
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Alvare et al. BMC Bioinformatics (2023) 24:316
https://doi.org/10.1186/s12859-023-05436-4

BMC Bioinformatics

BioLegato: a programmable, object-oriented
graphic user interface
Graham Alvare1, Abiel Roche‑Lima2 and Brian Fristensky3*

Abstract

Background: Biologists are faced with an ever‑changing array of complex software
tools with steep learning curves, often run on High Performance Computing plat‑
forms. To resolve the tradeoff between analytical sophistication and usability, we have
designed BioLegato, a programmable graphical user interface (GUI) for running exter‑
nal programs.

Results: BioLegato can run any program or pipeline that can be launched as a com‑
mand. BioLegato reads specifications for each tool from files written in PCD, a simple
language for specifying GUI components that set parameters for calling external pro‑
grams. Thus, adding new tools to BioLegato can be done without changing the BioLe‑
gato Java code itself. The process is as simple as copying an existing PCD file and modi‑
fying it for the new program, which is more like filling in a form than writing code.
PCD thus facilitates rapid development of new applications using existing programs
as building blocks, and getting them to work together seamlessly.

Conclusion: BioLegato applies Object‑Oriented concepts to the user experience
by organizing applications based on discrete data types and the methods relevant
to that data. PCD makes it easier for BioLegato applications to evolve with the succes‑
sion of analytical tools for bioinformatics. BioLegato is applicable not only in biology,
but in almost any field in which disparate software tools need to work as an integrated
system.

Keywords: Graphic user interface, User experience, Data pipelining, Sequencing,
Genomics, Transcriptomics

Background
While there exists a wealth of freely-available bioinformatics tools, their number and
diversity present several challenges to biologists. By analogy to enzymes, each tool has
several rate-limiting steps: installation, reading the documentation, experimenting with
the commands needed to run the tool, and formatting of input files. Further complica-
tions arise if the plan is to use output from one program as input for the next. In that
case, a new learning curve is needed for the next tool.

One solution is to build applications that put together different steps, often using
a combination of internal functions and calls to external programs. For example

*Correspondence:
brian.fristensky@umanitoba.ca

1 Access Norwest Co‑op
Community Health, Winnipeg,
Canada
2 RCMI Program, Medical Science
Campus, University of Puerto
Rico, San Juan, Puerto Rico, USA
3 Department of Plant Science,
University of Manitoba,
Winnipeg, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05436-4&domain=pdf

Page 2 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

Ugene integrates a combination of intrinsic functions, calls to programs installed
with Ugene, and calls to web services [1]. Writing applications of this type require
mastery of the biology, sophistication in algorithmic aspects of the work, and in con-
struction of intuitive graphical user interfaces (GUI).

Alternatively a client-server approach implements the GUI as a web-based cli-
ent with a server-based back-end to carry out analytical functions. For example, the
tools at EMBL-EBI use Javascript and HTML to create simple web front ends to an
array of programs [2]. More elaborate is the NCBI site which integrates the Genome
Data Viewer [3] with tools such as BLAST [4] and the Entrez databases [5]. Another
example is Galaxy which allows a user to upload datafiles which are processed using
workflows controlled through a web interface [6]. Web menus for tools are built
using an XML format for specifying parameters, inputs, outputs, help pages etc.

However, web interfaces are at best a poor compromise when it comes to usabil-
ity. A web page typically takes up most or all of the screen, making more difficult
side by side comparison of different types of information such as manuscripts, data
files, results, or spreadsheets. Larger screens, and even dual monitors, have become
popular in data science, so the “one window owns the screen” model negates the
benefits of these devices. Web interfaces also suffer from the fact that they cannot
directly access local disk files (albeit for obvious security reasons). This means that if
a researcher uses different web applications at a variety of sites, the workflow will be
punctuated by an upload, run, download cycle at each step. This becomes especially
problematic with large datasets for which file transfer times are significant. Finally,
the user can’t add new functions to a web-based GUI.

The Genetic Data Environment (GDE) [7] resolved the tradeoffs between ease of
software coding and having an intuitive and versatile GUI. GDE was a programma-
ble GUI whose sole function was to execute commands. Rather than hard-coding
each task into GDE, specifications for creating parameter menus would be read at
runtime from files which used a simple syntax to define GUI elements like buttons,
sliders choosers and labels. However, GDE is no longer supported, worked only with
sequence data, and had limited functions for specifying GUI components using a
now obsolete C toolkit. Nonetheless, the core ideas behind GDE are still sound and
are the starting point for the current work.

We have previously described PCD [8], a simple language for specifying menu
components such as choice buttons, file choosers, option choosers, numerical set-
tings etc. PCD is defined in a formal grammar, implemented using javacc to generate
Java code prior to compilation [8]. Using PCD, we now demonstrate the creation
of a family of BioLegato applications (Table 1), each specialized for different types
of data, such as DNA or protein sequences or alignments, phylogenetic trees, or
sequencing read files. These BioLegato applications have replaced GDE as the GUI
layer of our BIRCH bioinformatics system [9]. Organization of these applications by
Object-Oriented principles makes BioLegato applications more intuitive to use. By
eliminating most of the learning curve for each program, BioLegato makes it easy for
the biologist to experiment with different programs and methods at each stage of the
analysis. In many cases, output from one step pops up in a new BioLegato instance,
making it easy to go from one step to the next.

Page 3 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

Implementation
The current BioLegato code requires Java 1.8 or higher. The code for BioLegato’s PCD
parser is maintained as a formal grammar in Javacc, which generates the Java code
for the parser as part of the compilation [8]. Thus, additions to the parser are imple-
mented as changes to the grammar.

As part of the BIRCH system, BioLegato has been tested on low end computers
running Linux or MacOS. On High Performance Computing (HPC) systems, we rou-
tinely use BioLegato on the Univ. of Manitoba Red Hat Enterprise Linux system [10].
Users run full Xfce desktop sessions on multiuser login hosts through the Thinlinc
client (Cendio AB Linkoping, Sweden). For resource-intensive jobs, the user logs into
one of 15 compute nodes (256 Gb RAM, 64 cores) using ssh -X, and launches BioLe-
gato from the command line. BioLegato displays on the user’s desktop session, but
all computation is done on the HPC node. Because all user directories are mounted
by NFS both to login hosts and compute nodes, files do not need to be transferred
between hosts.

Results
BioLegato work cycle

Use of BioLegato is five step workcycle: select data, choose a task, set parameters,
run the task, and work with the results (Fig. 1A). Output could go to a viewer such as
a Web browser, PDF viewer, or text editor, to a 3rd party program such as a multiple
alignment editor, or to another BioLegato instance. The latter is one of the most pow-
erful aspects of BioLegato: the ability to keep the output machine readable, so that the
user has many choices for the direction of downstream analysis. In practice, a series
of tasks might result from running a series of BioLegato work cycles, a process we

Table 1 .

Application Data type Method examples

birch NA Launches other BioLegato applications

birchadmin NA BIRCH administration tasks

bldna Nucleic acid sequences Primer design; restriction search;
Pairwise similarity; multiple alignment

blprotein Protein sequences Aa comp; pairwise similarity;
Multiple alignment

blnalign Aligned nucleotide sequences Sequence logos; phylogeny

blpalign Aligned amino acid sequences Sequence logos; phylogeny

blnfetch Nucleotide sequence metadata Retrieves nucleic acid sequences from NCBI

blpfetch Protein sequence metadata Retrieves protein sequences from NCBI

blncbi Query terms Returns lists of sequences from NCBI

bltree Phylogenetic trees consensus trees; draw trees

blmarker Molecular marker data Phylogeny

blreads Sequencing read files Preprocessing of reads and assembly of
genomes and transcriptomes

bltable Generic tabular data Basic spreadsheet operations

blgeneric NA Demonstration of BioLegato as an abstract class

Page 4 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

refer to as ad hoc pipelining. Ad hoc pipelining is distinct from and complementary
to preprogrammed workflows. While workflows exist to automate processes that are
the same every time, ad hoc pipelining is an exploration in which the user can experi-
ment with different approaches to learn from the data, instructing the direction of
downstream analysis. The name “BioLegato” is an analogy to legato passages in music,
in which a theme flows smoothly from one note to the next.

BioLegato facilitates rapid development of new applications based on object‑oriented

concepts

The concept of objects is foundational to software engineering [11], as exemplified in
Object-Oriented (OO) languages such as Java and C++. The goal of the OO philoso-
phy is to create data objects which model things in the real world by packaging together
all data associated with those things. More formally, a class is a template for creating
objects. Each class specifies the types of data contained in all objects of that class, along
with the methods or functions specific for objects of that class. Whereas a class is an
abstract concept, any number of objects may be created as instances of that class.

We have designed BioLegato to bring the disciplines of OOP to the user experience,
for most of the same reasons that programmers organize their code into objects. Objects
create a coherent model of biological entities, as close as possible to how the biologist
thinks about them. Objects are therefore intuitive to work with. As well, ongoing devel-
opment of BioLegato objects is easy because objects are easy to extend. At this writing
our BIRCH system [9] includes 14 applications implemented using BioLegato (Table 1).

As shown in Fig. 1A, BioLegato displays data in the canvas, and organizes methods
in PCD-coded menus. Typically, BioLegato is run through a shell script that speci-
fies one or more directories from which to read the PCD menus, and specifies a can-
vas, implemented as a Java plugin. Currently there are 3 canvases: the image canvas,
which displays a simple bitmap image, the sequence canvas, which allows the user to
edit sequences and multiple alignments, and the table canvas, which displays data in

(See figure on next page.)
Fig. 1 A The Biolegato work cycle. (Top) User selects a sequence and chooses to run Shuffle from the
Similarity menu. (Middle) The Shuffle menu lets the user set two numerical parameters and a Yes/No
parameter. After clicking on ‘Run’, the selected sequence is exported to a file, used as input for Shuffle.
Because the user answered ‘Yes’ to “Output to new blprotein window?“, the output file is loaded into a new
instance of blprotein, which pops up on the screen (Bottom). B PCD code which implements the Shuffle
menu. The first 3 lines specify a title for the menu window, an icon to identify the package from which the
program is derived, and a tool tip. Note that “$BIRCH” refers to an environment variable listing the path to
the BIRCH directory, in which the BioLegato directories are found. This illustrates the point that any part of
a PCD menu item may contain references to environment variables to be substituted into the menu. Each
“var” item declares a parameter to be used for calling the program. For example, “window” refers to the size
of the sliding window for randomization. “in1” and “out1” respectively are the names of temporary files to be
used for input and output of by xylem_shuffle.py. In the “panel” section, the “Run” button will execute the
command found on the shell line. This is a command template, into which the values of the variables will be
substituted. Thus %in1% will be substituted with an automatically generated name for a temporary input
file, and %WINDOW% will be substituted with the number set in the WINDOW parameter. %BLOUTPUT% is a
placeholder which will be substituted with the command fragment specified in the “bloutput” variable. In the
example, the user chose “Yes”, so the shell command will be substituted with the command fragment from
“bloutput”, which opens the output file in a new instance of blprotein. If “No” had been chosen, the temporary
output file would be renamed to %out1%, causing the output to be read into the current BioLegato object. If
the var definition for “out1” had included “overwrite true”, the entire contents of the canvas would be replaced
by the contents of the out1 temporary file. These features make conditional execution of code possible,
allowing for more complex behavior

Page 5 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

a simple spreadsheet. To demonstrate that all functionality is loaded at runtime, blge-
neric (Fig. 2A) is a minimal BioLegato application that loads a dummy background
image and no PCD menus. Figure 2B shows birch, which launches BioLegato and
other GUI applications for the BIRCH system, illustrating use of the image canvas.

Fig. 1 (See legend on previous page.)

Page 6 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

In blprotein (Fig. 1A), the data are amino acid sequences displayed in the sequence
canvas. The methods are the different tasks that can be run when one or more
sequences are selected. These include tasks such as doing a hydropathy plot, second-
ary structure prediction, or amino acid composition. They would not include, for
example, a restriction site search, which makes no sense in the context of proteins. By
the same token, bldna is a BioLegato application for DNA or RNA sequences. Bldna
has tasks such as primer design or a restriction site search. Even where the same pro-
gram can utilize either protein or DNA, the BioLegato menus can be customized for
bldna or blprotein. For example, SSEARCH, which does rigorous Smith-Waterman
sequence alignments, would give the user a wide choice of protein scoring matrices if
run from blprotein, and DNA scoring matrices if run from bldna.

Separating DNA and protein tasks into different applications makes sense to the
biologist. Programs such as BLASTP or TBLASTN, in which the query is an amino
acid sequence are run from blprotein, whereas BLASTN or BLASTX or TBLASTX, in
which the query is DNA, are run from bldna.

Menu components for BioLegato are read from files at runtime

The core concept of BioLegato is to build a command for running an external program
by substituting options set in a GUI menu into a template command. The blprotein
application will be used as an example. blprotein is launched by a shell script that tells
the locations of all data files specifying the menus and canvas to be used (BL_DATA_
DIR) as well as the location of the Java BioLegato executable (BIOLEGATO_HOME).
In the example, blprotein is part of the BIRCH system, so these two variables refer to
folders within BIRCH, using the $BIRCH environment variable. For implementation
of a BioLegato application outside of BIRCH, $BIRCH could be changed to specify a
different folder. The last line launches the application.

Fig. 2 A blgeneric B birch launcher

Page 7 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

The blprotein.properties file contains the line

which tells BioLegato the location of folders (directories) containing PCD menu files.
Dropdown menus are created simply by making a series of folders and subfolders

within the PCD folder. BioLegato will use the name of each folder as the name for each
dropdown menu (e.g. Alignment, Database etc.). The contents of the PCD folder/sub-
folder structure for blprotein is given below. For brevity, we don’t show the contents of
all subfolders for each dropdown menu. Only Similarity subfolder (indented) is shown.

The pcd_order file in the PCD folder specifies the left to right order of the dropdown
menus by listing each menu in order (Fig. 1A):

Page 8 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

In turn, each subfolder contains one or more .blmenu files, and a pcd_order file to
tell the order, top to bottom, in which the programs appear in the dropdown menu e.g.
GGSEARCH, GLSEARCH, ALIGN etc. (Fig. 1A).

Although PCD is a rigorously defined language in the formal sense [8], creating PCD
menu for running a new program is more like filling out a form than writing code. Typi-
cally, one would create a new blmenu file by copying an existing one and then modifying
it to call a new program.

The layout and behavior of each parameter menu for a program is specified in a
.blmenu file. Figure 1B gives the PCD code for running xylem_shuffle. The top three
lines specify the name, or title for the menu, the file path for the small icon to include
in the menu, and the text of a tool-tip (blue box in Fig. 1A.) The rest of the .blmenu file
works toward building a command line to be executed when the Run button is clicked.
Each “var” component specifies the type of widget to appear in the menu.

To make PCD more understandable, PCD borrows from Python, requiring indenta-
tion of lines that are part of a menu component, such as var or panel. For example, “win-
dow” lets the user set the size of a sliding window to be used for local randomization
of amino acids. In the shell command, the value of each var item is substituted into the
command where the name of the var is enclosed in percent (%) symbols. Thus, %WIN-
DOW% on the shell line will be substituted with the value set by the user in “window”
part of the menu.

Similarly, the “bloutput” variable contains two choices for code to be substituted into
the command, for either writing output to a file, or displaying it in an application. In
summary, BioLegato creates the command that you would have typed at the command
line, but eliminates the need to carefully study the command syntax, as well as eliminat-
ing typing errors.

PCD allows flexibility in GUI design and output visualization

For programs with many parameters, the PCD tabbed panes make it possible to organ-
ize parameters into groups. Figure 3A shows the General search options pane and the
Output pane. Note that the Number of threads field in the General search options pane
sets the maximum range of the slider to the number of cores on the system. Rather than
being hard-coded in PCD, this slider is implemented as follows:

Page 9 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

The two environment variables $BL_CORES_MAX and $BL_CORES_DEFAULT are
set by the blprotein wrapper script prior to launching BioLegato (not shown). Thus,
these two numbers will be correct for each system on which blprotein is run.

In Fig. 3B, BLAST output goes to a web browser, BlastViewer [12], and to blpfetch,
a BioLegato application that displays protein search results using the table canvas. The
table canvas illustrates some of the usability advantages of desktop applications versus
web applications. The NCBI Web BLAST implements tabular output using HTML and
Javascript. In blpfetch, one can rapidly select BLAST hits either by dragging or a com-
bination of drag, SHIFT, scroll and click, to rapidly select hundreds or even thousands
of hits made contiguous from sorting, cutting and pasting. The NCBI web form only
supports selecting sequences one by one, or selecting all. While it is true that the table
could be exported to a CSV file and then opened in a spreadsheet, the final set of acces-
sion numbers would still have to be saved to a file and read in using Batch Entrez, to
accomplish the same result. Additionally, browser-based applications have the intrinsic

Fig. 3 BLAST workflow. A Examples of tabbed‑panes to organize large numbers of parameters. B Output
pops up in web browser (left), blpfetch (center) and BlastViewer (right). In blpfetch, user can select hits to
retrieve, and GenBank entries are retrieved to a blprotein object (bottom center)

Page 10 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

problem that there is usually a substantial wait for the page to reload any time a change
is made. In desktop applications like blpfetch, the user has more of a sense of working
directly with the data because operations such as sorting happen almost instantly.

The table canvas can represent a diversity of data types

 The versatility of using PCD to create complex GUIs is illustrated in Fig. 4 in which the
user creates a database of transposable elements from Rhodophyte algae in a few clicks.
The workflow begins by building a search expression using the blncbi query builder, in
which search terms can be combined using boolean operators such as AND, OR and
NOT, and grouped using parentheses. The spreadsheet capabilities of the table canvas
make it easy to browse through even thousands of lines of output. The comparable work-
flow at the NCBI web site would have resulted in 70 pages of output. In BioLegato, hits
can be selected with the mouse and retrieved in a single step to bldna, and the mobile_
element sequences extracted to a new bldna object for downstream analysis.

 Object-oriented design strives to make objects look as much like the real-world thing
as possible. Since high throughput sequencing works with read files, blreads was built
to resemble a file manager. Indeed, early in development we concluded that in addition
to functions for processing reads and assembling genomes and transcriptomes, blreads
should also have typical file functions such as compress/uncompress, delete, rename,
open directory, or view file. Figure 5 demonstrates that the file manager format lends
itself to an intuitive way of grouping files for forward and reverse reads. The user runs

Fig. 4 Workflow for creating a database of mobile elements from algae. Clockwise from top left: Keyword
search is done in blncbi query builder. In the nucleotide search field, the user chooses Organism and types
in “algae”. Since automated extraction of features is desired, the boolean operator AND is chosen, and the
second search field set to “Feature Key mobile_element”. Thus, only GenBank entries with the mobile_
element features key would be found. For more complex queries, left and right parentheses could be chosen
to group terms together. Since genomic sequences are desired, the Molecule field is set to genomic. When
the search is launched, the Entrez search expression “algae [ORGN] AND mobile_element [FKEY] AND biomol
genomic [PROP] AND 1:500000[SLEN]” is sent to NCBI using ncbiquery.py, a Python script implementing the
NCBI Eutils API. The Entrez document summary for 1383 GenBank entries matching the expression is retrieved
to a new blncbi object. To better understand the species distribution of mobile elements, the user sorts by
species. GenBank entries are retrieved to a bldna object. From the GenBank entries, FEATURES extracts 37,484
mobile_element sequences to a new bldna object

Page 11 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

guesspairs.py to generate a new blreads object with forward and reverse read files in two
columns. In the example, when the user launches Spades [13], BioLegato saves the file
list as a tab-separated value (TSV) file. A custom script reads the file and generates the
appropriate command to group forward and reverse files on the spades command line.
In practice, we have found that programs that work with read files have a diverse array
of ways to specify read pairs. For example, spades would specify forward and reverse
files on the command line as “-1 seqs-R1.fq -2 seqs-R2.fq”, while SOAPdenovo2/Mega-
hit [14] requires the user to create a config file in which read pairs are specified on two
lines reading “q1 = seqs-R1.fq” and “q2 = seqs-R2.fq”. By hiding what can be a maddening
array of command line syntax specifications in helper scripts, BioLegato saves the user
hours of trial and error just to get each program in the pipeline to work.

Implementation of new BioLegato applications

BioLegato lends itself to developing new applications by copying and modifying existing
ones. Each application is launched by a shell script that sets any environment variables
needed, including the location of the BioLegato Jar file and the locations of PCD menu
files. Thus, a new BioLegato application is created by modifying copies of the shell script
and PCD menu files to call any programs on the system.

Fig. 5 Excerpt from a genome assembly workflow. Clockwise from top: All files in the current directory are
selected. Guesspairs.py distinguishes forward read files from reverse read files based on the unique strings
R1 and R2. Only fastq files with the “fq” file extension will appear in output. The output from guesspairs.py is a
new blreads object with forward and reverse reads paired in two columns. Where only 1 read file is present,
it is treated as a single read file. After setting parameters in the Spades menu, the Run button launches a
Python script which constructs the command line to run the Spades pipeline using the selected files

Page 12 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

BioLegato also provides for local customization to add programs or modify how they
are run at each site. For example, in BIRCH, the blreads.properties files contains the line
“pcd.menus.path=$BIRCH/dat/blreads/PCD:$BIRCH/local/dat/blreads/PCD”. At run-
time, BioLegato will load PCD menus from PCD directories in the order shown. If PCD
menus file in the “local” directory tree has the same name as one previously read, the
local menu file will supersede the one previously read. Thus PCD items added locally to
a BIRCH installation are seamlessly integrated into the BioLegato application.

Discussion
This paper has focused on how PCD makes it far easier to add functions to existing
applications, or create new applications, compared to conventional compiled languages
or web interfaces. However, even non-programmers can benefit from the family of
BioLegato applications simply by installing the BIRCH system, cited in the Availability
section. The getbirch install wizard downloads and installs BIRCH within a matter of
minutes. BIRCH really shines on multi-user HPC platforms with a centrally-installed
copy of BIRCH for all users. As the need arises for new programs, the person managing
the local BIRCH system adds a new BioLegato menu to $BIRCH/local, and the new pro-
gram will appear in BioLegato for all users. In this way, BioLegato makes it easy to tailor
the system to the needs of the local user community.

Most GUI software is Object Oriented to some degree, because the ideas behind the
OO philosophy reflects on how people think about real world things. For example in
Jalview the core data type is a multiple sequence alignment [15]. However, Jalview can
also read unaligned sequences and perform a multiple alignment. The OO paradigm
breaks down because it is possible to read in a set of unaligned sequences, and still do
things like highlighting conserved positions, which is meaningless if sequences are not
aligned. The BioLegato applications adhere more deliberately to OO. For example, a
multiple protein alignment is run using blprotein, and the aligned output goes to blpa-
lign. Displaying conserved positions can only be done in blpalign, and not in blprotein.

Almost every area of biology has become dependent on complex and sophisticated
software tools, and there is an increasing acceptance among biologists of the need for
command line tools [16]. This has lead many younger biologists to learn a minimal
amount of programming, usually in Python or R. Most genomics tools don’t have a GUI,
because writing GUIs requires a great deal of extra work and an additional skill set for
programmers. This skill set typically takes years to attain, including the fundamentals
of procedural, functional or Object-Oriented programming, extensive language syntax,
algorithmic design for analytical components of the program, best programming prac-
tices, plus a plethora of development tools such as make, git, and use of an integrated
develpment environment (IDE), as well as an application programming interface (API)
with tools for GUI development. By the same token, programming for Web interfaces
requires similar fundamental knowledge of programming, plus HTML, knowledge of a
web scripting language such as PHP or Javascript, as well as knowledge of web servers.

While the learning curve for adding programs to BioLegato is not zero, the exper-
tise required is far less than that required for other approaches to GUIs. Any bio-
informatician who supports software for a lab, department, or core facility would
find the addition of new programs to a BioLegato application trivial. In such a

Page 13 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

centrally-managed multiuser environment, all users benefit from local additions to
BioLegato. Even without reading the formal syntax documentation, a biologist with
minimal scripting experience could quickly learn to add functionality to BioLegato
using a copy, modify and test strategy. BioLegato follows the Unix design philosophy,
summarized by MD McIlroy, that any tool should “do one thing and do it well” [17].
BioLegato is the logical bridge between the need for sophisticated tools that each do
one thing well and usability. In OO parlance, BioLegato “hides the implementation”,
giving the user easy access to a wealth of bioinformatics tools in the GUI layer, while
the same tools can be run from the command line if desired.

While the idea of separating the GUI and analytical functions as distinct software
layers is nothing new, the GUI layer is usually web based. The down side of web inter-
faces is seen both in the limitations of HTML and Javascript, but also in the latency
associated with reloading pages at each step. In BioLegato, the user has more of a feel
of working directly with the data.

BioLegato was designed to be completely agnostic of the analytical layer. For exam-
ple, blncbi follows the client-server model, with BioLegato as the local client, and the
server end being the NCBI Entrez system. BioLegato applications could easily be built
to utilize any web services for which a remote API exists.

A key strength of BioLegato as an independent GUI layer is that BioLegato provides
a seamless way of unifying disparate 3rd party programs from different authors, writ-
ten in different languages. In the examples, BioLegato applications called programs
written in bash, Perl, Python, Java, C, C++, Ruby and Go. BioLegato is robust to fail-
ure of the external programs it calls, and improves as new versions of existing pro-
grams are updated, or as new programs are added using PCD.

Although PCD is a small language [8], we have demonstrated its ability to gener-
ate rich and complex behaviors. BioLegato applications are built by combining PCD
menus and a canvas. The birch and birchadmin applications (Table 1) are launchers
for other programs, so in this case a simple image canvas suffices. The sequence can-
vas is used for DNA and protein sequences, in bldna and blprotein, DNA and protein
alignments in blnaligh and blpalign (not shown), but also in bltree, where phyloge-
netic trees in the New Hampshire format are represented as sequences (not shown).
Because a great deal of scientific data can be represented in tables, the table canvas is
by far the most versatile canvas. It has been used to represent BLAST hits in blnfetch
and blpfetch, molecular marker data in blmarker (not shown), and for many diverse
file types, as implemented in blreads. Examples of all of these BIRCH applications can
be seen at the BIRCH tutorials site at [18].

BioLegato uses OO concepts both at the level of the Java code for BioLegato itself,
and in the look and feel of BioLegato applications. Both aspects of BioLegato lend
themselves to future development. Because canvases are plugins, two new types of
canvas would greatly extend the scope of what BioLegato can do. Because relational
databases structure everything in tables, the table canvas might be extended into a
database canvas, making BioLegato a client for relational databases. An XML canvas
would enable BioLegato objects to take on a richer and more formal structure. New
GUI elements could be added to support these new canvases by extending the exist-
ing javacc grammar.

Page 14 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

Although BioLegato is designed with biology in mind, it could be used to build soft-
ware for any type of data that needs many different programs to do different tasks.
Because BioLegato can run any task, from the simplest script to the most complex
data pipeline, it should simplify the development of GUI applications in almost any
field.

Availability and requirements
Project name: BioLegato.

Project home page: https:// github. com/ bfris tensky/ BioLe gato/ wiki.
Operating systems: Linux, macOS (> = 10.15).
Programming language: Java 8.0 or greater.
Other requirements: none.
License: Creative Commons CC-BY-NC 4.0.
Any restrictions to use by non-academics: none.
BioLegato is freely distributed as part of the BIRCH system, at http:// home. cc. umani

toba. ca/% 7Epsg endb/. For a quick demonstration of how BioLegato is used for common
genomics tasks, see the BIRCH YouTube Channel at https:// www. youtu be. com/ chann
el/ UC9_ 3TfH3 sjE0Y dToVM Chq-w? view_ as= public. One can also download the BIRCH
system using the automated install wizard and immediately try out any of the 14 Bio-
Legato applications cited, which is best done by working through the web tutorials. For
developers, a tutorial introduction to the use of PCD for programming BioLegato is
found at http:// home. cc. umani toba. ca/ ~psgen db/ birch homed ir/ public_ html/ tutor ials/
bioLe gato/ blmen us/ blmen us. html. The tutorial takes the user step by step through the
process of adding a new program to an existing BioLegato application.

Abbreviations
API Application Programming Interface
GUI Graphic User Interface
OO Object‑Oriented
PCD stands for “Pythonesque Command Description” [8], because PCD borrows stylistically from Python
TSV Tab‑separated value file

Acknowledgements
Not applicable.

Author contributions
BF conceived of and led the project, and implemented novel BioLegato applications using PCD.GA wrote most of the
Java code. AR, GA and BF designed the PCD language and parser.

Funding
This work was funded in part by Genome Prairie and Genome Canada. Linux system support was provided by Informa‑
tion Services and Technology, University of Manitoba.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

https://github.com/bfristensky/BioLegato/wiki
http://home.cc.umanitoba.ca/%7Epsgendb/
http://home.cc.umanitoba.ca/%7Epsgendb/
https://www.youtube.com/channel/UC9_3TfH3sjE0YdToVMChq-w?view_as=public
https://www.youtube.com/channel/UC9_3TfH3sjE0YdToVMChq-w?view_as=public
http://home.cc.umanitoba.ca/~psgendb/birchhomedir/public_html/tutorials/bioLegato/blmenus/blmenus.html
http://home.cc.umanitoba.ca/~psgendb/birchhomedir/public_html/tutorials/bioLegato/blmenus/blmenus.html

Page 15 of 15Alvare et al. BMC Bioinformatics (2023) 24:316

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Received: 30 November 2022 Accepted: 3 August 2023

References
 1. Okonechnikov K, Golosova O, Fursov M. the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinfor‑

matics. 2012;28:1166–7.
 2. Cook CE, Bergman MT, Cochrane G, Apweiler R, Birney E. The european Bioinformatics Institute in 2017: data coordi‑

nation and integration. Nucleic Acids Res. 2018;46:21‑D29. https:// doi. org/ 10. 1093/ nar/ gkx11 54.
 3. Rangwala SH, Kuznetsov A, Ananiev V, Asztalos A, Borodin E, Evgeniev V, Joukov V, Lotov V, Pannu R, Rudnev D,

Shkeda A, Weitz EM, Schneider VA. Accessing NCBI data using the NCBI Sequence Viewer and Genome Data Viewer
(GDV). Genome Res. 2021;31:159–69.

 4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
 5. NCBI Resource Coordinators (2018) Database resources of the National center for biotechnology information.

Nucleic Acids Res. 2018;46(D1):D8‑D13
 6. Afgan E, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update.

Nucl Acids Res. 2018;46:W537–44. https:// doi. org/ 10. 1093/ nar/ gky379.
 7. Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM. The genetic data environment: an expandable GUI for

multiple sequence analysis. Bioinformatics. 1994;10:671–5.
 8. Alvare GGM, Roche‑Lima A, Fristensky B. BioPCD‑a language for GUI development requiring a minimal skill set. Int J

Comput Appl. 2012;57:9–16.
 9. BIRCH. A user‑oriented, locally‑customizable, bioinformatics system. BMC Bioinformatics 8, 54 (2007).
 10. University of Manitoba Red Hat Enterprise Linux System. https:// umani toba. ca/ compu ting/ ist/ syste ms/ unix/ compu

te. html.
 11. Eckel B. (1998) Thinking in Java. Prentice Hall Inc. ISBN 0‑13‑659723‑8.
 12. Durand P, Luc Canard and Jean‑Paul Mornon. Visual BLAST and visual FASTA: Graphic Workbenches for interac‑

tive analysis of full BLAST and FASTA outputs under Microsoft Windows. Comput Appl Biosci. 1997;13(4):407–13.
Pubmed.

 13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Sergey I, Nikolenko S, Pham AD,
Prjibelski AV, Pyshkin AV. Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A. Alekseyev, and Pavel A. Pevzner J Comput Biol.
2012. https:// doi. org/ 10. 1089/ cmb. 2012. 0021.

 14. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra‑fast single‑node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.

 15. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2‑a multiple sequence alignment edi‑
tor and analysis workbench. Bioinformatics. 2009;25(9):1189–91.

 16. Perkel JM. Five reasons why researchers should learn to love the command line. Nature. https:// www. nature. com/
artic les/ d41586‑ 021‑ 00263‑0.

 17. McIlroy MD, Pinson EN, Tague BA. Make each program do one thing well. Bell Syst Tech J. 1978;57:1899–904.
 18. Tutorials http:// home. cc. umani toba. ca/% 7Epsg endb/ tutor ials/ bioLe gato/ bioLe gato. html

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/nar/gkx1154
https://doi.org/10.1093/nar/gky379
https://umanitoba.ca/computing/ist/systems/unix/compute.html
https://umanitoba.ca/computing/ist/systems/unix/compute.html
https://doi.org/10.1089/cmb.2012.0021
https://www.nature.com/articles/d41586-021-00263-0
https://www.nature.com/articles/d41586-021-00263-0
http://home.cc.umanitoba.ca/%7Epsgendb/tutorials/bioLegato/bioLegato.html

	BioLegato: a programmable, object-oriented graphic user interface
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Implementation
	Results
	BioLegato work cycle
	BioLegato facilitates rapid development of new applications based on object-oriented concepts
	Menu components for BioLegato are read from files at runtime
	PCD allows flexibility in GUI design and output visualization
	The table canvas can represent a diversity of data types
	Implementation of new BioLegato applications

	Discussion
	Availability and requirements
	Acknowledgements
	References

