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Abstract 

Circular RNA (CircRNA) is a type of non-coding RNAs in which both ends are covalently 
linked. Researchers have demonstrated that many circRNAs can act as biomarkers 
of diseases. However, traditional experimental methods for circRNA-disease associa-
tions identification are labor-intensive. In this work, we propose a novel method based 
on the heterogeneous graph neural network and metapaths for circRNA-disease 
associations prediction termed as HMCDA. First, a heterogeneous graph consisting 
of circRNA-disease associations, circRNA-miRNA associations, miRNA-disease associa-
tions and disease-disease associations are constructed. Then, six metapaths are defined 
and generated according to the biomedical pathways. Afterwards, the entity content 
transformation, intra-metapath and inter-metapath aggregation are implemented 
to learn the embeddings of circRNA and disease entities. Finally, the learned embed-
dings are used to predict novel circRNA-disase associations. In particular, the result 
of extensive experiments demonstrates that HMCDA outperforms four state-of-the-art 
models in fivefold cross validation. In addition, our case study indicates that HMCDA 
has the ability to identify novel circRNA-disease associations.
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Introduction
Circular RNA (circRNA) is a class of non-coding RNA which neither have a 5’-terminal 
hat nor a 3’-terminal poly (A) tail. In particular, circRNA is formed by the ring struc-
ture with covalent bonds. Since the first circRNA was discovered in 1971, researchers 
have identified more than 183,000 circRNAs from human transcriptome [1–4]. Recently, 
researchers have found that circRNAs can serve as biomarkers and targets of treatment 
for many diseases. For example, Zang et al. [5] found that circRNA EIF4G3 could sup-
press gastric cancer progression through the inhibition of β-catenin. Young et  al. [6] 
found that circ_0023984 could promotes the progression of esophageal squamous cell 
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carcinoma by sponging miR-134-5p. Therefore, it is critical to identify circRNA-disease 
associations (CDAs). Verification of the relationship between circRNAs and diseases 
usually require a large number of experiments such as reverse transcription-PCR (RT-
PCR) [7, 8], northern blotting [9, 10], nucleus/cytoplasm fractionation [11, 12]. The 
prediction results of high accuracy can provide the correct direction for the basic experi-
ments and reduce the cost of the experiment.

Currently, there are a large number of associations between circRNAs and diseases 
that have been verified by experiments, and have been carefully collected as formatted 
data by professionals. For example, Lei et  al. [13] have constructed the CircR2Disease 
database by collecting the CDAs verified by experiments. As of the latest version [13], 
the database includes 4201 associations between 3077 circRNAs and 312 diseases.

Thanks to the rapid development of computational technology and the collection of a 
large number of experimental data, researchers have proposed many methods to predict 
new CDAs [14–19]. The previous prediction methods can be divided into three catego-
ries: methods based on similarity, methods based on matrix decomposition, and meth-
ods based on graph neural networks (GNNs) [20–23].

The underlying intuition of the methods based on similarity is that similar circRNAs 
are associated with similar diseases. Based on this intuition, researchers calculated the 
similarities between circRNAs and the similarities between diseases using a variety of 
data sources. After that, these similarity data and the verified relationships are used to 
predict novel relationships. For example, Wang et al. [15] constructed the disease simi-
larities by integrating the disease semantic similarity, disease Jaccard similarity and 
Gaussian kernel similarity. Then the circRNA similarities were constructed by integrat-
ing the Jaccard similarity of circRNAs and the Gaussian kernel similarity of circRNAs. 
Based on these similarities, they proposed a model named IMS-CDA (Prediction of 
CDAs From the Integration of Multisource Similarity Information With Deep Stacked 
Autoencoder Model) to predict the associations between circRNAs and diseases.

The second type is method based on matrix decomposition. Li et  al. [24] proposed 
a method based on Speedup Inductive Matrix Completion (SIMCCDA) to predict the 
potential relationship between circRNAs and diseases. In particular, the proposed SIM-
CCDA model treats the circRNA-disease matrix as an observed matrix with missing 
values; hence the task is to predict those missing values by decomposing this observed 
matrix as two lower dimensional matrices.

Meanwhile, the third type is a method based on GNNs. With the development 
of GNNs, many researchers use GNNs to predict CDAs [16–19, 25]. This type of 
method uses the graph neural network model to learn embeddings for circRNA and 
disease entities, and then the embeddings of diseases and circRNAs are used to cal-
culate the possibility of the association between them. For example, Wang et al. [16] 
proposed a method based on graph convolution network (GCN) for CDAs predic-
tion (GCNCDA). Particularly, they used GCNCDA to predict the possible circRNAs 
related to breast cancer, glioma and colorectal cancer. Similarly, Bian et al. [17] pro-
posed a method based on graph transformer network for CDAs prediction. However, 
most of the GNN-based methods [18, 19, 26] for CDAs prediction adopted homo-
geneous graph models, which regard the disease entities and circRNA entities as 
the same type of entity. Most of circRNAs regulate diseases by acting as sponge of 
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microRNA (miRNA), a small number of circRNAs participate in the regulation of 
diseases by directly regulating genes. For example, Hsa_circ_0000285 [27] could con-
tribute to gastric cancer progression by sponging miR-1278. On the contrary, CircG-
SK3B can inhibit the progression of gastric cancer by directly interacting with EZH2. 
Unfortunately, all previous CDAs prediction methods ignore the heterogeneity of dif-
ferent biomedical pathways, hence losing the ability to capture the underlying het-
erogeneous information. To capture such heterogeneity between different types of 
entities, we propose a novel graph neural network which is enhanced by our designed 
metapath based method. In particular, a metapath P (described in “Metapaths based 
on biomedical pathways” section) is defined by a sequence of entities between two 
types of entities, which can describe a composite relation between them.

In this work, we propose a heterogeneous graph neural network based on metapath 
for CDAs prediction (HMCDA). First, we construct a heterogeneous graph contain-
ing three types of entities (i.e circRNA, disease and miRNA). Afterwards, six meta-
paths based on biomedical pathways are defined to learn the embeddings of circRNA 
entities and disease entities. Finally, the embeddings of disease and circRNA are used 
to predict novel CDAs.

Methods
Figure  1 is an overview of our proposed HMCDA model. First, in “Construction of 
heterogeneous graph”    section, we construct a heterogeneous graph by integrat-
ing circRNA-disease associations (CDAs), circRNA-miRNA associations, disease-
miRNA associations and disease-disease associations (DDAs). Besides, six metapaths 
based on biomedical pathways are defined in “Metapaths based on biomedical path-
ways” section  among circRNA, miRNA and disease entities. Afterwards, a metapath 
aggregated graph neural network is used to learn the embeddings of circRNA and 
disease entities through the node content transformation (“Node content transfor-
mation” section), intra-metapath aggregation (“Intra-metapath aggregation” section) 
and inter-metapath aggregation (“Inter-metapath aggregation” section). Finally, in 
“circRNA-disease associations prediction” section, the embeddings of circRNA and 
disease entities are used to predict the novel CDAs. We use Fig.  1 to illustrate the 
workflow of our proposed model.

Fig. 1 An overview of our proposed HMCDA model
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Construction of heterogeneous graph

2160 CDAs, 1964 circRNA-miRNA associations and 1964 disease-miRNA associations 
are obtained from CircR2Disease v2.0 [28]. Besides, 74 disease-disease associations are 
obtained form DisGeNET database [29] (Table 1). It should be noted that the DDAs in 
the DisGeNET database is calculated based on shared genes by followling formula:

where G1 is the set of genes associated to disease 1, G2 is the set of genes associated to 
disease 2. As shown in Table 1, We construct a dataset consisting of the pairwise rela-
tionships between circRNAs, miRNAs and diseases. The dataset could be found in sup-
plementary material 1. As shown in supplementary material 1, the table contains three 
types of entities (i.e. circRNA, disease and miRNA) and four types of associations (i.e. 
circRNA-disease association, circRNA-miRNA association, disease-miRNA association 
and disease-disease association). Each entity has its own ID. Based on this dataset, we 
construct a heterogeneous graph for the subsequent model training.

Metapaths based on biomedical pathways

A metapath P is defined by a sequence of entities between two types of entities, which 
can describe a composite relation between them. We define six types of metapaths 
according to biomedical pathways in this section.
Pcmc (circRNA-miRNA-circRNA): two circRNAs are associated with the same miRNA 

by acting as miRNA sponge.
Pcmdmc (circRNA-miRNA-disease-miRNA-circRNA): two circRNAs are associated 

with the same disease by acting as miRNA sponge.
Pcdc (circRNA-disease-circRNA): two circRNAs are associated with the same disease 

by not acting as miRNA sponge.
Pdmd (disease-miRNA-disease): two diseases are associated with the same miRNA.
Pdcd (disease-circRNA-disease): one circRNA associated with two diseases through 

the circRNA-gene-disease pathway.
Pdd (disease-disease): two diseases are associated with by sharing the same gene as cal-

culated by Eq. (1).

Node content transformation

The feature vectors’ dimensions of different types of entities are different. As shown 
in Fig.  2A,in order to make the subsequent operation more efficient, we first use the 

(1)JaccardG =
G1 ∩ G2

G1 ∪ G2
,

Table 1 Statistics of the dataset

Entity types Num Edge types Num

circRNA 1556 circRNA-disease 2160

miRNA 840 circRNA-miRNA 1964

Disease 243 Disease-miRNA 1964

Disease-disease 74

Total 2639 6162
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following formula to transform the feature vector of different types of entities into the 
same latent space.

where xv ∈ R
dA is the original feature vector of the entity v. A is the type of node (i.e. cir-

cRNA, miRNA and disease), dA is the number of nodes of type A and RdA is the dimen-
sion of node A. h′v is the space vector after transpose of entity v. WA is the parametric 
weight matrix of type A’s entities. After entity content transformation, different types 
entities share the same latent factor space.

Intra‑metapath aggregation

We have defined six types of metapaths in “Metapaths based on biomedical pathways” 
section, and there are many metapath instances (e.g circRNA9119-miR26a-circ_0005105 
[30, 31] is a metapath instance of metapath Pcmc ) for each type of metapath. As shown 
in Fig. 2B, given a metapath P and target entity v, intra-metapath aggregation serves to 
aggregate all metapath instance information based on metapath P and target entity v. 
We denote a metapath instance by P(v, u) , where v is the target entity and u ∈ N P

v  is the 
metapath-based neighbor of the target entity v. To encode the information of metapath 
instance P(v, u) , we use a relational rotation encoder (RotatE) [32]. RotatE is a method 
for knowledge graph embedding proposed by Sun et al. In particular, RotatE can aggre-
gate both the information of each entity in the metapath instance, and the order infor-
mation of the entities. Given P(v, u) = (t0, t1, . . . , tn) with t0 = u and tn = v , let Ri be the 
relation between entity ti−1 and entity ti . Let ri be the relation vector of Ri , the relational 
rotation encoder is formulated as:

where h′ti and ri are both complex vectors and ⊙ is the element-wise product. For each 
metapath instance Pi , we obtain a single vector representation hPi(v,u) . Then, we adopt 
the attention mechanism [33] to calculate the weighted sum of the metapath instances of 
metapath Pi related to target entity v as follows:

(2)h′v = WA · xAv ,

(3)

o0 = h′t0 = h′u,

oi = h′ti + oi−1 ⊙ ri,

hP(v,u) =
on

n+ 1
,

Fig. 2 Flowchart of learning the embedding for target node. A Different types of entities were transformed 
into the same latent factor space by node content transformation. B All information in the same metapath 
with a same target entity is aggregated into target entity. C Information in different metapaths is aggregated 
into target entity
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where aPi ∈ R
2d′ is the parameterised attention vector for each metapath instance, ePivu 

and αPi
vu are the importances of metapath instance Pi(v,u) to the target entity v and the 

corresponding normalized importance weight. Finally, the weighted sum and an activa-
tion function σ(·) are used to obtain the vector representation of node v based on meta-
path Pi (i.e. hPiv ).

Particularly, we can also extend equation above by using the attention mechanism with K 
heads to prevent the overfitting problem.

where αPi
vu

k
 is the normalized importance in kth head.

Afterwards, we obtain a vector repression hPiv  which aggregates the information of all 
metapath instances of P related to the target entity v through intra-metapath aggregation. 
In the next section, we will implement the inter-metapath aggregation to aggregate infor-
mation in different metapaths into a target entity.

Inter‑metapath aggregation

In this section, we use the attention mechanism [as shown in Eq.  (5)] again to aggregate 
information in different metapath into target entity. As shown in Fig. 2C we summarize 
each metapath Pi with the same target entity type by the following formula:

where MA and bA are learnable parameters.
After that, the attention mechanism is used to merge the information of different type 

metapaths as follows:

where qA ∈ R
dA is the parameterised attention vector of type A’s entity. ePi and βPi 

are the importance of metapath Pi to target entity and corresponding normalization 

(4)

ePivu = LeakyReLU
�

a⊤Pi ·
�

h′v�hPi(v,u)
�

�

,

αPi
vu =

exp
�

e
Pi
vu

�
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s∈N
Pi
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Pi
vs
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(5)hPiv = �Kk=1σ
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(6)sPi =
1

|VA|

∑

v∈VA

tanh
(

MA · hPiv + bA

)

,

(7)

ePi = q⊤
A · sPi ,

βPi =
exp

(

ePi
)

∑

P∈PA
exp (eP)

,

hPA
v =

∑

P∈PA

βP · hPv ,
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importance. Then, the weighted sum is used to fuse the information of different meta-
path and obtain a vector repression hPA

v  . Finally, an additional linear transformation (i.e. 
Wo ) and a nonlinear function (i.e. σ(·) ) are used to obtain the embedding of each entity:

where hv is the embedding of a circRNA or disease entity.

circRNA‑disease associations prediction

Given embeddings of each disease entity (i.e. h(di) ) and each circRNA entity (i.e. h(cj) ). We 
use the following formula to calculate the possibility (i.e. pdicj ) that they link together:

Model training

To optimize our HMCDA model, we use the following loss function:

 where � and �− are sets of positive and negative pairs.

Results
In this section, we first present our experiment setup, where we detail our data split and 
the used evaluation metrics. Then, we present the result of the extensive experiment, 
ablation experiment and case study.

Experiment setup

In this paper, the fivefold cross validation method is used to evaluate the performance of 
the model. All CDAs are divided into five subsets of equal size, with each subset selected 
in turn for testing and other four subsets for training. The testing set is used to test the 
generalization ability of all models and derive the receiver operating characteristic curve 
(ROC) and Precision–Recall (PR) curve. We also obtain the average area under the ROC 
(AUC) and the average area under PR curve (AUPR).

In addition, to train our model and all other baselines, we use the Pytorch package. In 
particular, we use the Adam optimizer to optimize all models. For the hyperparameters, 
we tune the learning rate in  

{

10−2, 10−3, 10−4
}

 ; the latent dimension in {32, 64, 128} 
and the L2 normalisation in 

{

10−2, 10−3, 10−4, 10−5
}

 . We define the negative samples as 
those nodes that are not linked together. In the training set, we randomly sample 5 dif-
ferent negative node pairs for each positive node pair.

Extensive experiment

To demonstrate the performance of HMCDA, we choose four state of the art model to 
make an extensive comparison.

(8)hv = σ
(

Wo · h
PA
v

)

,

(9)pdicj = σ

(

h⊤(di) · h(cj)

)

(10)L = −
∑

(u,v)∈�

log σ
(

h⊤u · hv

)

−
∑

(u′,v′)∈�−

log σ
(

−h⊤u′ · hv′
)

,
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• GATCL2CD GATCL2CD [34] is a method based on heterogeneous graph atten-
tion network for CDAs prediction by fusing disease semantic similarity informa-
tion, circRNA sequence similarity and function similarity.

• iCircDA-MF iCircDA-MF [35] is a CDAs prediction method based on matrix 
factorization by integrating information from circRNA similarity, disease seman-
tic similarity and known CDAs.

• GCNCDA [36] GCNCDA is a GCN-based method for CDAs prediction by fus-
ing disease semantic similarity information, disease and circRNA Gaussian Inter-
action Profile similarity.

• GATNNCDA [37] GATNNCDA is a method based on graph attention network 
and multi-layer neural network for CDAs prediction. Similar to GCNCDA [36], 
it also uses the disease semantic similarity information, disease and circRNA 
Gaussian Interaction Profile similarity.

As shown in Tables  2 and  3, the mean AUC values of HMCDA, iCircDA-MF, 
GCNCDA, and GATNNCDA are 0.9135, 0.8134, 0.7334, and 0.8234 respectively. 
HMCDA achieves the best AUC value 0.9135, which increases by 9.01% over the 
second-best method (i.e. GATNNCDA). Meanwhile, the mean AUPR values of 
HMCDA, iCircDA-MF, GCNCDA, and GATNNCDA are 0.9212, 0.8200, 0.7220 
and 0.8317 respectively. Similarly, HMCDA achieves the best AUPR value of 0.9212, 
which increases by 8.95% over the sub-optimal method (i.e. GATNNCDA). There-
fore, we can conclude that HMCDA can outperform competitive baselines and 
achieve state-of-the-art performance.

Table 2 AUCs of HMCDA under fivefold cross validation compared with four previous models

HMCDA GATCL2CD iCircDA‑MF GCNCDA GATNNCDA

Fold 1 0.8913 0.8322 0.8111 0.7307 0.8222

Fold 2 0.9096 0.8419 0.8095 0.7347 0.8191

Fold 3 0.9474 0.8404 0.8005 0.7389 0.8107

Fold 4 0.8977 0.8457 0.8199 0.7392 0.8270

Fold 5 0.9217 0.8104 0.8262 0.7235 0.8383

Mean 0.9135 0.83412 0.8134 0.7334 0.8234

Table 3 AUPRs of HMCDA under fivefold cross validation compared with four previous models

HMCDA GATCL2CD iCircDA‑MF GCNCDA GATNNCDA

Fold 1 0.9054 0.8431 0.8216 0.6999 0.8321

Fold 2 0.9214 0.8189 0.8200 0.7287 0.8240

Fold 3 0.9502 0.8302 0.8120 0.7398 0.8258

Fold 4 0.9046 0.8334 0.8205 0.7301 0.8377

Fold 5 0.9246 0.8024 0.8261 0.7119 0.8387

Mean 0.9212 0.8256 0.8200 0.7220 0.8317
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Ablation experiment

To evaluate the effectiveness of different biomedical pathways, we conduct the ablation 
experiment. As shown in Table  4, we construct five different combinations of meta-
paths and name them as metapath2, metapath3, metapath4, metapath5, and metapath6 
according to the metapaths they contain.

As shown in Fig.  3, the performance of HMCDA improves with the increase of the 
number of metapaths. Besides, in addition to c − d − c and d − c − d , c −m− c 
should be the most important metapath. Compared with metapath2, the AUC and 
AUPR values of metapath3 have increased by 16.95% and 14.79% respectively. Simi-
larly, c −m− d −m− c should be the second important metapath. Compared with 
metapath5, the AUC and AUPR values of metapath6 have increased by 6.14% and 7.31% 
respectively. Two metapaths ( d −m− d and d − d ) with disease as target nodes con-
tribute less to the performance of the model compared with those with circRNAs as 
their target nodes. The cause of this observation may be that the similarities between the 
disease are more difficult to be learnt than the similarities between circRNAs.

Case study

To test the utility of HMCDA, we first implement a case study on gastric cancer to 
present the top 10 predicted related circRNAs of gastric cancer. Gastric cancer is the 
fifth most common cancer and the third most common cause of cancer death globally 

Table 4 Different combination of metapaths

Metapath2: Combination of 2 metapaths: c − d − c, d − c − d . Metapath3: Combination of 
3 metapaths: c − d − c, d − c − d, c −m− c , Metapath4: Combination of 4 metapaths: 
c − d − c, d − c − d, c −m− c, d −m− d . Metapath5: Combination of 5 metapaths: 
c − d − c, d − c − d, c −m− c, d −m− d, d − d . Metapath6: Combination of 6 metapaths: 
c − d − c, d − c − d, c −m− c, d −m− d, d − d, c −m− d −m− c

c–d–c d–c–d c–m–c d–m–d d–d c–m–d–m–c

metapath2 ✓ ✓
metapath3 ✓ ✓ ✓
metapath4 ✓ ✓ ✓ ✓
metapath5 ✓ ✓ ✓ ✓ ✓
metapath6 ✓ ✓ ✓ ✓ ✓ ✓

Fig. 3 Result of ablation experiment
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[38]. Therefore, it is critical to find biomarkers and therapeutic targets related to gas-
tric cancer. As shown in Table 5, CircR2Disease indicates whether the predicted asso-
ciation is already present in the CircR2Disease dataset. PMID is the evidence of the 
predicted association. Among the top 10 predicted gastric cancer-related circRNAs, 
three are not found in the data used for training, but verified by external articles (i.e. 
hsa_circ_0000285 [39], hsa_circ_0000615 [40], circCSNK1G1 [41]). Wang et al. [39] 
found that hsa_circ_0000285 contributes to gastric cancer progression by sponging 
miR-1278 and upregulating FN1. Dong et  al. [40] found that the expression of hsa_
circ_0000615 is decreased in gastric cancer tissue. In addition, Qiang et al. [41] found 
that CircCSNK1G1 can contribute to the tumorigenesis of gastric tancer by sponging 
miR-758 and Regulating ZNF217 expression. These results indicate that HMCDA has 
the ability to predict potential gastric cancer-related circRNAs.

To test the utility of HMCDA in other diseases, we also implement a case study on 
hepatocellular carcinoma (HCC) and lung cancer. As shown in Table  6, among the 
top 10 predicted hepatocellular carcinoma-related circRNAs, two are not found in the 
data used for training, but verified by external researchs (i.e. circZNF652 [42] and circ 
0008928 [43]). Guo et  al. [42] foud that circZNF652 promotes hepatocellular carci-
noma metastasis through inducing snail-mediated epithelial-mesenchymal transition 

Table 5 The top 10 gastric cancer-related candidate circRNAs

Rank circRNA name CircR2Disease PMID

1 circRNA_103516 None None

2 hsa_circ_0044226 None None

3 hsa_circ_0000285 None PMC9169205

4 hsa_circ_001436 None None

5 hsa_circ_0061140 None None

6 circ_0001105 None None

7 hsa_circ_0000615 None PMC8161999

8 hsa_circ_0070616 None None

9 circCSNK1G1 None PMC8253995

10 Circ-03955 None None

Table 6 The top 10 hepatocellular carcinoma-related candidate circRNAs

Rank  circRNA name       CircR2Disease     PMID

1 circRNA-MTO1 None None

2 circRNA_103516 None None

3 hsa_circ_0005273 None None

4 hsa_circ_0070269 Exist 31,606,623

5 circ_0062491 None None

6 circ-Foxo3 None None

7 circZNF652 None 31000195

8 circSDHC None None

9 circ_0008928 None 34220494

10 circRNA-51217 None None
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by sponging miR-203/miR-502–5p. Besides, Wang et al. [43] found that circ_0008928 
may be related to the synergistic anti-hepatocellular carcinoma effect of Berberine 
and regorafenib.

As shown in Table 7, among the top 10 predicted lung cancer-related circRNAs, two 
are verified by external researchs (i.e. circABCB10 [44] and has_circ_0002018 [45]). 
Hu et al. [44] found that circABCB10 could promote the proliferation and migration of 
lung cancer cells through down-regulating microRNA-217 expression. Besides, Xu et al. 
[45] found that has_circ_0002018 could supress the lung metastasis of breast cancer by 
sponging miR-658. These results indicate that HMCDA has the ability to predict poten-
tial related circRNAs in other diseases.

Conclusions
In this work, we proposed a novel heterogeneous graph neural network which is 
enhanced by our designed six metapaths. We term our model as HMCDA and we use 
HMCDA to effectively predict the unseen associations between circNAs and diseases. 
Our extensive experiments in fivefold cross validation have indicated that our proposed 
HMCDA model can outperform four state-of-the-art circRNA-disease prediction mod-
els. In addition, our detailed case study suggests that HMCDA can effectively identify 
the novel CDAs.
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