized using the "nlminb" 
optimizer in an iterative scheme, which is an unconstrained quasi-Newton method 
optimizer. Replacing nlminb with a more efficient algorithm such as stochastic gradient 
descent (SGD) may further reduce the runtime.
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Conclusions
We developed iDESC, a zero-inflated negative binomial mixed model that considers 
both subject effect and dropouts, to identify cell type specific differentially expressed 
genes in scRNA-seq data with multiple subjects. iDESC had well-calibrated type I error 
and comparable or higher power than other existing DE methods. When applied to 
three independent scRNA-seq datasets with IPF patients and healthy controls, iDESC 
achieved the highest between-dataset consistency and validation rate based on genes 
found to be associated with IPF in public database.

Materials and methods
Statistical model

To identify cell type specific DE genes between two groups of subjects, iDESC uses a 
zero-inflated negative binomial mixed model to consider both subject effect and dropout 
events in scRNA-seq data with multiple subjects. The model includes two components: 
a zero component representing dropouts and a negative binomial component represent-
ing captured expression.

Suppose cells are collected from n subjects. In a given cell type of interest, subject i has 
mi cells so that there are in total N =

n
i=1mi cells of the given type. Let Xi be the group 

label of subject i , where Xi is 0 if subject i belongs to group 1 and 1 if subject i belongs 
to group 2. For each gene, let Yijk denote the observed UMI count of gene k in cell j from 
subject i . We model the UMI count as:

where πijk is the dropout rate representing the probability of gene k being dropped out 
in cell j from subject i , I{·} is the indicator function that takes value 1 when the condi-
tion in the brackets is satisfied, 0 otherwise, Sij is the total UMI counts of cell j from 
subject i , �ik is the rate parameter of the negative binomial distribution representing the 
true underlying relative gene expression level, and dk is the dispersion parameter of gene 
k . The rate parameter �ik is further modeled using a GLMM with log link, where αk is 
the intercept, βk is the group effect representing the log fold change of mean expression 
of gene k between the two groups, and γik is the gene-specific subject random effect, 
assumed to be independent and γik ∼ N

(
0, σ 2

k

)
.

Previous research found that the dropout rate of a given gene in a given cell depends 
on the expression level of the gene in the cell. Genes with lower expression level tend 
to have a higher dropout rate [16]. In addition, the dropout rates vary among cells and 
are influenced by the quality of sequencing library, cell type and RNA-seq protocol [16]. 
To quantify this dependency, we pooled information across genes and assumed that 
genes of similar average expression share similar dropout rates. In iDESC, we first cal-
culated the proportion of zeros for each gene, and then fit a locally estimated scatterplot 
smoothing (LOESS) curve of the zero proportions against the log of gene-level aver-
age log-normalized UMI count across all cells. This overall LOESS curve captured the 
dependency of dropout rate on gene expression level and produced an initial estimate 

Yijk
∣∣πijk , �ik , dk ∼ πijk × I{Yijk=0

} +
(
1− πijk

)
× NB

(
Sij�ik , dk

)
,

log(�ik) = αk + βkXi + γik ,
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of dropout rates for all genes, denotes as π0
k  . Notice that the LOESS curve was obtained 

by assuming that the average log-normalized UMI count across all cells represents the 
true underlying gene expression. To relax this assumption, we introduce a parameter θ to 
allow the true dropout rate to deviate from the initial estimate when the single-cell gene 
expression is zero. Furthermore, the subject-level LOESS curves obtained from cells of 
the same subject have slight variations from the overall LOESS curve, suggesting that 
dropout rate is likely to be subject/batch specific. Putting together, we model the drop-
out rate πijk as a GLMM with logit link:

where θ is the deviation from the initial estimate for a gene when its expression level is 
zero, and ηik is the gene-specific subject/batch random effect, assumed to be independ-
ent and ηik ∼ N

(
0, τ 2k

)
.

To test if gene k is differentially expressed between the two groups, we constructed 
a Wald statistic to test H0 : βk = 0 against H1 : βk �= 0 using an R package ‘glmmTMB’ 
[61].

Real datasets

We evaluated the performance of iDESC and other methods using three scRNA-seq 
datasets of whole lung samples from three independent IPF studies generated using the 
10X Genomics Chromium platform. All datasets included IPF patients and healthy con-
trols. In this article, we chose to focus on macrophage and fibroblast because both cell 
types have been recognized to play a significant role in IPF pathogenesis [43–50].

Kaminski refers to the scRNA-seq dataset of frozen distal lung parenchyma samples 
from 32 IPF and 28 control donor lungs in Adams et al. [18]. The raw data include 38,070 
genes, 101,230 macrophages and 2,290 fibroblasts.

Kropski refers to the scRNA-seq dataset of fresh whole lungs from 10 IPF patients and 
8 healthy donors in Habermann et al. [42]. The raw data include 31,054 genes, 11,532 
macrophages and 1,644 fibroblasts.

Misharin refers to the scRNA-seq dataset of fresh lung tissues from 4 IPF patients 
and 8 transplant donors in Reyfman et al. [17]. The raw data include 21,807 genes, 8,534 
macrophages and 2,468 fibroblasts.

Data preprocessing

The raw UMI count matrices of all three datasets were downloaded from the links provided 
in the publications. We integrated the three datasets for data visualization and noticed that 
the cell type nomenclature in these three datasets were quite different. For example, the 
fibroblasts in the Kaminski dataset were distinguished by expressing IGF1 and MFAP5, and 
these cells do not express ITGA 8 or MYLK as the myofibroblasts in the Kaminski dataset. 
However, a good portion of the fibroblasts in the Misharin dataset and the PLIN2+ fibro-
blasts in the Kropski dataset expressed ITGA 8 and MYLK, suggesting that they are simi-
lar to the myofibroblasts in the Kaminski dataset but not the fibroblasts. The difference in 
cell type nomenclature may lead the DE analysis results to be invalidated across the three 

logit
(
πijk

)
= logit

(
π0
k

)
+ θ × I{Yijk=0

} + ηik ,
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datasets. To ensure cells of the same type were compared across the three datasets so that 
DE analysis results were comparable, we conducted integration analysis across the three 
datasets using Seurat [62]. The graph-based Louvain clustering algorithm [63] was applied 
to cluster cells. Cell clusters with substantial overlap across the three datasets in the UMAP 
of integrated data were extracted for downstream DE analysis. Based on this nomenclature 
matching, we had 43,028 macrophages and 2,290 fibroblasts from the Kaminski dataset, 
3,635 macrophages from the Misharin dataset, and 8,663 macrophages and 1,615 fibro-
blasts from the Kropski dataset. For each cell type, we filtered out genes that were expressed 
in less than 5% of cells and removed subjects with less than 5 cells. When choosing data-
sets to evaluate the between-dataset consistency of DE analysis results by each method, we 
selected datasets with a median number of cells per subject larger than 10 to ensure sample 
size in the analysis.

Type I error assessment

To assess type I error, we randomly permuted the group labels of subjects in both Kaminski 
and Kropski datasets so that no model assumptions were made in data generation and the 
within-subject cell-to-cell correlation structure was preserved in the data. The permuted 
datasets were not expected to show transcriptomic difference between the two groups. We 
performed 500 permutations on each dataset and applied all DE analysis methods to the 
permuted datasets. Genes with a p value < 0.05 were considered significant. The empirical 
type I error for each gene was calculated as the proportion of permuted datasets having a p 
value < 0.05 for the given gene.

Power comparison

To compare the statistical power of all methods, we simulated single-cell expression data 
with ground truth to mimic the real datasets. Macrophages in the Kaminski dataset were 
used for this analysis. First, for each gene, we fit the following ZINB model on the mac-
rophage data from all subjects in the Kaminski dataset to estimate gene-level dispersion dk , 
subject-specific dropout rate πik and subject-specific relative gene expression level �ik : 
Yijk

∣∣πik , �ik , dk ∼ πik × I{Yijk=0
} + (1− πik)× NB

(
Sij�ik , dk

)
 . The estimated π̂ik , �̂ik and 

d̂k were used in the simulation model to mimic real data. Second, we randomly sampled 30 
subjects (15 IPF patients and 15 healthy controls) from the Kaminski dataset and extracted 
their π̂ik , �̂ik and d̂k to set up the simulation model. For each subject, m macrophages 
( m = 20, 50, 100 ) were simulated and their sequencing depths ( Sij’s) were randomly sam-
pled without replacement from the sequencing depths of all cells from the given subject. 
For each subject i , based on its parameter setting ( Sij’s, π̂ik , �̂ik and d̂k ), two samples were 
simulated, one for each of the two groups. Let Y 1

ijk and Y 2
ijk be the simulated UMI counts of 

gene k in cell j for group 1 and group 2 samples generated from subject i , respectively, we 
have

∀l ∈ {1, 2} : Y l
ijk ∼ πijk × I{

Y l
ijk=0

} +
(
1− πijk

)
× NB

(
Sij �̂ik e

βk I{l=2} , d
)
,
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where l is 1 for group 1 sample and 2 for group 2 sample, βk is the log fold change of 
gene k ’s expression between the two groups, d is the dispersion, δ is capture efficiency, 
and σ 2

π is the variability of dropout rate. Based on the median of  d̂k and the empirical 
estimation of variance of cell-level dropout rate, we set d = 1 and σ 2

π = 2000 in all simu-
lations. To choose genes with moderate to high expression level, we randomly selected 
450 genes with �̂ik ≥ 1

Sij
 for all cells and subjects, among which 150 were chosen to be 

DE genes and the remaining were non-DE genes. In each simulated dataset, for non-DE 
genes, the log fold change was set to βk = 0 and for the DE genes, βk was set to be the 
same value β , where β varied from − 0.7 to − 0.1 and 0.1 to 0.7 with an increment of 0.1 
across datasets. To simulate datasets with different levels of dropout rates, we set 
δ = 0.5, 1, 1.5 , where the higher the capture efficiency is the fewer zeros exist in the sim-
ulated data.

We applied all methods to the simulated datasets to identify DE genes under differ-
ent p-value threshold. By comparing the identified DE genes to the ground truth, the 
area under an ROC curve (AUC) score as well as the sensitivity and specificity under 
the p-value threshold of 0.05 were calculated for each method to evaluate method 
performance.

scRNA‑seq data analysis

We applied the DE analysis methods that consider subject effect to macrophage and 
fibroblast separately from the three real datasets. Method performance was assessed 
based on the consistency of the identified DE genes between datasets. Genes with a p 
value < 0.01 were considered to be differentially expressed. The cell-level effect coef-
ficient [20] was used to demonstrate subject variation. To calculate the effect coef-
ficient for each cell, we calculated dot products of log-normalized expression and the 
estimated group effects across the DE genes identified by iDESC and then scaled to 
a maximum absolute value of 1. To compare the consistency of DE genes between 
datasets, Fisher’s exact test was used to assess the significance of overlap and Jaccard 
index was calculated to measure the similarity between the two DE gene lists. For the 
overlapping DE genes between the two chosen datasets identified by each method in 
each cell type, we validated them using a list of 83 genes that are related to IPF in the 
Harmonizome database (https:// maaya nlab. cloud/ Harmo nizome/). The proportion of 
validated genes was calculated as the percentage of 83 genes that were the between-
dataset overlapping DE genes.

Abbreviations
scRNA-seq  Single-cell RNA sequencing
UMI  Unique Molecular Identifier
IPF  Idiopathic pulmonary fibrosis
DMSO  Dimethyl sulfoxide
ROC  Receiver operating characteristic
AUC   Area under the curve

logit
(
πijk

)
∼ N

(
δ × logit

(
π̂ik

)
, σ 2

π

)
,
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Additional file 1: Figure S1. Power comparison of iDESC and 7 methods without considering subject effect in 
simulated datasets. Evaluation criteria including (a) sensitivity and (b) specificity under the p-value threshold of 0.05, 
and (c) area under an ROC curve (AUC) to measure the accuracy of identified DE genes under three levels of capture 
efficiency (δ) and number of cells per subject (m). (d) ROC curves and the corresponding AUC scores when β = 0.4, 
δ = 1, m = 50.

Additional file 2: Figure S2. Boxplots showing the expression distribution of the top 3 DE genes, FN1, CCL18 and 
SPP1, in the three IPF macrophage datasets.

Additional file 3: Table S1. Runtime of five methods using a single core.
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