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Abstract 

Background:  To present an approach that autonomously identifies and selects 
a self-selective optimal target for the purpose of enhancing learning efficiency to seg-
ment infected regions of the lung from chest computed tomography images. We 
designed a semi-supervised dual-branch framework for training, where the training 
set consisted of limited expert-annotated data and a large amount of coarsely anno-
tated data that was automatically segmented based on Hu values, which were used 
to train both strong and weak branches. In addition, we employed the Lovasz scoring 
method to automatically switch the supervision target in the weak branch and select 
the optimal target as the supervision object for training. This method can use noisy 
labels for rapid localization during the early stages of training, and gradually use more 
accurate targets for supervised training as the training progresses. This approach can 
utilize a large number of samples that do not require manual annotation, and with the 
iterations of training, the supervised targets containing noise become closer and closer 
to the fine-annotated data, which significantly improves the accuracy of the final 
model.

Results:  The proposed dual-branch deep learning network based on semi-supervision 
together with cost-effective samples achieved 83.56 ± 12.10 and 82.67 ± 8.04 on our 
internal and external test benchmarks measured by the mean Dice similarity coefficient 
(DSC). Through experimental comparison, the DSC value of the proposed algorithm 
was improved by 13.54% and 2.02% on the internal benchmark and 13.37% and 2.13% 
on the external benchmark compared with U-Net without extra sample assistance 
and the mean-teacher frontier algorithm, respectively.

Conclusion:  The cost-effective pseudolabeled samples assisted the training of DL 
models and achieved much better results compared with traditional DL models 
with manually labeled samples only. Furthermore, our method also achieved the best 
performance compared with other up-to-date dual branch structures.
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Introduction
The proportion of infected regions of the lung could be used as visual evidence to assist 
the clinical physician in determining the severity of pneumonia [1, 2]. Furthermore, the 
progression of lung disease can also be predicted by continuously monitoring the vol-
ume and quality of infected regions [3, 4]. For example, the gas volume, tissue mass and 
recruitability measured by chest computed tomography (CT) scan analysis are impor-
tant when setting the mechanical ventilation in acute respiratory distress syndrome 
(ARDS) [5–7].

Since 2020, many studies [8–10] have demonstrated using deep learning (DL) models 
to automatically segment infected regions of pneumonia with good accuracy. Fan et al. 
[8] developed a novel COVID-19 lung infection segmentation deep network (Inf-Net) 
for automatically identifying infected regions from chest CT scans. They achieved a 
value of 0.739 measured in the mean Dice similarity coefficient (DSC) for the segmen-
tation of infected regions. Yan et al. [9] also investigated the segmentation of infected 
regions due to COVID-19, and a feature variation block in the segmentation of infected 
regions was introduced, which could better differentiate the diseased area from healthy 
areas in the lung. Furthermore, they used more effective progressive spatial pyramid 
pooling in the feature extraction stage as well. The optimum DSC values achieved in 
their studies for intact lung and infected regions were 0.987 and 0.726, respectively. Liu 
et al. [10] employed a two-stage cross-domain transfer learning framework to segment 
COVID-19 infection regions. This framework took advantage of attention-aware feature 
fusion and large reception fields for accurate object segmentation. The final experiment 
acquired a DSC of 0.668. However, these studies suffered from the tremendous effort 
required to manually annotating large-scale datasets well and achieved relatively low 
accuracy measured in DSC.

The U-Net [11] network structure together with its descendant family, such as 3D 
U-Net [12] and V-Net [13], achieved excellent results in the domain of segmenta-
tion. In addition, attention networks and transfer learning concepts have also been 
utilized. As in biological field, transfer learning had been approved effective in can-
cer detection and prediction using relatively small datasets [14–16]. Till now, most 
networks in chest CT images required sufficient high-quality labeled samples for DL 
models to be trained and verified. Since the infected lung regions could be illustrated 
as ground-glass opacity or consolidation regions and could adhere together with 
normal tissues on CT images, it would be costly to separate infected regions from 
healthy lung parenchyma. Furthermore, a set of CT images usually consists of dozens 
or hundreds of lung image slices, which makes it a very expensive and time-consum-
ing procedure for a professional radiologist to manually annotate chest CT images. 
Therefore, it was necessary to train a decent DL model with very limited high-quality 
labeled samples.

Recently, a weak supervised learning frame structure achieved satisfactory results 
by utilizing noisy or scribble-labeled samples in the training process of models. For 
example, Luo et al. [17] designed a semi-supervised network with a strong–weak dual-
branch structure in the pixel-level segmentation of images. Their dual branch structure 
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handled strong (high quality) samples and weak (noisy) samples to exploit the joint 
discrimination of strong and weak annotations and brought significant improve-
ments over the previous methods. Luo et al. [18] and Liu et al. [19] initiated effective 
scribble-supervised networks in medical image segmentation. They employed a dual-
branch network with a mixed pseudolabeling strategy to train DL models with scrib-
ble annotations. Yang et al. [20] initiated a noise Divergence-Aware Selective Training 
(DAST) strategy to identify severely noisy annotations and slightly noisy annotations 
and then treated them differently to improve the noise tolerance of DL models. Tar-
vainen et al. [21] proposed the mean-teacher framework to improve temporal ensem-
bling [22] for semi-supervised learning. Mean-teacher employed moving-average to 
update the weights of the teacher network instead of label predictions. This frame-
work outperformed the traditional DL network with a lower error rate by fewer labels 
on some open sourced databases, such as Street View House Number (SVHN) [23] 
and ImageNet 2012 [24]. Yu et al. [25] improved Mean-teacher by a novel uncertainty-
aware self-ensembling Mean-teacher UA-MT framework to enable the student model 
to gradually learn from meaningful and reliable targets by exploiting the uncertainty 
information in left atrium segmentation for 3D magnetic resonance imaging (MRI). 
Experiments showed that their method achieved high performance gains by incorpo-
rating the unlabeled dataset.

In our study, we explored utilizing the inherited Hounsfield unit (Hu) value of CT 
images to segment infected regions as pseudolabeled samples. Next, these almost 
zero-cost samples together with a small number of high-quality manually annotated 
samples were used to train our DL models. A semi-supervised dual branch frame-
work was designed. Two kinds of samples were trained in strong and weak branches. 
We also implemented a method of automatically transferring supervised targets and 
dynamically selecting the optimal targets to supervise the weak branch training. This 
approach was intended to improve model accuracy, prevent overfitting in the initial 
stage, and eliminate noisy interference in the final stage. Furthermore, we conduct 
extensive experiments over our proposed methods to verify the effectiveness and 
experimental results demonstrate that our proposed method achieves state-of-the-
art performance under various ratios of annotation noise for universal lung lesion 
segmentation.

Materials and methods
Study dataset and data preprocessing

A total of 869 transverse-section CT samples were collected from 869 patients with 
lung infections, such as COVID-19 (539, 62.0%), influenza pneumonia (100, 11.5%) and 
tuberculosis (230, 26.5%). In total, 850 cases were from the First Affiliated Hospital of 
Zhejiang University, and 19 cases were from an internet open source of the COVID-
19 database [26]. The latter dataset contains 20 labeled COVID-19 CT scans in total. 
However, the infected region of one case (radiopaedia_29_86490_1.nii.gz) only occupied 
0.014% of the entire lung, which was too insignificant for our further verification. Thus, 
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we removed this case from the external verification benchmark. All CT imaging was in 
the format of digital imaging and communications in medicine (DICOM) with 5  mm 
thickness between slices.

In our study, 250 CT datasets were manually annotated to the infected regions (image 
d in Fig. 1) by two professional radiologists, in which 200 sets were randomly selected to 
be used in the training process and the remaining 50 were used for the test set. The next 
600 CT datasets were automatically segmented based on their Hu values, and these cost-
effective samples were used to assist in model training. The last 19 fine annotated CT 
datasets from open source were utilized as an external test benchmark.

As the digital grayscale image had a pixel value ranging from [0, 255], the raw CT 
data were converted from Hu to the interval of the aforementioned values accordingly. 
The Hu data matrix was clipped within [− 1200, 600] (any value beyond this was set to 
− 1200 or 600 accordingly) and then linearly normalized to [0, 255] to fit into the digital 
image format for further processing.

Dataset preprocess to generate the mask for intact lung

The lung CT images were preprocessed to generate the mask for the intact lung (image 
b in Fig. 1), following the method reported by Hofmanninger et al. [27, 28], which was 
based on a U-Net DL model. They trained the model with a total of 121,820 CT image 
slices that were annotated with two radiologists and obtained an accuracy of 0.97 meas-
ured in DSC. As this method achieved steady and satisfactory results, the rest of our 
study focused on the segmentation of infected regions.

Fig. 1  Typical Hu-based pseudo-labeled and manually labeled CT images: a original CT image with 
pneumonia; b generated mask of intact lung; c pseudo-labeled (Hu[− 750,50]); d manually annotated by 
radiologists
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Utilize the value of Hu to generate cost‑effective pseudo‑labels

To further utilize unlabeled CT image dataset collections, we employed the inherent 
Hu value to generate noisy samples. These nearly zero-cost "dirty" datasets were used 
to assist the training of our dual-branch model. The segmentation of noisy infected 
regions was based on different valves of Hu values. Tang et al. [29] divided different 
infection regions in the lung with (mild) ground-glass opacity (GGO) and (severe) 
consolidation, which is defined with the Hu value. This value of the ground-glass 
opacity region was [− 750, − 300], and consolidation was [− 300, 50]. Thus, for one 
set of CT images, we generated pseudolabeled samples accordingly as Hu[− 750,50], 
which are shown in (c) of Fig. 1. However, there are some healthy tissues for which 
the Hu value is also located within [− 200, 50]. Thus, the samples segmented by the 
Hu value would also include these normal regions as noisy.

DL model training process

ATST method network structure

Four widely used DL frameworks were explored in our study, including U-Net [11], 
uncertainty-aware self-ensembling mean teacher (UA-MT) [25], Divergence-Aware 
Selective Training (DAST) [20] and our automatically transferring supervised tar-
gets (ATST) training method, as shown in Fig.  2 U-Net(2015) was the fundamental 
network in the domain of medical image segmentation, and the UA-MT(2019) and 
DAST(2022) structures were more up-to-date semi-supervised frameworks. UA-MT 
enhanced the mean-teach network [21] by using the Monte Carlo sampling method 
to predict the uncertainty for each label to screen out unreliable samples. DAST fur-
ther designed a divergence-aware selective training strategy to separate severely and 
slightly noisy annotations during the training process.

Fig. 2  Overview of the proposed cost-effective sample assisted dual-branch framework
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A dual-branch (clean and noisy supervised branches) structure was used, as 
there were two kinds of samples in our study. Minorities of datasets were carefully 
annotated by experienced radiologists, and the remaining majorities were zero-
cost labels from the automatic segmentation of the Hu value of CT images. The 
backbone encode-decode structure of both branches was based on U-Net, which 
included two network paths: contracting and expanding. The images were first fed 
into the contracting path to finish the down sampling or encoding process and cap-
ture the context information. Then, the up sampling or decoding process was com-
pleted in the symmetrical expanding path to obtain precise localization information 
of the targets.

Furthermore, the theory of the mean teacher semi-supervised training process was 
employed to utilize noisy samples as supplementary datasets to improve the major 
(clean supervised) branch. Inherited from the mean-teacher methodology, the clean 
supervised model learned from the noisy supervised model by minimizing the segmen-
tation loss on the labeled data and the consistency loss with respect to the targets from 
the noisy supervised model on all input data. In addition to the supervised reverse gra-
dient update process, we enhanced the idea of the exponential moving average (EMA) 
in Mean-teacher [12] by incorporating adaptive weight updating methods. The tradi-
tional EMA function was as follows:

where θ and θ’ are the weights of the clean and noisy supervised models, respectively. 
The noisy supervised weights θ’t were updated at training step t. The smoothing coeffi-
cient parameter ε was used to control the updating rate. According to Tarvainen’s previ-
ous work [12], the performance was the best with ε= 0.99 in the ramp-up stage and ε= 
0.999 for the rest.

Our adaptive EMA gradually updates the coefficient ε during training based on the 
following function:

where iters is the number of maximum iterations.
The coefficient ε, which was initially equivalent to 0.8, allowed more space for the 

updating of weights to learn from the clean supervised branch quickly and then 
increased gradually to approach 1 infinitely in the final stage to restrain the turbu-
lence from "dirty" samples.

The ATST module stands for Automatically Transferring Supervised Targets in 
the early stages of training, the weakly supervised branch mainly relies on labels 
based on Hu values for supervised learning. However, as training progresses, the 
strongly annotated branch has gained a certain level of accuracy. At this point, 
the labels based on Hu values not only do not help the network’s learning, but the 
noise they contain has had a negative impact on the network structure, To fully uti-
lize the unannotated data for training, this paper proposes a Lovasz-based scoring 

(1)θt ′ = ε × θt−1′ + (1− ε)× θt

(2)ε = 1− 0.2× e
−8i
iters (i ∈ (0, iters))
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method to evaluate whether the model’s predictions are better than those based 
on Hu values. When the Lovasz score exceeds a certain threshold, the label val-
ues of the weakly supervised branch are switched to the noisy data passed through 
the output values of the strongly supervised branch. At this point, it is believed 
that the model’s predictions of the noisy data are already superior to the labels 
based on Hu values. Therefore, the weakly supervised branch can use this data for 
further learning. As the model’s accuracy improves, the guidance provided by the 
weakly labeled data becomes more accurate, which enables the network to fully 
explore the value of unannotated data. Therefore, the output of the ATST module 
is the weakly supervised target ground truth (GT) result, as shown in the following 
equation:

we define τ as the h-th percentiles of Slovasz values during a certain number (e.g., 100) 
of iterations, respectively, The Slovasz calculation formula is:

LEV is lovasz-extension value [30], div(·) represents a symmetric divergence function 
between two predictions.

Loss functions

The clean branch network was optimized by minimizing the loss function Lclean, which 
consisted of the manually labeled image segmentation loss Lmseg, the pseudolabeled 
image segmentation loss in clean branch Lpseg-clean, which was calculated as follows:

The loss function for the noisy branch network was the pseudo-labeled image segmen-
tation loss Lpseg-noisy, which was:

Lmseg, Lpseg-clean and Lpseg-noisy were standard segmentation loss Lseg including dice loss 
Ldice and binary cross-entropy loss LBCE.

Algorithm details

The procedure of the proposed ATST method network is listed in Algorithm 1.

(3)GT =
Ppseg−clean, Slovasz − τ ≥ 0

GTpseudo−label , Slovasz − τ < 0

(4)Slovasz=
LEV (GTpseudo−label ,Ppseg−clean)

ediv(GTpseudo−label ,Ppseg−noisy)

(5)Lclean = Lmseg + �× Lpseg−clean

(6)Lnoisy = �× Lpseg−noisy

(7)(Lmseg , Lpseg−clean, Lpseg−noisy) ∈ Lseg = 0.5× (Ldice + LBCE)
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Experiment and results
Implementation

An Intel i7-8700k CPU together with an NVIDIA RTX3090 24 GB GPU card was used 
as the training server. Our approach was implemented with PyTorch and iterated with 
the stochastic gradient descent (SGD) optimizer 40K times. The initial learning rate was 
set to 0.01 and decayed exponentially. All input images were normalized to 256 × 256 
(pixels), and the batch size was set to 128, which included 64 manually annotated sam-
ples and 64 pseudolabeled samples. At the same time, generic data augmentation mecha-
nisms, random clipping and left–right flipping were performed on specimens to increase 
the number of training samples and prevent data overfitting.

Evaluation criteria

Different measurements were used to evaluate the performance of the proposed meth-
ods, including the dice similarity coefficient (DSC) and Hausdorff distance (HD). DSC is 
the most widely used criterion, which measures the similarity between the ground truth 
and the prediction score maps and is calculated as follows:
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where A is the contour of the segmented region and B denotes the ground truth. The 
DSC is a value between [0, 1]. The larger the value, the better the segmentation effect 
achieved.

DSC is sensitive to the internal filling of the mask, while HD is more sensitive to the 
segmented boundary. HD is a distance measurement between the contour of the seg-
mentation result and the contour of the ground truth label. Usually, HD95 is used 
instead, which is the 95th percentile of the maximum HD to eliminate the impact of a 
very small subset of the outliers. The unit of HD is pixel. The smaller the value is, the 
closer the segmentation result is to the ground truth and the better the segmentation 
effect, which is calculated as follows:

where

Ablation study

We conducted ablation experiments using all the manually labeled data and 400 pseudo-
labeled data. We further investigated the effect of using different methods for the dual-
branch network: (1) using a traditional single-branch model (U-Net) and training only with 
manually labeled data; (2) Adaptive EMA, which encourages automatically adjusting the 
update weight of strong and weak branches; (3) using our ATST method for dual-branch 
strong–weak supervision training. The quantitative evaluation results were presented in 
Table 1. It can be observed that training the model using only manually labeled data with a 
single-branch network resulted in a lower accuracy. Additionally, the effect of using Adap-
tive EMA was better than without EMA. The results indicated that our proposed ATST 
dual-branch network fully utilized the pseudo-labeled data and achieved optimal results.

(8)DSC(A,B) =
2|A ∩ B|

|A| + |B|
× 100%

(9)H(A,B) = max(h(A,B), h(B,A))

(10)h(A,B) = max
a∈A

{

min
b∈B

∥

∥a− b
∥

∥

}

(11)h(B,A) = max
b∈B

{

min
a∈A

∥

∥b− a�

}

Table 1  Ablation study of our automatically transferring supervised targets methods, where " + " 
and "−" meant with and without ATST operation

Bold font indicated the best results obtained

Method (manual labeled: 
pseudo labeled)

Tested with 50 benchmark Tested with external 19 
benchmark

DSC (%) 95HD (voxel) DSC (%) 95HD (voxel)

U-Net (200:0) 70.02 ± 20.59 29.97 ± 46.38 69.30 ± 12.29 25.29 ± 25.31

EMA (200:400) 76.19 ± 27.12 27.29 ± 31.18 75.89 ± 18.17 25.04 ± 25.34

Adaptive EMA (200:400) 78.34 ± 22.34 25.02 ± 30.92 76.29 ± 16.74 21.44 ± 24.89

−ATST (200:400) 80.87 ± 13.24 13.71 ± 18.28 80.91 ± 11.26 15.72 ± 15.98

 + ATST(ours) (200:400) 83.56 ± 12.10 11.19 ± 16.41 82.67 ± 8.04 12.69 ± 11.14
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Segmentation of infected regions

Our proposed model was compared with 3 other state-of-the-art DL models: U-Net, 
UA-MT and the recently developed DAST. All four models were trained with a fixed 
number of manually annotated sample base cohorts together with pseudolabeled sam-
ples. For the U-Net model, we added the choice of training with the 200 base cohorts 
only. In contrast, the remaining 3 DL models all had dual branch structures. The models 
were naturally fed by two different kinds of training datasets and could not be trained 
with the base cohort only. We investigated the performance of these four methods under 
different pseudolabeled sample ratios: (1:0.5); (1:1); (1:2) and (1:3) together with the base 
cohort. Table 2 shows the comparison results on our internal (50 cases) set as well as the 
publicly available external (19 cases) benchmarks, measured in DSC and 95HD.

The most fundamental method was trained by U-Net. It can be observed that the lead-
ing results were achieved with the 200 base cohorts only, and the more pseudolabeled 
samples added (randomly mixed), the more unsatisfied results were obtained. Simply 
adding relatively inaccurate samples to the training set would not lead to a satisfactory 
outcome. For the remaining dual branch models, pseudolabeled samples greatly assisted 
the original training cohort in reaching superior results compared with the U-Net base-
line. It was observed that UA-MT and ATST achieved the best performance with a ratio 
of 1:2, and for DAST, it was 1:3. We believed the DAST had a selective mechanism to 
discard some poor training samples. Among the competitors, our proposed method 
achieved the best performance. The final results reflected 2.02% improvement on 50 

Table 2  Comparison results of the segmentation of infected regions on our internal (50 cases) and 
external (19 cases) benchmarks

The results are expressed as the mean ± standard deviation. The default # of manual annotated samples is 200. Bold font 
indicated the best results obtained for each algorithm

Method #Pseudolabel Tested with 50 benchmark Tested with external 19 
benchmark

DSC (%) 95HD
(voxel)

DSC (%) 95HD (voxel)

U-Net 0 70.02 ± 20.59 29.97 ± 46.38 69.30 ± 12.29 25.29 ± 25.31
100 (1:0.5) 68.29 ± 23.23 30.29 ± 45.65 68.22 ± 13.82 25.98 ± 27.72

200 (1:1) 67.87 ± 23.88 31.14 ± 45.12 63.51 ± 12.01 26.85 ± 28.10

400 (1:2) 64.16 ± 25.12 33.64 ± 37.32 60.23 ± 15.62 28.33 ± 29.52

600 (1:3) 59.47 ± 26.89 34.55 ± 45.65 58.40 ± 15.47 30.49 ± 28.73

UA-MT 100 (1:0.5) 76.71 ± 22.78 30.32 ± 35.54 73.69 ± 14.51 16.43 ± 18.89

200 (1:1) 77.02 ± 19.99 29.12 ± 34.28 75.15 ± 11.34 15.67 ± 16.74

400 (1:2) 78.36 ± 20.31 27.76 ± 36.57 76.10 ± 10.09 13.40 ± 14.23
600 (1:3) 78.22 ± 19.69 28.31 ± 35.92 76.27 ± 10.21 12.87 ± 13.17

DAST 100 (1:0.5) 79.28 ± 15.72 17.23 ± 18.19 76.45 ± 12.36 14.35 ± 16.81

200 (1:1) 80.19 ± 13.96 15.82 ± 16.29 78.60 ± 11.62 13.21 ± 15.54

400 (1:2) 80.41 ± 14.20 15.60 ± 17.83 79.72 ± 11.73 15.43 ± 13.39

600 (1:3) 81.54 ± 13.58 14.68 ± 15.36 80.54 ± 10.54 16.69 ± 14.28
ATST 100 (1:0.5) 79.34 ± 13.58 15.81 ± 30.78 79.45 ± 10.07 11.35 ± 10.92

200 (1:1) 82.46 ± 14.07 14.41 ± 26.18 80.60 ± 9.33 13.21 ± 9.14

400 (1:2) 83.56 ± 12.10 11.19 ± 16.41 82.67 ± 8.04 12.69 ± 11.14
600 (1:3) 82.82 ± 13.38 12.85 ± 20.29 81.72 ± 9.29 13.43 ± 11.72
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benchmarks and 2.13% on 19 benchmarks measured in DSC compared with most up-
to-date algorithms. Figure  3 provides a visualization of the segmentation results for 
the comparison methods. It was demonstrated that our proposed method ATST can 
achieve results that were closer to the manually labeled ground truth results than other 
algorithms.

Table 3 analyzed the number of parameters for each model and the time required for 
training and testing. During forward prediction, since each CT set contains a different 
number of slices, we calculated the time required for different models to predict a sin-
gle slice in order to compare their time. According to the results, the parameter count 
of the dual-branch network structure is generally higher than that of the single-branch 
network, so its training time is longer. However, when we perform forward prediction 

Fig. 3  Three scan slices were selected to demonstrate the difference of each competing method. a original 
CT; b ground truth (manually annotated); c U-Net labeled; d UA-MT labeled; e DAST labeled; f ATST labeled. 
Column 1, 2 and 3 were samples from internal dataset. Column 4 and 5 were samples from external dataset
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on the dual-branch network, we only use the parameters of the strong branch. Under the 
same basic network, the time consumption is similar.

Qualitative and quantitative analysis of infected regions

After automatic segmentation of the mask of the lung and the infected regions for each 
slice of the lung CT image, the model could sequentially calculate the volume of the lung 
and the infected regions, as well as the ratio of the infected regions in the total lung. 
Furthermore, quantitative analysis of the infected regions could be concluded accord-
ingly. For example, the two main features of COVID-19, groundglassopacity(Hu[− 750,300])
andconsolidationlesions(Hu[− 300,50]), could be visualized for evaluation inside the infec-
tion region by our model, as shown in Fig.  4.The qualitative and quantitative analysis 
of infected regions may help physicians with the diagnosis, prognosis and follow-up of 
patients.

Table 3  Comparative results on parameters and time-consumption with other state-of-the-art 
methods.

Method # of parameters Overall training time 
(minutes)

Time-
consumption 
per slice (ms)

U-Net 1.8 × 106 506 81

UAMT 3.6 × 106 877 82

DAST 9.1 × 106 1280 95

ATST (ours) 3.6 × 106 1365 82

Fig. 4  a Original lung CT image; b effective region (or mask of lung); c infected region; d infected region 
classified by GGO (blue, Hu[− 750,300]) and consolidation (light red Hu[− 300,50])
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Discussion & conclusions
With the rapid development of artificial intelligence technology, the expertise 

of professional radiologists, such as the segmentation of medical images, could be 
injected into deep learning models to generate a quantitative analysis report auto-
matically [31, 32]. So far, the most challenging work in DL model training is the anno-
tation of a large amount of fine-quality pixel-level images [4]. As for chest CT images, 
how to present an approach that autonomously identifies and selects the optimal 
target of infected regions for the purpose of enhancing learning remains a clinical 
problem.

In this study, we utilized the intrinsic Hu value of CT images to create pseudo-
labels, which assisted the training of our segmentation models. Even though they 
were "dirty" samples, these cost-effective datasets greatly improved the result of the 
state-of-the-art segmentation algorithm by 13.54% from U-Net, which uses manu-
ally annotated samples only, as measured by DSC. Our method also achieved the best 
performance compared with other up-to-date dual branch structures.

However, this study had several limitations. In some cases, the segmentation mod-
els would identify healthy tissues together with valid infected regions. In addition, 
some ground-glass opacity infected regions that were barely noticed by human eyes 
seemed too tenuous to be captured by the segmentation model in this study. There-
fore, the corresponding mask in such a scenario deviates from the ground truth. In 
addition, more pneumonia cases from different subtypes should be included to pro-
mote the accuracy of segmentation. For example, some atypical infection signs, such 
as pleural effusions, cannot be distinguished with our methods.

In conclusion, this study facilitates the qualitative and quantitative analysis of 
infected regions of the lung, which could be used as visual evidence to assist clinical 
physicians. In the future, doctors may carry out a quantitative analysis of the sever-
ity of pneumonia patients with this model only or combined with other clinical data, 
such as the blood oxygenation index. At the same time, they can compare the sequen-
tial CT scans of the same patient to estimate the progression of disease and provide 
reliable evidence for further treatment.
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