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Abstract 

Background: The identification of genomic regions affected by selection is one 
of the most important goals in population genetics. If temporal data are available, allele 
frequency changes at SNP positions are often used for this purpose. Here we provide 
a new testing approach that uses haplotype frequencies instead of allele frequencies.

Results: Using simulated data, we show that compared to SNP based test, our 
approach has higher power, especially when the number of candidate haplotypes 
is small or moderate. To improve power when the number of haplotypes is large, we 
investigate methods to combine them with a moderate number of haplotype subsets. 
Haplotype frequencies can often be recovered with less noise than SNP frequencies, 
especially under pool sequencing, giving our test an additional advantage. Further-
more, spurious outlier SNPs may lead to false positives, a problem usually not encoun-
tered when working with haplotypes. Post hoc tests for the number of selected 
haplotypes and for differences between their selection coefficients are also provided 
for a better understanding of the underlying selection dynamics. An application 
on a real data set further illustrates the performance benefits.

Conclusions: Due to less multiple testing correction and noise reduction, haplo-
type based testing is able to outperform SNP based tests in terms of power in most 
scenarios.

Keywords: Hypothesis test, Post hoc test, Selection, Evolve and resequence, 
Experimental evolution, Haplotype

Background
Evolve and Resequence (E &R) experiments [1] provide a modern approach for studying 
patterns of adaptation in a controlled environment. In such experiments, one or multi-
ple populations are followed over time, often under stressful environmental conditions. 
Researchers then aim to identify adaptive changes at a genetic level. High-throughput 
whole genome sequencing techniques provide allele and haplotype frequency data at 
suitable time points during the experiment. Depending on the experimental design and 
the available resources, sequencing can be performed at the beginning and the end of 
the experiment or at multiple time points. The experiment is often also replicated so that 
analogous data are obtained from multiple populations.

*Correspondence:   
andreas.futschik@jku.at

1 University of Veterinary 
Medicine Vienna, Vienna, Austria
2 Vienna Graduate School 
of Population Genetics, Vienna, 
Austria
3 Aarhus University, Aarhus, 
Denmark
4 Johannes Kepler University 
of Linz, Linz, Austria

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05437-3&domain=pdf


Page 2 of 25Chen et al. BMC Bioinformatics          (2023) 24:322 

Once data are available, statistical tests are often used to identify the presence of 
selection. A proper test needs to take all sources of random variation into account. 
Indeed, besides selection, observed allele frequencies are affected by genetic drift, and 
frequently also by sampling and sequencing noise. So far, different SNP based tests for 
selection have been proposed in the context of E &R experiments. Some approaches, 
such as [2] are heuristic and do not control the type I error. More recently, in [3] a 
modified version of the classical chi-square and CMH test has been proposed that is 
able to take all relevant sources of randomness into account. For a review of further 
available methods, we refer to [4].

Here we propose tests that rely on haplotype frequencies instead of SNP frequen-
cies and illustrate their potential and advantages. We define haplotypes as alleles that 
are defined by their unique combination of SNP genotypes on some window of pre-
defined size and location. Notice that the term “haplotype” is also used to refer to the 
locus itself instead of an allele. In this manuscript, we will mostly use the allelic defi-
nition, with the meaning being apparent from the context. If we state, for instance, 
that at a chosen locus, the relative frequencies of NHap haplotypes add up to one, this 
could also be phrased in terms of the corresponding alleles. However, since we use 
the notion “allele frequencies” for the nucleotides that appear at a SNP location, we 
use “haplotype frequencies” to avoid any confusion. Notice that the short loci we are 
focusing on are often called microhaplotypes [5].

In the different contexts of genome-wide association studies (GWAS), testing based 
on haplotypes has already been used [6, 7] to identify genetic variants that are asso-
ciated with phenotypic traits of interest. Available methods include likelihood ratio 
tests [8] and score tests [9], and recently a combination of haplotype block and SNP 
set approaches have been proposed in [10].

For samples from natural populations, yet further examples of haplotype based tests 
can be found in [11] and its extension [12], where signatures of recent selection are 
found by searching for regions with long range linkage disequilibrium. The haplotype 
based test proposed in [13] is similar in spirit to [11] but focuses on ongoing selection.

Given that haplotype based testing has already proved promising in the above men-
tioned setups, it seems desirable to make it available also for E &R experiments. Since 
this involves temporal allele frequency data and a different null model, our proposed 
tests require a new methodological approach that is explained in detail in "Methods" 
section. In summary, we identify selected genomic windows by testing each haplo-
type against the combination of all others using a modification of the chi-square or 
(with replicate populations) the Cochran–Mantel–Haenszel (CMH) test [3]. The tests 
take all relevant sources of random variation into account. Subsequently, we combine 
the resulting p values using recently proposed combination tests for the global null 
hypothesis.

When the actual haplotype frequencies are not available, haplotype reconstruction 
techniques [14, 15] provide the possibility of estimating this information from allele fre-
quency data. The standard error of these estimates will then be one of the sources of 
random variation.

In our simulations, we observed that haplotype based tests do not necessarily outper-
form SNP-based methods if the total number of haplotypes gets too large. Therefore we 
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propose two variants of our approach in "Testing when many haplotypes are present" 
section that provide improved power with experiments involving many haplotypes.

Furthermore, when the presence of selection is established by the haplotype based 
test, we provide a post hoc test for the number of selected haplotypes in "Testing for 
the number of selected haplotypes" section. In "Pairwise test for different fitness across 
haplotypes" section, we propose another post hoc test for differences in fitness between 
pairs of haplotypes. We provide results on simulated data for these two tests and show 
that they have good power under many scenarios ("Simulation experiments" section). In 
"Real data application" section, we also apply our proposed tests on real data considered 
by [16].

Methods
Consider a haploid population with effective population size Ne , and a genomic region 
exhibiting NHap haplotypes. We summarise the temporal dynamics of these haplotypes 
over T + 1 generations via the relative haplotype frequencies ft = (f1,t , f2,t , . . . , fNHap,t)

⊺ 
at generation t ( 0 ≤ t ≤ T  ) where NHap

n=1 fn,t = 1 . Without selection, the relative haplo-
type frequencies in a subsequent generation are obtained via multinomial sampling from 
the previous generation [17]:

The changes in haplotype frequencies caused by repeated multinomial sampling are 
commonly known as genetic drift. Under selection, the haplotypes differ in fitness, lead-
ing to modified multinomial sampling probabilities [18, 19]:

where

is the fitness vector, Ct a normalising constant at time t such that Ct
∑NHap

j=1 fj,tφj = 1 , and 
⊙ the element-wise multiplication defined as

Neutrality then corresponds to the special case where all elements of � are equal and 
Ctφ1 = Ctφ2 = · · · = CtφNHap = 1 . Otherwise, higher fitness of a certain haplotype 
compared to others represents the presence of a selective advantage.

In the context of evolve and resequence, the experiment is often replicated, which 
leads to R independent haplotype frequency vectors ft(1), ft(2), . . . , ft(R) at any sequenced 
time point t. Suppose we have an experiment with k sequenced time points 
(t0, t1, . . . , tk−2, tk−1) , with t0 = 0 and tk−1 = T  . Table 1 displays the haplotype frequency 
matrix F(r) , for some replicate population r. These matrices may then be combined in to 
a NHap × kR matrix F =

[

F
(1)

F
(2) . . . F(R)

]

 . If the true frequencies are unknown, we use 

estimates f̂ (r)t = (f̂
(r)
1,t , f̂

(r)
2,t , . . . , f̂

(r)
NHap,t

)⊺ , and F̂(r) =
[

f̂
(r)
0 f̂

(r)
t1

. . . f̂
(r)
tk−2

f̂
(r)
T

]

 instead of the 

actual quantities. These estimates will typically contain sampling and sequencing noise 
that needs to be taken into account when testing hypotheses.

(1)ft+1 ∼ Multinomial(Ne, ft)/Ne

(2)ft+1 ∼ Multinomial(Ne,Ct ft ⊙�)/Ne

(3)� = (φ1,φ2, . . . ,φNHap)
⊺

(f1,t , f2,t , . . . , fNHap)
⊺ ⊙ (φ1,φ2, . . . ,φNHap)

⊺ = (f1,tφ1, f2,tφ2, . . . , fNHapφNHap)
⊺
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To test for selection against the neutral null hypothesis φ1 = φ2 = · · · = φNHap = φ̄ , 
where φ̄ = 1

NHap

∑NHap

i=1 φi is the mean fitness, we decompose the global null hypothesis into 

a multiple testing problem. For each haplotype j ( 1 ≤ j ≤ NHap ), distinguishing neutrality 
from selection may be phrased in terms of the hypothesis testing problem:

We propose the usage of the adapted CMH test [3] when multiple independent repli-
cate populations are available. It naturally reduces to the adapted chi-square test if 
there exists only one replicate. The test is conducted in a binary fashion such that for 
some haplotype j, the test is conducted between the frequencies of haplotype j across 
all replicates {f (r)j,· }r∈{1,2,...,R} and the cumulative frequencies of all other haplotypes 

{1− f
(r)
j,· }r∈{1,2,...,R}.

As discussed in [3] in the context of SNPs, the estimated haplotype frequencies f̂ (r)j,·  may 
involve multiple components of variance. For simplicity, we present the test statistic assum-
ing that all haplotype frequencies are known, and the only relevant variance component is 
genetic drift. For cases where other sources of variance such as sampling and pool sequenc-
ing noise are present, the test statistic can be found in Additional file 1: Section S.2 (the 
prefix S- refers to sections/figures/tables in the Additional file 1). For some haplotype j, the 
adapted CMH test using known haplotype frequencies has the following test statistic:

where σ (r)
drift is the variance of haplotype frequencies due to drift at replicate r:

with k being the total number of sequenced time points, t0 = 0 , tk−1 = T  being the 
first and last time points respectively as before. In practice, the effective population size 
Ne will often be unknown and needs to be estimated for instance by using the method 

(4)
H0j : φj = φ̄

H1j : φj �= φ̄

(5)TCMH =
∑R

r=1N
(r)4

e

(

f
(r)
j,0 − f

(r)
j,T

)2

∑R
r=1N

(r)3

e (N
(r)
e − 1)σ

(r)
drift

(6)σ
(r)
drift =

k−2
∑

i=0

f
(r)
j,ti

(1− f
(r)
j,ti

)

(

1−
(

1− 1

N
(r)
e

)ti+1−ti
)

Table 1 Structure of (true) haplotype frequency matrix with k sequenced time points for some 
replicate population r. The estimated frequency of haplotype j at generation t for replicate r is 
denoted by f̂ (r)j,t

Haplotype Generation
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. . . f
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NHap,tk−2

f
(r)
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j=1 f
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j,t

1 1 . . . 1 1
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proposed by [20]. In the special case where no information at intermediate time points is 
available we have k = 2 , as only the start and end time points are sequenced. The test is 
carried out for all null hypotheses H0j , j ∈ {1, 2, . . . ,NHap} provided in (4). This leads to 
NHap p values that are combined by a suitable multiple testing procedure.

Algorithm 1 provides pseudocode that summarizes our approach. Details of the pro-
posed multiple testing approach can be found in "Multiple testing procedure" section 
below.

Multiple testing procedure

We carry out one hypothesis test for each hypothesis pair in (4) and want to test the 
global null hypothesis (i.e. the null hypothesis for all j ∈ {1, 2, . . . ,NHap} ). To control the 
type I error, we need a proper multiple hypothesis testing procedure. In principle, Bon-
ferroni tests [21] or the recently proposed approach by [22] outlined in Additional file 1: 
Section S.1 might be used. However, we found these methods to be quite conservative in 
most situations. Therefore, we focus on more powerful approaches such as the omnibus 
test [23] and the harmonic mean p value [24]. Although no theory ensures type I error 
control for these methods under dependence, most of our simulated scenarios did not 
lead to violations. However, we observed type I error probabilities that slightly exceeded 
the significance threshold for both tests in the case of one replicate population, a small 
number of haplotypes, and known haplotype frequencies. See "Type I error control" sec-
tion for details.

Algorithm 1: Haplotype based selection testing

Omnibus test

The omnibus test proposed by [23] has originally been derived for independent p values, 
and was shown to provide good power under various deviations from the global null 
hypothesis. For sorted p values {p(j)}j∈{1,2,...,NHap} such that:

the L-statistic Si is computed by adding up transformed p values up to rank i. Here we 
use the proposed default transformation (negative logarithm) leading to

(7)p(1) ≤ p(2) · · · ≤ p(NHap)
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with the test statistic T being:

and Gi the cumulative distribution of Si under the global null hypothesis of neutrality. 
Note that the assumption of independent p values is not fulfilled in our context, as the 
haplotype frequencies at any given time point add up to 1. We observed violations in 
terms of type I error control only under a few scenarios, see "Influence of the model 
parameters" section  for details.

Harmonic mean p value (HMP)

Another combination method, the harmonic mean p value proposed in [24] is given by

for equal weights. The combined p value p is then calculated as

with fLandau being the density function of a Landau distribution.
While [25] showed that the type I error is not controlled under some dependence 

structures, we did not observe any large violations under our considered scenarios. See 
"Type I error control" section for further details.

SNP based testing

Both haplotype and SNP based tests for selection usually rely on allele frequency changes. 
However, with SNPs only two alleles are usually considered in the literature whereas here 
multiple haplotypes can be present in the region of interest. The allele frequency changes 
of the two alleles are then tested in a similar fashion as we introduce here with the haplo-
type frequency changes. A review of commonly used methods for SNP based testing can be 
found in [4]. We compare our proposed haplotype based test with the SNP based approach 
presented in [3]. Time series data and replicate populations can be accounted for by this test 
as in our proposed approach and our haplotype based test is constructed following a simi-
lar rationale as the test proposed in [3]. When applying the SNP based test we only show 
results under the Benjamini & Hochberg multiple testing correction [26]. Indeed, this is 
a commonly used multiple testing approach in practical applications with allele frequency 
testing (see e.g.   [27, 28]). We also considered the multiple testing approaches presented 
in "Multiple testing procedure" section. For SNP based tests, the harmonic mean p values 
perform similarly to the Benjamini & Hochberg correction since they both aim to control 
the false discovery rate. On the contrary, the high dependence between SNP based p values 

(8)Si =
∑

j≤i

− log(p(j))

(9)T = max
i

Gi(Si)

(10)p̊ = NHap
∑NHap

j=1 1/pj

(11)p =
∫ ∞

1/p̊
fLandau

(

x| logNHap + 0.874,
π

2

)

dx
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causes consistently large violations of type I error when using the omnibus multiple testing 
correction. Thus we only show results under the Benjamini & Hochberg correction.

Testing for the number of selected haplotypes

In association studies and genomic prediction, regression models are often used to 
explore the influence of haplotypes on a phenotype [7, 29]. While such a response vari-
able is lacking in our setup, further information about the number of selected haplotypes 
is of interest in our context. Therefore we propose a follow up test for this purpose. As 
with forward selection methods in regression models, our approach proceeds in a step-
wise fashion. At each step a test is carried out at level α, and the procedure stops once 
no more rejection is necessary. We call a haplotype to be positively selected if there is at 
least one other haplotype with lower fitness.

A rejection of the global hypothesis (4) implies that there is at least one selected hap-
lotype. To investigate whether there are further selected haplotypes, we identify the 
haplotype m1 that provides the maximum change in frequency over time, normalised by 
variance and gives the largest contribution to the rejection of the hypothesis:

We use

in situations when the true haplotype frequencies are known. This drift variance esti-
mate is more complex than (6). However, it will simply reduce to σdrift in cases where Ne 
is constant s.t. Nev = Nev+1 , ∀v . For scenarios where haplotype frequencies are estimated, 
this variance term will need to change accordingly, see Additional file 1: Section S.2.5 for 
more details.

If fm1,T < 1 , we test whether there are further selected haplotypes. For this purpose, 
we remove haplotype m1 and test for fitness differences among the remaining haplotypes:

where φ̄{1,2,...,NHap}\{m1} is the mean fitness of all haplotypes except m1 . We furthermore 
renormalise the remaining haplotype frequencies to add up to 1 at any time point:

where c(m1)
tv

= [
∑

j∈{1,2,...,NHap}\{m1} fj,tv ]
−1 . We also recompute Ne separately for each 

time point to take the removal of haplotype m1 into account:

(12)m1 : max
m1

fm1,T − fm1,0√
σdrift,�Ne

.

(13)σdrift,�Ne
:=

k−2
�

v=0

fi,tv ,1(1− fi,tv ,1)



1−
�

1−
N−1
ev

+ N−1
ev+1

2

�tv+1−tv




(14)
H0 :

⋂

j∈{1,2,...,NHap}\{m1}
{

φj = φ̄{1,2,...,NHap}\{m1}
}

H1 :
⋃

j∈{1,2,...,NHap}\{m1}
{

φj �= φ̄{1,2,...,NHap}\{m1}
}

(15)ri,tv ,1 = fi,tv c
(m1)
tv

(16)N (m1)
ev

=
∑

j∈{1,2,...,NHap}\{m1}
fj,tvNe
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We then test for selection, but replace the variance caused by drift, σdrift in TCMH by 
σdrift,�Ne

 . If the null hypothesis is rejected, we claim that there are at least two selected 
haplotypes in the population.

The above method is then iterated to test for further selected haplotypes. For this pur-
pose, we find m2,m3, . . . respectively by ranking the normalised differences in frequency 
change over time and testing the hypothesis:

as long as the previous null hypothesis is rejected. The method of normalisation, the Ne 
computation, and the testing procedure are analogous to before.

If replicates are present, the largest change in haplotype frequency might not be con-
sistent across all replicates. We therefore propose the following criterion to remove 
haplotypes:

Further haplotypes are excluded in an analogous way. The values of N (m1)
ev  and the fre-

quency normalisation will then be calculated separately for each replicate.

Pairwise test for different fitness across haplotypes

As further post hoc tests, we consider pairwise comparisons for differences in the fitness 
between haplotypes i and j:

We test this hypothesis pair, if their frequencies satisfy 
∑R

r=1

(

f
(r)
i,T + f

(r)
j,T

)

�= 0 . Given 

the haplotype frequency matrix F , for some pair of haplotypes i and j at replicate r, we 
normalise their frequencies to add up to one. For l ∈ {i, j} , we set f (r)

norm

l,tv
= f

(r)
l,tv

c
(r)norm

t  , 
where c(r)

norm

tv
= (f

(r)
i,tv

+ f
(r)
j,tv

)−1 is the normalising constant of replicate r at generation tv . 

Furthermore N (r)norm

ev  at time point tv is computed as

Since this will usually cause a changing Ne , we replace the drift variance by σdrift,�Ne
 

when applying our proposed test (5) to the haplotype pair. To control the false discovery 
rate, a Benjamini & Hochberg multiple testing correction will also be applied to the p 
values obtained from all considered pairs.

Testing when many haplotypes are present

Scenarios with many haplotypes tend to lead to low power when using haplotype based 
testing. This is due to a large number of individual tests and the small haplotype frequen-
cies. One way to resolve this issue is through the combination of haplotype frequencies. 

(17)
H0 :

⋂

j∈{1,2,...,NHap}\{m1,m2,...}
φj = φ̄{1,2,...,NHap}\{m1,m2,...}

H1 :
⋃

j∈{1,2,...,NHap}\{m1,m2,...}
φj �= φ̄{1,2,...,NHap}\{m1,m2,...}

(18)m1 : max
m1

R
∑

r=1

f
(r)
m1,T

− f
(r)
m1,0

√

σ
(r)
drift,�Ne

(19)
H0i,j : φi = φj

H1i,j : φi �= φj

(20)N (r)norm

ev
= (f

(r)
i,tv

+ f
(r)
j,tv

)N (r)
e .
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Intuitively, this can be achieved through the removal of SNPs, such that several haplo-
types will become identical. Here, we propose two haplotype combination methods to 
improve the performance of our haplotype based tests. Several other approaches for 
haplotype reduction have been used in other fields such as GWAS, one example is hap-
lotype clustering as in [30]. Since our focus here is on haplotype based testing, we do 
not provide an extensive comparison of available methods. However, we found the two 
procedures outlined below to work well in our context.

First, we propose an intuitive approach that combines haplotypes using individual SNP 
based tests. We use the p values of these tests without multiple testing corrections and 
retain SNPs with p values below some given threshold β . The haplotypes that become 
identical after SNP removal are then combined. A similar approach has been proposed 
in [31] to identify a selected haplotype. A detailed explanation of this approach is pro-
vided in Additional file 1: Section S.3.

Another possible approach relies on haplotype blocks obtained via techniques com-
monly used in GWAS [10]. A haplotype block may be defined as a contiguous region 
of SNPs that are in high linkage disequilibrium with each other with little evidence of 
recombination within the region [32]. We use a normalised version of the coefficient of 
linkage disequilibrium proposed by [33] and follow the approach by [32] to determine 
haplotype blocks. Our proposed haplotype based selection test is then applied to each 
of the combined haplotype block frequency matrices. An extra layer of between blocks 
multiple testing corrections is then needed. We refer to Additional file 1: Section S.4 for 
more details.

Results
Simulation experiments

In this section we present the results of an extensive simulation study where we ana-
lyse the performance of our proposed tests from "Methods" section under different sce-
narios. First, "Proof of concept" section provides a proof of concept, illustrating some 
potential advantages of our proposed haplotype based test compared to SNP based test-
ing for selection in a typical experimental evolution scenario. Then we consider how the 
choices of the experimental design ("Influence of the model parameters" section) and 
of the model organism ("Diploid populations" section) can affect the power of our test 
compared to a SNP based test. Lastly, "Testing for the number of selected haplotypes, 
Pairwise test, and Experimental designs involving many haplotypes" sections illustrate 
the results of the extensions of our proposed test discussed in "Testing for the number 
of selected haplotypes, Pairwise test for different fitness across haplotypes, and Testing 
when many haplotypes are present" sections  respectively, and "Type I error control" sec-
tion discusses type I error control of our proposed methods.

Data and simulation setup

Our simulation studies are inspired by the experimental setups described in [34] and 
in [16]. For our simulations related to the first setup, we randomly selected NHap dif-
ferent haplotypes (from the iso-female lines) and NSNP SNPs (from a locus consisting 
of 500 SNPs). Starting from the chosen founder haplotypes, we simulated evolve and 
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resequence experiments with and without selection by generating multinomial haplo-
type frequency changes along generations using Eq. (2).

All frequencies are assumed to be known unless otherwise stated. For haplotype 
frequencies, we set the starting frequencies at time point 0 to be equal, such that each 
haplotype has a frequency of 1

NHap
 . As discussed in Additional file 1: Section S.13, and 

in "Real data application" section, however, our methods may also be used with arbi-
trary, unequal starting frequencies.

Under selection, we consider scenarios involving both one and more than one 
positively selected SNP. With nsel ≥ 1 selected SNPs, we randomly choose posi-
tions J = (j1, j2, . . . , jnsel )

⊺ for the selected SNPs. The corresponding vector 
S = (s1, s2, . . . , snsel )

⊺ denotes the selection coefficients of these SNPs. Assuming addi-
tive fitness effects, this leads to a fitness vector � (see Eq. (3)) with components

for haplotype i ( 1 ≤ i ≤ NHap).
We then simulate haplotype frequencies up to (k − 1)×�t generations. Given a 

haplotype structure matrix H and a haplotype frequency matrix F(r) for replicate r, the 
allele frequency matrix A(r) for this replicate can be calculated as:

where each element ai,j denotes the allele frequency for SNP i at generation tj . Further-
more, H ∈ {0, 1}I×NHap is constructed such that Hin = 1, if haplotype n assumes the ref-
erence allele at SNP i and Hin = 0 otherwise. The columns of H denote the haplotypes 
and the rows the SNPs. For scenarios where frequencies are estimated with a sample 
size of n(r)i,j  , we construct the noisy haplotype frequency matrix F̂(r) by drawing its col-
umns independently via multinomial sampling. The observed allele frequencies are then 
obtained as

Under pool sequencing with sequencing coverage u(r)i,j  for SNP i at time point tj and rep-
licate r, we construct the noisy allele frequency matrix Ã(r) by drawing each element via 
binomial sampling using the respective sequencing coverage. With SNP based testing, 
these binomial variances are added as a component of variance to the denominator of 
the modified CMH tests (see Additional file 1: Section S.2.3). For the haplotype based 
test, we assume that the haplotype frequencies are estimated from the noisy allele fre-
quencies Ã(r) by solving the regression model [35]. Other methods of haplotype frequen-
cies may also be used, see for instance [36] that proposes an EM algorithm, or [37] for a 
maximum likelihood based approach.

The variances of the estimated regression coefficients F̂(r)P  as well as of their sums are 
then used as additional components of variance.

(21)φi = 1+
∑

j∈J s.t. hj,i=1

sj

(22)A
(r) = HF

(r)

(23)Â
(r)

= HF̂
(r)

(24)Ã
(r)

= HF̂
(r)
P .
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Proof of concept

As an initial illustration of our hypothesis test we consider 10,000 simulations from 
a window of 500 SNPs, mimicking an experiment with 10 replicates and a haploid 
population of size 1000, with a coverage of 50. Ten founder haplotypes are present 
in each population. We consider a scenario with 60 generations and with sequencing 
taking place every 10 generations. To simulate selection, one SNP is assumed to be 
beneficial. In our first example the SNP is private to one of the haplotypes and has a 
selective strength s = 0.02 . In the second example, the selected SNP is shared among 
five haplotypes and has a selective strength s = 0.03 . We chose these two selection 
regimes for illustration purposes, but similar conclusions can also be drawn when 
changing the selection strength.

The receiver operating characteristic (ROC) curves for our proposed haplotype 
based test and SNP based test under the two scenarios are plotted in Fig.  1. We 
include results under the HMP and the omnibus p value combination methods.

The haplotype based tests have a higher area under the curve (AUC) than the SNP 
based test in both examples. The difference is particularly large under the scenario 
with one selected haplotype (left panel of Fig. 1). This demonstrates that our proposed 
approach is able to provide a considerable increase in power under some scenarios.

The harmonic mean p value combination method has particularly high power in 
scenarios with a single true alternative. Such a situation occurs both when one, or all 
but one haplotype are selected. On the other hand, the omnibus test performs better 
than HMP at intermediate numbers of selected haplotypes (see right panel of Fig. 1).

With an intermediate number of selected haplotypes, the advantage compared to 
SNP based testing is also smaller than for both a large and a small number of selected 
haplotypes. See Additional file 1: Figure S2 for results under scenarios without pool 
sequencing noise.

Fig. 1 Results for two simulated examples that mimic a typical experiment. The receiver operating 
characteristic (ROC) curves of the haplotype and SNP based tests are shown for two scenarios: 10 replicate 
populations with 10 founder haplotypes each are simulated with a coverage of 50. In the left panel, one 
haplotype is beneficial with s = 0.02 . In the right panel s = 0.03 , and 5 haplotypes have a common selective 
advantage compared to the remaining populations
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Influence of the model parameters

In experimental evolution, different organisms and experimental setups are chosen 
according to the aims of the experiment and the available resources [38]. Therefore, 
we discuss the impact of the experimental design on the performance of our haplotype 
based tests. We investigated the influence of each parameter described in "Data and 
Simulation setup" section on the performance of our proposed tests by considering a set 
of alternative values for each of them. The other parameters have been kept constant as 
listed in the reference Table 2. The results in this section assume known haplotype fre-
quencies unless otherwise stated and are based on the test statistic provided in "Conclu-
sion" section.

Figure 2 shows that the power of all tests decreases with an increasing number of ini-
tial haplotypes. We observe that the differences in AUC between haplotype and SNP 
based tests decrease as the number of haplotypes increases. When using the omnibus 
multiple testing correction, the SNP based approach also slightly outperforms our hap-
lotype based test, if the number of starting haplotypes is large. This can be explained 
by the need of more multiple testing corrections due to the increase in the number of 
haplotypes.

As detailed in "Testing when many haplotypes are present" section, in scenarios with a 
large number of haplotypes the starting haplotype frequency is very small and thus the 
probability that the selected haplotype is lost due to drift in the early phase of the experi-
ment is high. On the other hand, when a large number of haplotypes have high fitness 
and their fitness values are identical, the chance that the neutral haplotypes are lost at 
the beginning of the experiment is high. This leads to a scenario where all haplotypes 
have the same selective strength, and thus there is no selective advantage for any haplo-
type, resulting in a low power of all considered tests.

We show in Additional file  1: Figure S2, that despite a small initial increase, more 
selected haplotypes will result in lower power for all tests. For the haplotype based tests, 
the two multiple testing corrections outperform each other in different situations. While 
HMP performs best with very few and with many selected haplotypes, the omnibus test 
works best with an intermediate number of selected haplotypes.

Table 2 Default parameter values for "Influence of the model parameters, Diploid populations, 
Testing for the number of selected haplotypes, Pairwise test, Experimental designs involving many 
haplotypes" sections and Additional file 1: Section S.6. Unless otherwise mentioned, Figures within 
these sections use parameters from this table when simulating results

Parameters

NSNP 500 Number of SNPs per haplotype

NHap 10 Number of haplotypes

k 7 Total number of sequenced time points

�t 10 Number of generations between adjacent time points

Ne 1000 Effective population size

hSel 1 Number of selected haplotypes

s 0.03 Selective strength

R 3 Number of replicates

α 0.05 Significance level

nsim 10,000 Number of simulations per parameter set
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Additional file  1: Section S.6 provides simulation results for different values of the 
number of replicates, the selective strength, the number of generations, and the effective 
population size. As previously observed with SNP based tests [39], these results con-
firm that more replicate populations, a higher selective strength, more generations, and 
a higher effective population size lead to an increase in power for all tests. The presence 
of more replicates especially, benefits haplotype based test much more in terms of power 
compared to the SNP based test. We also observed that the haplotype based tests per-
form better than the SNP based approach under all considered scenarios.

For a scenario with unequal starting haplotype frequencies and either three or four 
founder haplotypes, see Additional file 1: Section S.13. All the other parameters are as in 
Table 2, except with no replicate population. We note that also in this situation the hap-
lotype based test retains good power compared to the SNP based test in most scenarios. 
There were some scenarios, with little difference in power however. In such cases, our 
simulations did not lead to statistically significant differences in AUC at level α = 0.05 . 
Overall the starting frequencies of the haplotypes influence the relative performance of 
haplotype based tests. If there is one selected haplotype, the haplotype based test per-
forms best either when the starting frequency of the selected haplotype is large or small. 
For two and three selected haplotypes, it seems to perform best when the combined 
starting frequency of selected haplotypes is large.

We finally studied the effect of the number of SNPs in the considered window. As 
shown in Additional file 1: Section S.6, the haplotype based test is invariant with respect 
to this parameter. On the other hand, the power of the SNP based test decreases with an 
increasing number of SNPs. This is due to the more stringent multiple testing correction 
needed. In principle, the advantage of haplotype based testing increases with the win-
dow size. However, with large windows recombination becomes increasingly relevant for 
haplotype based testing. Thus, if the window size is too large then haplotype based test-
ing becomes unfeasible due to a large number of haplotypes.

In experimental evolution, haplotype frequencies are often unknown. If estimates 
are used instead, and their errors are non-negligible, we propose to use the test 

Fig. 2 Results for 3 scenarios with different numbers of haplotypes. ROC curves of both haplotype and SNP 
based tests are shown for 10, 20 and 40 total haplotypes, with all other parameters default as outlined in 
Table 2
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statistics introduced in Additional file 1: Sections S.2.1 and S.2.2, and S.2.3 instead. 
They account for the additional variance incurred by haplotype frequency estimates. 
Both SNP and haplotype based testing will need to take the additional variance 
into account, if the exact allele frequencies are unknown and replaced by estimates. 
Notice however, that pool-sequencing noise can be reduced with the haplotype based 
approach as it combines information across SNPs, for instance via regression. In 
Additional file  1: Figure S13, we consider cases where all frequencies are estimated 
with a sample size of 500, and with various sequencing coverage values between 50 
and 450. With data obtained via pool sequencing, the power decreases only for SNP 
based testing. Especially for low sequencing coverage, haplotype based testing there-
fore provides a considerable advantage.

Since both drift and sampling variance affect all tests in similar ways, sampling vari-
ation will decrease the power overall. Additional file 1: Section S.6 provides an illus-
trative example.

Diploid populations

Here, we evaluate the performance of our proposed methods on a diploid population 
instead of a haploid one. The population is simulated using the software [40] with 1000 
simulated samples, and other parameters outlined in Table  2. Additive genetic effects 
are assumed. The results for the diploid population (Fig.  3) are similar to the haploid 
case (Fig. 2), where the haplotype based tests outperform the SNP based test in terms 
of AUC. The haplotype based test using HMP as p value combination method performs 
best in line with previously seen haploid results with one selected haplotype. Since hete-
rozygous individuals with one selected allele have a selective advantage of only s/2 when 
assuming additive effects, the power of all tests is lower compared to the haploid case.

Fig. 3 Results for a diploid population. ROC curves of both haplotype and SNP based tests are shown for a 
diploid population. Here, the number of simulations is reduced to 1000, with all other parameters outlined in 
Table 2
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Testing when the effective population size is unknown

In real data, the effective population size will be typically unknown. Thus the true Ne 
needs to be replaced by an estimate such as the one proposed in [20]. Since such meth-
ods are generally derived based on the absence of selection, the estimates will be biased, 
if they rely on a substantial number of selected SNPs. This bias will lead to an underesti-
mated Ne , and will make our approach more conservative.

The amount of bias will depend on the proportion of non-neutral SNPs used to esti-
mate Ne and their selective strength. Here we consider 2 extreme scenarios, one where 
Ne is estimated from SNPs taken from an independent neutrally evolving window, and 
another where Ne is estimated from the tested window. Thus, if the tested window is 
affected by selection, the Ne estimate will be systematically too small. This can be seen 
in Fig. 4b, where the AUC is considerably smaller compared to Fig. 4a where Ne is esti-
mated from neutral data. Notice however, that the loss in power is much larger for the 
SNP based test than for the haplotype based tests. Compared to the case where Ne is 
known (Fig. 1), estimating Ne leads to a lower AUC pointing towards a lower classifica-
tion accuracy. Naturally, this decreased accuracy will depend on the variance of the Ne 
estimate, which will be smaller when larger genomic regions are used in the estimation 
process.

Testing for the number of selected haplotypes

The knowledge of the number of selected haplotypes when selection is present is of 
interest in practical applications when researchers try to better understand the genomic 
architecture of adaptation in experimental evolution. To investigate the practical perfor-
mance of the test proposed in "Testing for the number of selected haplotypes" section, 
we simulated a scenario with 5 founder haplotypes, some of them selected with s = 0.05 , 
that otherwise follows the population parameters in Table 2. We generate 10,000 simula-
tion runs for each considered number of selected haplotypes. If selection is detected by 
our haplotype based test with the omnibus p value combination method, we apply our 
proposed iterative test from "Testing for the number of selected haplotypes" section.

Figure 5 illustrates that this test is able to accurately predict the number of selected 
haplotypes for scenarios with different true numbers of selected haplotypes given that 
selection is strong enough. The left panel presents results conditional on the presence of 
selection, and the right panel unconditionally.

The scenario with one selected haplotype, for instance, is identified correctly in more 
than 98% of cases both conditionally and unconditionally. We show similar results using 
the HMP combination method in Additional file 1: Figure S15.

Pairwise test

Under the simulation scenarios detailed in "Testing for the number of selected haplo-
types" section, we also explored the performance of the pairwise post hoc test statistic 
for differences in fitness proposed in "Pairwise test for different fitness across haplo-
types" section.

Figure 6 provides results on the power and the type I error probability, conditional 
on the rejection of the initial test. Both under the scenarios involving one and three 
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replicate populations, the power of predicting fitness differences between haplotype 
pairs is high and the type I error probability is controlled. Again, the power is higher 
with more replicate populations. We observe a decrease in power when the number 
of selected haplotypes increases.

Fig. 4 Results for estimated effective population size. ROC curves of both haplotype and SNP based tests 
are shown for a scenario where Ne is estimated. Here, the ROC curve is obtained using the same parameters 
as in the right panel of Fig. 1, but with Ne estimated. In the top figure, Ne is estimated from SNPs taken from 
an independent neutrally evolving window. In the bottom figure, Ne is estimated using the testing window 
regardless of the presence of selection
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We also investigate the behaviour of the pairwise test under a scenario where all 
haplotypes differ in fitness. We assign fitness values of 1, 1.02, 1.04, 1.06, and 1.08 
respectively to the five considered haplotypes. As one might expect, Additional file 1: 
Figure S18 indicates that power increases with an increasing difference in fitness 
between the tested haplotypes. For more details on this parameter set, see Additional 
file 1: Section S.10 and S.11.

Fig. 5 Results showing the prediction accuracy of haplotype based iterative testing. The omnibus method 
is used for multiple testing corrections in all scenarios. The heat map has been obtained using 5 founder 
haplotypes and a selection strength of s = 0.05 , with all other parameters default as outlined in Table 2. In the 
left panel, the haplotype with the strongest signal is always removed as selected. In the right panel, the test is 
unconditional

Fig. 6 Pairwise tests for differences in fitness for different numbers of selected haplotypes. The displayed 
probabilities are conditional on the rejection of the initial test for selection. Results based on simulated data 
using 5 founder haplotypes, selection strength s = 0.05 , different numbers of selected haplotypes, and 1 or 
3 replicate populations, with all other parameters default as outlined in Table 2. Type I errors occur when the 
test between two haplotypes of equal fitness rejects the null hypothesis. B &H is used for multiple testing 
corrections
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Experimental designs involving many haplotypes

As discussed already in "Influence of the model parameters" section, the power of our 
approach decreases with an increasing number of haplotypes. Here we investigate 
whether the methods proposed in "Testing when many haplotypes are present" section 
to reduce the number of haplotypes helps to resolve this problem.

To better understand the interplay between the number of founder haplotypes and 
that of selected haplotypes, we plot results with an intermediate number of selected hap-
lotypes for different numbers of founders in the left panel of Fig. 7. There, hSel = NHap/2 , 
while the rest of the parameters are as in Fig. 2. As suggested by the results in Fig. 7, the 
haplotype based tests lose their advantage compared to SNP based tests already at 20 
founder haplotypes instead of around 40 in Fig.  2. Indeed, if many haplotypes have a 
similar selective advantage, the signal that can be captured by the haplotype based test 
is diluted. This emphasises that haplotypes should be combined as explained in "Testing 
when many haplotypes are present" section.

We see that the SNP based combination method (HapSNP) is still able to retain an 
AUC advantage at 20 haplotypes. Both panels of Fig.  7 also show that the SNP based 
combination method improves the power of the considered haplotype based test con-
sistently. The advantage of haplotype based testing is retained this way also for designs 
involving a considerably larger number of haplotypes compared to tests that do not oper-
ate on a reduced set of haplotypes. The SNP based combination method first reduces 
the number of haplotypes by removing SNPs, and then applies our proposed haplotype 
based test. The type I error plot in Additional file 1: Section S.12 suggests that the type I 
error probabilities are also controlled with this approach.

This approach only requires a minimal increase in terms of computational cost and 
performs well when the SNP based test is able to identify a reasonable number of indi-
vidually significant SNPs. When this is not the case, we propose a more computationally 

Fig. 7 Results for different total numbers of haplotypes. In the left panel, ROC curves are plotted for the 
original haplotype, HapSNP, and SNP based test under various choices of NHap . HapSNP refers to the method 
of using the SNP based test to reduce the haplotype number prior to haplotype based testing outlined 
in "Testing when many haplotypes are present" section. Here, results are shown for 10, 20, and 40 starting 
haplotypes. The number of selected haplotypes is set to hSel = NHap/2 . All other parameter values can 
be found in Table 2. In the right panel, the AUC of the ROC curves is plotted independently of the starting 
haplotype number. The other parameter values are identical to those used in the left panel



Page 19 of 25Chen et al. BMC Bioinformatics          (2023) 24:322  

demanding modification. This approach reduces the number of haplotypes by creating 
haplotype blocks and then performing the test for selection on the haplotype blocks. 
Additional file  1: Section S.12 provides results for a scenario with 100 haplotypes, 50 
selected haplotypes, and only one population. Here, the haplotype based test combined 
with the haplotype block based approach performs equally well or better than SNP 
based tests despite the large haplotype number. This is due to the haplotype block based 
test being mostly invariant to changes in the number of haplotypes (see Additional file 1: 
Section S.12).

Additional file 1: Figure S25 provides an example where 30 haplotypes are present, one 
of them selected. We notice that the SNP based combination method does not perform 
as well here, in terms of power in subsequent testing. To investigate this further, we con-
sidered several significance thresholds which lead to different sets of considered SNPs. 
However, Additional file 1: Figure S26 shows that the choice of threshold seems to have 
little impact on the performance.

Type I error control

As can be seen in Additional file 1: Section S.6, haplotype based tests provide well con-
trolled type I error probabilities, in most of the scenarios we explored. While most 
changes in parameter value have little to no effect on the type I error of the test, the 
number of replicates, the number of haplotypes, and whether the frequencies are known 
or estimated can have a noticeable impact.

The largest violation in terms of type I error we encountered during our extensive sim-
ulations was with the combination of 1 population, 3 to 4 haplotypes, and known haplo-
type frequencies (Additional file 1: Figure S1). Even for these scenarios, the type I error 
probabilities stay below 0.07, given a significance threshold of 0.05 for the p values.

We also notice that the CMH test is more conservative than the chi-squared test, caus-
ing a drastic decrease in type I error probability when replicates are present. This con-
servativeness is explored in further detail in Additional file 1: Section S.11.

The post hoc tests share similar characteristics in terms of type I error probabilities. 
The pairwise test tends to have a lower type I error probability compared to the initial 
test preceding the post hoc procedure (Fig. 6), whilst the test for the number of selected 
haplotypes tends to have a somewhat higher type I error probabilities than the initial 
test (Fig. 5). Indeed, for the pairwise tests we did not observe any violations of the level 
α even under the most liberal scenario. On the other hand, Additional file 1: Figure S14 
suggests that the true number of haplotypes is over-estimated in about 11% of cases at 
worst.

One scenario when such a claim does not necessarily hold is due to the type I error 
being computed conditional on the rejection of the null hypothesis of the haplotype 
based test. These conditional type I errors often have higher probabilities compared to 
unconditional type I errors, which are not dependent on the rejection of the null hypoth-
esis. This is the case in particular under weak selection, where a larger proportion of the 
initial rejections is caused by inflated effect sizes due to random errors. Due to such fil-
tering, the conditional type I error can exceed the desired threshold, while the uncondi-
tional type I error is well under control. With one selected haplotype, Additional file 1: 
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Figure S17 provides an example that shows that the conditional type I error is not under 
control under a very low selective strength s = 0.01.

With the haplotype block based tests there are two levels of multiple testing correc-
tion, one within and one between the haplotype blocks. We suggest the usage of HMP 
or B &H as multiple testing correction at the second (between) layer, since similarities 
between the blocks can introduce a fairly strong positive correlation among the tests.

Real data application

Here we illustrate our proposed testing approach on a yeast data set from [16], where 
both haplotype and allele frequencies have been obtained at 3 different time points. The 
experiment involves 4 haplotypes which are investigated on a grid of non-overlapping 
30  KB windows. We applied the omnibus variant of the haplotype based test, as well 
as SNP based testing using the commonly used within-window Benjamini & Hochberg 
correction. For both methods, we also applied a Benjamini & Hochberg multiple testing 
correction across windows in order to control a false discovery rate of 0.05 at a genome-
wide level. The three sequenced time points have been taken at cycles 0, 6 and 12, where 
each cycle is estimated to contain 15 to 20 generations. For our analysis, we take the 
mean and assume 17.5 generations per cycle which leads to 105 generations between 
adjacent sequenced time points.

We estimate the effective population size with the method proposed by [20], and use 
data from population 4k, at cycles 0 and 6. We did not include the frequencies at cycle 
12 due to the high percentage of fixed or lost alleles, and the very low estimated effec-
tive population sizes, see Additional file 1: Section S.14 for more details. We also check 
windows with very highly correlated haplotypes by constructing UPGMA trees. Such 
windows may lead to false positive results due to multi-collinearity, when assuming that 
the error in haplotype reconstruction is negligible. However, we did not find this to be 
an issue for the windows we detect as selected.

Additionally, we note that the chi-squared test can become anti-conservative if the 
starting frequencies are too small, especially for a dataset that does not have intermedi-
ate time points. We also found that some of the starting allele frequencies are equal to 
zero, whilst increasing in frequency over time, or vice versa. Presumably, this is due to 
pool sequencing noise, but can still lead to biased testing results. To avoid such prob-
lems, we decided to remove any SNP or haplotype that has a corresponding starting fre-
quency of less than 0.01, or larger than 0.99. Further, we excluded from our analysis a 
small number of SNPs with large allele frequency changes that could not be explained by 
underlying haplotype frequency changes.

Genome wide, the haplotype based test is able to detect selection in 658 windows 
whilst the SNP based test only in 47. Furthermore, all the 47 significant windows identi-
fied by the SNP based test are also identified by the haplotype based test. This is in line 
with our previous simulations that confirmed a higher power of haplotype based tests 
under most considered scenarios. See Additional file 1: Section S.15 for further details.

Figure 8 displays a genome-wide summary of the selected window positions. To better 
understand the selective architecture, we also provide the estimated numbers of selected 
haplotypes. On chromosome 11, for instance, only one selected haplotype has been 
identified for all windows inferred as affected by selection. To better understand the 
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relevance of our newly identified locations, one may look at the annotations provided 
by the Saccharomyces yeast Genome Database (SGD) [41]. As an example, windows 696 
and 697 of chromosome 2 are both detected as selected by the haplotype based test but 
none by the SNP based test. According to SGD, these windows belong to the GPX2 gene 
which protects cells from phospholipid hydroperoxides and nonphospholipid peroxides 
during oxidative stress.

We also see that some selected windows cluster together which could point toward 
hitchhiking effects in neighbouring windows. Similar numbers of selected haplotypes for 
nearby windows, may also point towards selected haplotypes extending over multiple 
windows.

As a further example, we applied pairwise tests to the selected windows at chromo-
somes 1 and 11, and summarise the results in Table 3, with haplotypes H1, H2, H3, H4 
denoting the haplotypes alt_YEE_hap_A1_00, alt_YEE_hap_A2_00, alt_YEE_hap_B3_00, 
alt_YEE_hap_B4_00 respectively.

In Chromosome 11 we only detected windows with 1 selected haplotype. The pair-
wise test supports this theory, showing H3 being the only haplotype that has a signifi-
cant fitness difference against all others. Using this knowledge, we can assume that H3 
is the selected haplotype at these selected windows. Chromosome 1 on the other hand, 

Fig. 8 Position of selected windows according to haplotype based test. The background rectangles 
represent the chromosomes, and the positions represent the window positions and can be translated into 
positions on the genome when multiplying them by 30 KB. The dots represent positions of selected windows 
found by the (omnibus) haplotype based test, and the colours indicate the number of selected haplotypes 
inferred by our proposed post hoc test

Table 3 Proportion of windows for which the pairwise tests provide evidence of fitness differences 
between specific haplotype pairs

Chromosome Haplotype pairs

H1-H2 H1-H3 H1-H4 H2-H3 H2-H4 H3-H4

1 0.4 1 0.1 1 0.4 1

11 0.1 1 0 1 0 1
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has both windows with one and two selected haplotypes according to our previous tests. 
Again, we see that for all selected windows, H3 differs in fitness, while H2 is the other 
significant haplotype in fewer than half of the windows. We can therefore infer that H3 
is again always selected, but H2 is also selected for some of the windows which confirms 
our previous testing results.

Discussion
It is well known that haplotypes harbour valuable information that can be helpful for 
the understanding of the selective architecture [11]. In this work, we show that haplo-
type based tests can effectively detect selection in genomic regions under a wide range of 
evolve and resequence scenarios. Furthermore, our proposed post-hoc tools are meant 
to identify the number of selected haplotypes and to investigate fitness differences 
between haplotypes. This helps to better understand features of the selective architec-
ture such as polygenic adaptation. The post hoc tests perform especially well when repli-
cate populations show consistent signals.

In order to apply haplotype based tests, we focus on relatively short genomic windows 
such that the haplotypes are not much affected by recombination and their frequency 
changes can be followed over time. As a guideline, [14] provides the window size for var-
ious organisms such that the impact of recombination can be assumed negligible. These 
loci with limited recombination have also been referred to as microhaplotypes [42], and 
are considered as a new type of genetic marker. In most situations, our haplotype based 
test has more power than the SNP based one.

For experimental designs involving too many haplotypes, we propose methods of col-
lapsing their frequencies. This significantly improves the performance of our method 
since the starting haplotype frequencies increase when lowering the number of hap-
lotypes. These methods either use SNPs identified by preliminary tests or a haplotype 
block based approach. They help to reduce the loss in power incurred with an increasing 
number of haplotypes and increase the range of scenarios for which haplotype based 
tests are a good choice. In experiments involving large numbers of haplotypes ( ≥ 100), 
approaches where the results based on haplotypes and SNPs are combined would be an 
interesting follow-up.

Conclusion
We studied our proposed haplotype based test under a wide range of simulated experi-
ments. We think that our investigation of the effect of different design parameters on 
the power will be helpful for planning new experiments. The variables that influence the 
performance of the test most are the number of haplotypes and of selected haplotypes. 
These parameters also affect the power of the SNP based tests. The size of the consid-
ered window is also relevant for SNP based tests, as it influences the amount of required 
multiple testing correction. However, it does not affect the power of haplotype based 
tests, as long as the number of involved haplotypes does not become too large.

In this paper, most of our simulation results were obtained for scenarios with known 
SNP and haplotype frequencies. However, often the haplotype frequencies are unknown 
in applications [34, 43]. Thus we also provide versions of our tests for scenarios with 
unknown or partially unknown haplotype frequencies. With sampling errors, the relative 
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performance between haplotype and SNP based tests remains similar to the known fre-
quency scenario. The advantage of haplotype based tests can increase considerably, how-
ever, if additional noise is introduced by pool sequencing. Since haplotype frequencies can 
be estimated by combining information across many SNPs using for instance regression, 
haplotype based methods are much less affected by pool sequencing noise than approaches 
focusing on individual SNPs.

Our results demonstrate that haplotype based tests for selection provide attractive tools 
to better understand selective architectures in the context of experimental evolution. Both 
the initial and the post hoc tests provide useful tools for this purpose.
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