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Abstract 

Background: Mitochondria are the cell organelles that produce most of the chemi-
cal energy required to power the cell’s biochemical reactions. Despite being a part 
of a eukaryotic host cell, the mitochondria contain a separate genome whose origin 
is linked with the endosymbiosis of a prokaryotic cell by the host cell and encode inde-
pendent genomic information throughout their genomes. Mitochondrial genomes 
accommodate essential genes and are regularly utilized in biotechnology and phyloge-
netics. Various assemblers capable of generating complete mitochondrial genomes are 
being continuously developed. These tools often use whole-genome sequencing data 
as an input containing reads from the mitochondrial genome. Till now, no published 
work has explored the systematic comparison of all the available tools for assembling 
human mitochondrial genomes using short-read sequencing data. This evaluation 
is required to identify the best tool that can be well-optimized for small-scale projects 
or even national-level research.

Results: In this study, we have tested the mitochondrial genome assemblers 
for both simulated datasets and whole genome sequencing (WGS) datasets 
of humans. For the highest computational setting of 16 computational threads 
with the simulated dataset having 1000X read depth, MitoFlex took the least execu-
tion time of 69 s, and IOGA took the longest execution time of 1278 s. NOVOPlasty 
utilized the least computational memory of approximately 0.098 GB for the same 
setting, whereas IOGA utilized the highest computational memory of 11.858 GB. In 
the case of WGS datasets for humans, GetOrganelle and MitoFlex performed the best 
in capturing the SNPs information with a mean F1-score of 0.919 at the sequencing 
depth of 10X. MToolBox and NOVOPlasty performed consistently across all sequencing 
depths with a mean F1 score of 0.897 and 0.890, respectively.

Conclusions: Based on the overall performance metrics and consistency in assembly 
quality for all sequencing data, MToolBox performed the best. However, NOVOPlasty 
was the second fastest tool in execution time despite being single-threaded, and it 
utilized the least computational resources among all the assemblers when tested 
on simulated datasets. Therefore, NOVOPlasty may be more practical when there 
is a significant sample size and a lack of computational resources. Besides, as long-read 
sequencing gains popularity, mitochondrial genome assemblers must be developed 
to use long-read sequencing data.
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Background
General introduction

Mitochondrial DNA (mtDNA) is present in all aerobic eukaryotes 1, with human mtD-
NA’s size being ~ 16 kbp, encoding for 13 proteins 2. The first draft of human mitochon-
drial genome assembly was published by Anderson et al. in 1981 2, leading to advances 
in several fields such as forensics 3, pharmaceuticals 4, anthropology 5 and evolu-
tion 6. However, this reference mitochondrial genome, often called Cambridge Refer-
ence Sequence (CRS), is a contemporary European sequence that has not been revised 
since 1999 7. After the availability of the complete Neanderthal mitochondrial genome 
8, Behar et  al. proposed the usage of the Reconstructed Sapiens Reference Sequence 
(RSRS) over the revised Cambridge Reference Sequence (rCRS). RSRS was constructed 
using ~ 8 K human mitochondrial genomes 9; however, this preposition was later refuted 
by Bandelt et al. 10

The deluge of sequencing data in the past decade enables us to study more complex 
attributes of the mitochondrial genome at the population level. Heteroplasmy, the co-
occurrence of multiple mitochondrial DNA haplotypes within an individual 11, was 
previously considered rare. However, with the advent of high throughput sequencing, 
we can now enumerate the extent of polymorphism of the mitochondrial genome at the 
population level 12. Technological advances in mtDNA sequencing, such as isothermal 
rolling circle amplification 13 and targeted nanopore sequencing 14, now enable selec-
tive sequencing of the mitochondrial genome.

The task of assembling organelle genomes is critical. The mitochondrial genome has 
been extensively utilized in examining non-model species evolution 15, studying phylo-
genetics 16 and species identification research 17. Assembly of the circular mitochon-
drial genome has also been shown to help in understanding the evolution of frogs 18.

Since mitochondrial reads represent a significant proportion of reads (up to 25%) in 
Next-Generation whole genome sequencing data, they can be considered one of the 
most extensively sequenced genomes in eukaryotes 19. In human specific context, they 
can be segregated from the sequencing data and leveraged to build mitochondrial Pan 
genomes 20, study heteroplasmy 1, 12, and the hypermutation process 21. Human mito-
chondrial genome sequences are also used to analyze human lineages and migration 
trends 22, 23, study population genetics 24, research human mitochondrial illnesses 25, 
and conduct forensic science research 26. It is a mainstay in forensic research as some 
locations of mtDNA evolve 5–10 times faster than nuclear genes, and these regions are 
routinely typed in forensic studies 27. Furthermore, having access to multiple mitoge-
nomes allows us to conduct large-scale comparative research 19.

Mitochondrial genomes have been assembled using various methods, and in this 
study, we specifically focus on assembling human mitochondrial genomes. Typically, 
two main approaches are involved in deriving a mitochondrial genome from whole-
genome sequencing (WGS) data: The first approach is reference genome mapping 
to extract mitochondrial reads from the sequencing data, followed by assembly and 
resolution of the specific circular structure 28, 29. This can be achieved by mapping 
the reads to the current reference mitochondrial genome (rCRS). The reference-based 
category has the benefit of requiring less memory and running time. The second 
strategy, also known as de novo assembly, uses increased coverage of reads coming 
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from the mitochondria and therefore does not rely on the existence of a reference 
genome 30. The most common reads may be extracted using a k-mer analysis. One 
of the mitochondrial genome assembling tools utilizing the k-mer-based approach is 
MitoZ 31. These approaches have the benefit of being widely applicable as they can 
be utilized in assembling genomes of novel species. However, nuclear-embedded 
mitochondrial DNA sequences (NUMTs) 32, the mitochondrial DNA sequences inte-
grated into the nuclear genome, present a significant challenge in the de novo assem-
bly. The inherent sequence similarity between NUMTs and mitochondrial DNA can 
cause misassignments of reads during the assembly process, leading to excessive 
runtimes and a higher likelihood of generating fragmented mitochondrial assem-
blies. A hybrid strategy, for instance, utilized by NOVOPlasty 33, combines the two 
approaches mentioned above by concurrently assembling the reads based on k-mers 
and utilizing a mitochondrial reference gene as a seed. The benefit of the seed-and-
extend category is that it can be used for any known species; all that is required, in 
addition to the paired-end reads in FASTQ format, is a brief seed sequence of that 
species or any closely related species. However, because of the read length limitation 
offered by short-read sequencing, it struggles to decode repetitive regions seen in 
some mitochondrial genomes 34.

Purpose and scope of this study

Though several tools were developed for mitogenome assembly, this study, for the 
first time, evaluates the performance and efficacy of open-source command-line tools 
currently available for performing de novo and reference-based assembly from raw 
genomic data for human mitochondrial genomes. Benchmarking online servers for 
human mitochondrial assembly is beyond the scope of the present study. Further, we 
limited our benchmark to readily configurable tools, straightforward to install and 
actively maintained. We restrict the input to paired-end Illumina data as contempo-
rary sequencing technologies often produce them.

We tested all the tools on six publicly available human datasets with various down-
sampling rates and simulated datasets. In this study, we have observed that the per-
formance of the majority of tools was enhanced considerably by downsampling the 
sequencing data to an average sequencing depth of 10X. We also believe that the per-
formance of some tools can be improved by fine-tuning their parameters. However, 
this was beyond the scope of this study.

Methodology
Data availability

Docker images of all the tools used in this study have either been present or deposited 
on Dockerhub 35, and all the tools are hosted on GitHub (Table 1).

Simulated data have been used to collect the run metrics for various run param-
eters, and the guidelines for computational benchmarking have been followed while 
conducting this study 36.
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Table 1 Information about the mitochondrial genome assemblers utilized in this study

Tool Source 
repository

Links for 
docker 
images 
available 
online

Reference 
genome 
dependency

Main 
approach

Programming 
language

License Miscellaneous 
features

Multithreading 
support

Input data

ARC https:// 
github. 
com/ ibest/ 
ARC. git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ arc_ 
docker/

Yes Mapping 
to the 
reference 
genome 
followed 
by de novo 
assembly.

Python 2 Apache 
License 
2.0

NA Yes Paired-End 
Illumina 
Fastq Files 
(Unzipped)

GetOrga-
nelle

https:// 
github. 
com/ Kingg 
erm/ GetOr 
ganel le. git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
getor 
ganel le_ 
docker/

Yes Mapping 
to the 
reference 
genome 
followed 
by de novo 
assembly.

Python 3 GNU GPL 
v3.0

NA Yes Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

IOGA https:// 
github. 
com/ holmr 
enser/ IOGA. 
git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
ioga_ 
docker/

Yes Mapping 
to the 
reference 
genome 
followed 
by de novo 
assembly.

Python 2 GNU 
Affero 
GPL v3.0

NA Yes Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

MEANGS https:// 
github. 
com/ 
YanCC scu/ 
MEANGS. 
git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
meangs_ 
docker/

No De novo 
Assembly

Python 3 GNU GPL 
v3.0

NA Yes Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

MITObim https:// 
github. 
com/ chris 
hah/ MITOb 
im. git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
mitob im_ 
docker/

Yes Mapping 
to the 
reference 
genome 
followed 
by de novo 
assembly.

Perl MIT 
LICENSE

NA No Paired-End/
Single-End 
Illumina 
Fastq Files 
(Paired-End 
should be 
Interleaved 
and 
Unzipped)

https://github.com/ibest/ARC.git
https://github.com/ibest/ARC.git
https://github.com/ibest/ARC.git
https://github.com/ibest/ARC.git
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://github.com/holmrenser/IOGA.git
https://github.com/holmrenser/IOGA.git
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https://github.com/YanCCscu/MEANGS.git
https://github.com/YanCCscu/MEANGS.git
https://github.com/YanCCscu/MEANGS.git
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https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
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https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
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https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
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Table 1 (continued)

Tool Source 
repository

Links for 
docker 
images 
available 
online

Reference 
genome 
dependency

Main 
approach

Programming 
language

License Miscellaneous 
features

Multithreading 
support

Input data

MitoFlex https:// 
github. 
com/ Pruno 
ideae/ MitoF 
lex. git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
mitof ex_ 
docker/

No De novo 
assembly

Python 3 GNU GPL 
v3.0

Genome anno-
tation

No Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

MitoZ https:// 
github. 
com/ linzh 
i2013/ 
MitoZ. git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
mitoz_ 
docker/

No De novo 
assembly

Python 3 GNU GPL 
v3.0

Genome anno-
tation

Yes Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

MToolBox https:// 
github. 
com/ mitoN 
GS/ MTool 
Box. git

NA Yes Mapping 
to the 
reference 
genome 
followed 
by de novo 
assembly.

Python 2 GNU GPL 
v3.0

Haplogroup 
Prediction, Vari-
ant Calling

Yes Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

NOVO-
Plasty

https:// 
github. 
com/ ndier 
ckx/ NOVOP 
lasty. git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
novop 
lasty_ 
docker/

Yes Seed and 
extend 
approach

Perl NA NA No Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

(Can be a 
single gene 
sequence)

ORG.Asm https:// git. 
metab arcod 
ing. org/ org- 
asm/ org- 
asm. git

https:// 
hub. 
docker. 
com/ 
repos 
itory/ 
docker/ 
nirma 
l2310/ 
org- asm_ 
docker/

Yes Seed and 
extent 
approach

Python 3 CeCILL 
LICENSE

NA No Paired-End/
Single-End 
Illumina 
Fastq Files 
(Can be 
Gzipped)

(Can be a 
single gene 
sequence)

Detailed information about the mitochondrial assemblers used in this study has been given in Table 1. The Docker container 
for MToolBox is unavailable via Docker Hub but can be built locally using the Docker file provided in the GitHub repository: 
https:// github. com/ Nirma l2310/ Mitoc hondr ial_ Bench marki ng_ study. The information about GitHub commits for the tools 
has been provided in Additional file 2: Table S6
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https://github.com/Prunoideae/MitoFlex.git
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https://github.com/ndierckx/NOVOPlasty.git
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https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
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https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
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https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
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https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
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https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
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https://github.com/Nirmal2310/Mitochondrial_Benchmarking_study
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Tool selection

In this study, we have only included those tools for assembling a mitochondrial genome 
that uses Short Paired End Reads. Tools must be available as open source and must 
allow command-line execution. Only tools that offered command line interface (CLI) 
were open-source and were actively maintained were included. Tools having graphical 
user interfaces weren’t included in the study since they couldn’t be used to automate 
the assembly of tens of thousands of samples. The tools that met all criteria mentioned 
above are listed below:

ARC v1.1.4-beta 37, Get-Organelle v1.7.5.1 38, MEANGS v1.0.1 39, IOGA 40, MITO-
bim v1.9.1 41, MitoZ v2.3 31, NOVOPlasty v4.3.1 33, MToolBox v1.2 29, MitoFlex v0.2.9 
42 and ORG.Asm v2.2 43.

These assemblers have been successfully used in assembling organelle genomes of var-
ious species [44–46; however, we are focusing on the performance of these assemblers 
for assembling human mitochondrial genomes.

Some CLI-based tools that couldn’t be part of this study include Organelle PBA 
47, Norgal 30 and mitoMaker 48. Organelle PBA is designed to deal with long reads 
sequencing data generated by PacBio technology. Norgal and mitoMaker failed initial 
testing of assembling mitochondrial genomes and hence were excluded from the study. 
Similarly, web-based GUI-based SMART 49 software is also available but doesn’t fulfil 
this study’s scope.

Our setup

We used default parameter settings to compare all of the assembly tools equitably. The 
input sequencing data included a pair of FASTQ files, one representing forward (R1.
fastq) and the other representing reverse (R2.fastq) read. The output files generated 
were named after the tool that produced them. Additionally, we created separate conda 
50 environments for each tool. Finally, to get the run metrics for each run (CPU usage, 
memory usage etc.), we generated docker images for each tool based on Ubuntu 18.04 
base image preloaded with all the dependencies and software. The benchmark was per-
formed on an AMD EPYC 7502 processor with 32 cores and 512 GB RAM.

Data

Simulated data

We simulated reads based on the human mitochondrial genome retrieved from 
the recently published complete human genome 51 (GenBank accession number 
CP068254.1) to avoid errors produced by sequencing runs and biological variation. To 
generate these perfect reads, we used InSilicoSeq NGS simulator 52 with the Novaseq 
error model (150 bp paired) and various coverage models offered by the simulator using 
the –coverage parameter. Previous studies suggest that 53 whole genome sequencing 
results in a mean read depth between 1200 and 4000X for the mitochondrial genome. 
The high coverage for mitochondrial reads is due to a cell’s high copy numbers of the 
mitochondrial genome. Hence, we generated simulated data containing 115  K, 175  K 
and 225 K numbers of reads to get the mean depth of 2000X, 3000X, 4000X respectively.
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Real data

We selected six whole genome sequencing datasets (NA12877, NA12878, NA12889, 
NA12890, NA12891, NA12892) from the study "Whole genome sequencing and vari-
ant calls from Coriell CEPH/UTAH 1463 family to create a platinum standard compre-
hensive set for variant calling improvement" 54, sequenced by Illumina Cambridge Ltd. 
with the sequencing depth varying from 46 to 55X. We down-sampled the six paired-
end FASTQ files for further analysis to a mean sequencing depth of 10X, 20X, 30X and 
40X, respectively.

Evaluation criteria

Computational resources

We recorded each assembler’s peak CPU and memory load and the size of the assembly 
files. All assembly tools were run on our docker image configuration using 2, 4, 8, and 16 
threads for various simulated data sets (115 K, 175 K, and 225 K reads).

Besides, we observed that several tools used more threads than were specified dur-
ing the initial run, so we used the –cpu argument of the docker run command to reduce 
the overhead. We estimated each configuration’s memory consumption and CPU usage 
using the docker stats command, which produces a live stream of a container’s runtime 
metrics.

Qualitative

The qualitative assessment of all the tools used in this study was based on the Journal of 
Open-Source Software (JOSS) 55 reviewer guidelines. The evaluation was done based on 
the following questions:

1. Are the tools easy to install?
2. Is there proper documentation for running the tool or a test dataset to check the 

installation?
3. Is the tool well maintained (issues answered, continuous update)?
4. Is the tool Open Source?

These questions were answered "good", "bad", and "okay" based on the experience 
while installing and running the tool. If the tool is available as a CONDA package, bun-
dled into a container, or has pre-compiled binaries, that tool will be considered "good". 
An "okay" installation tag would refer to a scenario where a custom script is available 
to download and compile all the dependencies needed for the tool. However, a tool is 
tagged "bad" when the tool is unable to install using improper and insufficient documen-
tation and requires intensive debugging and dependencies resolution. Detailed informa-
tion about the criteria for these evaluations has been explained in Additional file 1.

Quantitative

For assessing the quality of the genomes assembled by each assembler, we used the 
scoring scheme used by Freudenthal et  al.44 . In this study, the authors compared 
assembling tools for chloroplast genomes. Since mitochondrial genomes are also 
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extra-chromosomal, we found it appropriate to use the same method for mitochondrial 
genomes. This scoring scheme contains four metrics, each contributing one-fourth of 
the total score: completeness, correctness, repeat resolution and continuity.

To estimate the completeness of the assembled mitochondrial genome, the coverage 
of the assembled mitochondrial genome with respect to the reference genome was cal-
culated  (COVref). The assembled mitochondrial genome was aligned with the reference 
mitochondrial genome (GenBank accession number CP068254.1) using minimap2 v2.17 
56, and the coverage was calculated using bedtools v2.30.0 genomecov module 57. This 
metric represents how many bases in the assembled genome are mapped to the refer-
ence genome. The second metric, correctness, was calculated by mapping reference to 
the assembled genome and calculating the coverage  (COVquery). Repeat resolution was 
calculated using {min  (COVquery/COVref,  COVref/COVquery)}, representing the difference 
between the length of the assembled genome and the reference genome. The number of 
contigs estimated the fourth metric continuity; the higher the number of contigs lower 
the continuity. We also applied this scoring schema on the assemblies generated using 
the down-sampled data to gauge if down-sampling is improving the performance of the 
assemblers or not. For downsampling the raw sequencing data, the reformat.sh module 
of bbtools (v. 37.62) 58 was used. The final assemblies were also compared with the refer-
ence mitochondrial genome using QUAST v5.0.2 59 since it is a well-known assessment 
tool for the assemblies. The perfect assemblies obtained by calculating the score using 
Eq. 1 were assessed for misassemblies, INDELs and mismatches, and the resulting met-
rics are stored in Additional file 2: Table S7.

We sought to determine whether the assembled mitochondrial genomes had any vari-
ations or were identical to the reference we provided since most of these assemblers are 
reference-based. Only Single Nucleotide Polymorphisms (SNPs) were probed for in the 
assembled genomes in this work, and they were compared with variants obtained from 
the raw sequencing data. The SNPs were called from raw sequencing data using Mut-
serve (v.2.0.0-rc13) 60, given its accuracy for mitochondrial variant calling as assessed 
in a benchmark study of mitochondrial variant calling tools 61. Mutserve utilizes the 
mapped bam file and calls SNPs while comparing the mapped reads with the reference 
mitochondrial genome. The SNPs from the assembled genomes were called using the 
show-snps utility of MUMmer (v.3.1) 62. The output of show-snps was converted to a 
VCF file using all2vcf63 . Lastly, we compared the SNPs from the assembled genomes 
with those from the raw sequencing data using bedtools intersect to get the True Posi-
tive, False Positive and False Negative metrics. These metrics were used to calculate the 
F1-score, the harmonic mean of precision and recall for each assembler to assess their 
variant retaining performance.

True Positive (TP): SNPs common in both analyses.
False Positive (FP): SNPs are only listed in the MUMmer output.
False Negative (FN): SNPs are only listed in the Mutserve output.

(1)SCORE =
1

4
COVref + COVqry +min

COVqry

COVref
,
COVref

COVqry
+

1

Ncontigs
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Results
Performance metrics

All of the short-read assemblers examined in this study were compared regarding execu-
tion time, memory requirement, and CPU utilization.

Time requirements

Significant differences in total execution time were observed for the same input data 
across the different tools (Fig. 1). Aside from tool differences, input data and the number 
of threads used significantly impacted the time required; the execution time ranged from 
1.15 min for MitoFlex to 1.032 h for IOGA. For the highest computational setting of 16 
computational threads with the simulated dataset of 4000X read depth, IOGA took an 
execution time of approximately 39 min, whereas MitoFlex took approximately 1.3 min. 
This trend of IOGA taking the longest execution time and MitoFlex taking the least 

(2)Precision =
True Positives

True Positives + False Positives

(3)Recall =
True Positives

True Positive + False Negatives

(4)F1 Score = 2 ∗ (
precision ∗ recall

precision+ recall
)
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Fig. 1 Computation time depending on the number of threads and size of input data. The box and swarm 
plots depict the differences in run time for various thread counts and input data sizes for the ten assemblers. 
MitoFlex took the least execution time, utilizing 16 computational threads, followed by GetOrganelle and 
NOVOPlasty. However, IOGA took the longest time to assemble mitochondrial genomes irrespective of read 
abundance or the number of threads specified
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execution time was consistent across all the other run settings. MitoFlex was followed 
by GetOrganelle and NOVOPlasty in terms of execution time. Not all tested tools ben-
efited from having access to multiple computational threads. NOVOPlasty, ORG.Asm 
and MITObim do not support multithreading.

Memory and CPU Usage

Based on the same input data set and thread count, the peak CPU and memory usage 
and average CPU usage were recorded for all assemblers (Fig. 2). Most programs ben-
efited from more threads for the input data size. However, the increment in the CPU 
threads increases the peak memory required in most cases. Again, for the same run set-
ting of 16 computational threads and a simulated dataset of 4000X read depth, IOGA 
utilized the highest computational memory of 11.87 GB. In contrast, NOVOPlasty uti-
lized the least computational memory of approximately 0.17  GB. This trend of IOGA 
utilizing the highest computational memory and NOVOPlasty utilizing the least compu-
tational memory was consistent across all the other run settings.

Qualitative

On average, the user experience, in terms of installation and running of the analyses, 
was evaluated as "Good" for all the tools considered in this study. (Fig. 3).
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Fig. 2 Performance metrics of all the mitochondrial assemblers with simulated data as the input data. A Box 
and Swarm Plots showing the peak CPU usage (1 Thread = 100%) for all the assemblers at various input data 
sizes and the number of threads. The plot shows variation in the peak CPU usage with the number of threads 
specified. B Box and Swarm plots of each assembler’s average CPU usage. The plots clearly show a difference 
between mean and peak CPU usage, indicating that the assemblers do not use all of the threads provided 
by the user throughout the entire run. C Box and Swarm Plots showing the peak memory usage for all the 
assemblers at various input data sizes and the number of threads. An increase in the RAM requirement can be 
seen with the increment in the input data size. Additional file 2: Table S1 provides detailed information on the 
computational resources used by each tool for simulated datasets
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Quantitative

For a quantitative evaluation, we tested the capacity of all programs to assemble the 
human mitochondrial genome based on different input data. Input data were gener-
ated from the current reference mitochondrial genome or downloaded from sequenc-
ing repositories.

Simulated data

The datasets with various sequencing depths were simulated using the mitochon-
drial genome retrieved from the latest complete human genome sequence (T2T-
CH13). Assemblies obtained from the assemblers were compared with the reference 

Fig. 3 Overview of the results of the qualitative usability evaluation. Each tool was categorized as GOOD, 
BAD or OKAY based on specific metrics defining the ease of installation, test run, documentation and code 
maintenance
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Fig. 4 Score of the mitochondrial assemblies produced using simulated datasets. The Box and Swarm Plot 
describe the assemblies’ scores produced by the tools. The score was calculated based on the mapping 
statistics of the assembly with the reference mitochondrial genome (Eq. 1). Except for MEANGS, all the other 
tools generated high-quality mitochondrial assemblies (score > 99). Scores for all the assemblies generated 
are given in Additional file 2 Table S2
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mitochondrial genome, and a score was calculated based on Eq. 1. Except for MEANGS, 
all the other tools generated high-quality perfect assemblies (score ≥ 99) for every simu-
lated dataset (Fig. 4).

Publicly available datasets

The assemblies generated by the ten assemblers were scored based on their alignment 
with the reference mitochondrial genome. We observed significant variation in the per-
formance of the tools considered in this study, among all the tools MToolBox, NOVO-
Plasty, and ORG.Asm assembled perfect genomes for all six samples (Fig. 5A). However, 
since some of the tools failed to assemble the genomes for all six samples, we exam-
ined the impact of downsampling on their performance. Most of the assemblers dem-
onstrated higher quality and produced perfect assemblies at a sequencing depth of 10X, 
confirming that downsampling the data enhances the performance of the assemblers 
(Fig. 5). The UpSet plot, which compares the perfect assemblies generated by the assem-
blers, also illustrates the impact of downsampling. At a sequencing depth of 10X, most 
assemblers produced high-quality assemblies for all six samples (Fig. 6).

It is noteworthy that ARC and MITObim did not produce perfect assemblies at any 
sequencing depth (Table  2, Additional file  2: Table  S4). The perfect assemblies were 
compared with the reference mitochondrial genome using QUAST v5.0.2 to assess the 
assemblies for misassemblies, INDELs and mismatches. Apart from the assemblies 
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Fig. 5 Comparing the effect of down sampling on the score of the mitochondrial assemblers. The bar and 
swarm plots in Figures A, B, C, and D show the scores of the assemblies generated by the assemblers using 
original data and down-sampled data of mean sequencing depth of 40X, 20X, and 10X, respectively. Most of 
the tool’s performance increased for all six datasets at a sequencing depth of 10X
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Fig. 6 Comparison of effect of down sampling on the perfect assemblies generated by the assemblers. 
UpSet plot comparing perfect assemblies (score > 99) generated by different mitochondrial assemblers for 
original samples and down-sampled to the sequencing depths of 40X, 20X and 10X, respectively. Most tools 
produced high-quality assemblies for most datasets at a mean sequencing depth of 10X

Table 2 Scores of the assemblies generated by each mitochondrial genome assembler for samples 
with a mean sequencing depth of 10X

Overall GetOrganelle, IOGA, MitoFlex, MToolBox, NOVOPlasty and ORG.Asm produced the perfect assemblies (score > 99) 
for all six datasets, followed by MEANGS and MitoZ. MITObim and ARC failed to produce good-quality assemblies for these 
datasets. Information about the scores obtained for the original, 40X and 20X sequencing data assemblies is available in the 
Additional file 2: Table S4

Sr. no. Assembler Median IQR Perfect 
assemblies

1 ARC 28.85 7.20 0

2 GetOrganelle 99.99 0.01 6

3 IOGA 99.98 0.03 6

4 MEANGS 99.97 0.19 5

5 MITObim 0 0.00 0

6 MitoFlex 99.99 0.001 6

7 MitoZ 99.97 1.58 4

8 MToolBox 100.00 0.00 6

9 NOVOPlasty 99.99 0.01 6

10 ORG.Asm 99.99 0.03 6
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obtained from MEANGS, no other assemblies showed misassemblies compared to 
the reference mitochondrial genome. This information is available in Additional file 2: 
Table S7.

Additional file  2: Table  S3 details the number of reads, mitochondrial genome 
sequence depth, and mean sequencing depth.

To assess the performance of the assemblers in capturing SNPs, we compared the 
F1-score calculated for the perfect assemblies (Fig. 7). This plot demonstrates the impact 
of downsampling on the resulting assemblies in terms of the F1 score, which combined 
precision and recall. Most tools performed best at a downsampling sequencing depth of 
10X in terms of F1-score.

Among the assemblers, MitoFlex and GetOrganelle performed the best at a sequenc-
ing depth of 10X, consistently capturing the SNPs across all samples with an average 
F1-Score of 0.919. Additionally, MToolBox and NOVOPlasty performed consistently 
across all samples with an average F1-score of 0.897 and 0.890, respectively. Among 
these two, MToolBox consistently outperformed NOVOPlasty in capturing the SNPs 
present in the mitochondrial genome as calculated by the F1-score.

Discussion
In this study, we evaluate the performance of ten short-read mitochondrial genome 
assemblers for assembling the human mitochondrial genome. The weightage of assess-
ment criteria used in this study varies based on the downstream analysis. For instance, 
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Fig. 7 Comparison of F1-scores for SNPs calling using the assembled genomes and using the sequencing 
data. A box and swarm plot depicts F1-scores for precision and recall for SNPs calling using perfect 
assemblies (Score ≥ 99) produced by the ten mitochondrial assemblies methods using MUMmer and the 
original sequencing data using Mutserve. Overall, GetOrganelle and MitoFlex had the highest mean F1 
scores (0.919) at the 10X sequencing depth, whereas MToolBox and NOVOplasty performed consistently 
at all sequencing depths with a mean F1 score of 0.897 and 0.890, respectively. Detailed information about 
precision, recall and other metrics are available in the Additional file 2: Table S5
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when the sample size is modest, the run time parameter might not be all that useful. 
Still, this becomes crucial when the ultimate objective is to assemble 100 or 1000 mito-
chondrial genomes. Thus, the primary evaluation criterion for a tool is whether it can 
generate quality assemblies; otherwise, if the tool is not functioning correctly, all other 
criteria are irrelevant. This study used the default parameters or parameters advised to 
be altered in the documentation. Recommendations regarding parameter usage made 
by developers and past users in the GitHub issues were also used, if required, after care-
ful consideration and are otherwise stated. While it is possible that adjusting other 
advanced settings might lead to different results from these tools, the impact of such 
configuration was not explored in the current study.

MToolBox, NOVOPlasty and ORG.Asm are the only tools that produce high-qual-
ity assemblies for all the samples with varying sequencing depths. Based on F1-score 
MToolBox outperformed the other two tools with a mean F1-score of 0.897. Also, out 
of these three tools, only MToolBox supported additional features like variant calling, 
haplogroup detection etc., which can be utilized in many downstream analyses. Based 
on these characteristics MToolBox achieved the best performance overall, followed by 
NOVOPlasty. MitoFlex and GetOrganelle got the best performance overall in terms of 
F1-score, with a mean F1-score of 0.91 for the samples with a mean sequencing depth of 
10X. So, it is advantageous to utilize MitoFlex or GetOrganelle when dealing with low-
sequencing data.

Guidelines for the end‑user

From this study, we recommend that MToolBox may be used to reconstruct the mito-
chondrial genome from short-read whole genome sequencing data, especially if suffi-
cient computing power is available and the sequencing depth varies. Use NOVOPlasty, 
the second-best tool, if MToolBox occasionally fails to produce the correct assembly. In 
the case of samples with low sequencing depth, MitoFlex and GetOrganelle can be uti-
lized to get high-quality mitochondrial genome assemblies. Other options include man-
ually adjusting the tool’s parameters. Since NOVOplasty uses a single thread, running it 
in parallel will result in a shorter run time and a higher success rate for a large sample 
size.

Ideas for future development

The statistics of average CPU utilization make it abundantly evident that not all of the 
tools in a mitochondrial assembly pipeline are making full use of the computational 
resources allocated by the user. Ergo, one possibility for future improvement is to alter 
the current tools to leverage the availability of computational resources. This will result 
in a shorter run time, increasing throughput given large datasets. Since most of the 
assemblers require other software to function, a decent strategy for future development 
and distribution would be to either containerize all the tools using docker, singularity, 
or conda package etc. or use workflow management languages such as Nextflow, Snake-
make that allow reproducibility and reduce hassle for end users.
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Finally, given that long-read sequencing is mainstream nowadays (Nanopore® 64 and 
PacBio® 65) and that the significant benefits of these technologies include repeat resolu-
tion 66 and identification of large structural variants 67, there is a need to develop tools 
that can take full advantage of long reads to generate better mitochondrial genomes for 
any species. Currently, only one reference-based assembler is available, Organelle_PBA, 
that effectively leverages the benefits offered by PacBio sequencing reads to assemble the 
organelle genomes. Furthermore, long-read sequencing has made remarkable progress, 
from generating high error rates to producing high-quality (Q30) reads 68. Therefore, 
moving forward, the most effective approach is to develop assemblers capable of har-
nessing high-quality long-read sequencing data to assemble the organelle genomes with 
resolved repeats for any given species.

Conclusion
Whole genome sequencing data can be used to assemble mitochondrial genomes. The 
assembled genomes can find their application in tracing maternal ancestry, human 
migration and forensic analysis. Except for MToolBox, all the other tools explored in 
this study can be used to assemble the mitochondrial genomes from other species’ whole 
genome sequencing data. Still, in this study, we only focused on assembling human 
mitochondrial genomes.

Nevertheless, this study demonstrates that not all techniques can assemble com-
plete mitochondrial genomes effectively, irrespective of the kind of data (real or 
simulated) used as the input. The assemblies generated by MEANGS for simulated 
datasets exhibited fragmentation, resulting in relatively poor assembly scores. How-
ever, all the assemblies successfully captured the human mitochondrial genome’s 
protein-coding genes (PCGs). The developers of MEANGS suggested that gaps in the 
assembly could be attributed to the low sequencing depth of the NGS data 39. How-
ever, in our study, the simulated datasets had mitochondrial sequencing depths rang-
ing from 1000 to 4000X, yet MEANGS still struggled to produce complete assemblies 
like other tools. For WGS datasets of humans, Norgal and mitoMaker failed the initial 
testing of assembling the mitochondrial genomes. Norgal exceeded the time limit of 
24 h for completion, and the resulting assembly had a length of approximately 73 Kbs. 
Similarly, mitoMaker didn’t finish under the time limit when executed with 16 com-
putational threads. Additional information regarding the failure of these two tools is 
provided in Additional file 3.

Given the varying success among these tools, our study highlighted the merits and 
drawbacks of each tool, enabling end users to make informed decisions. Further-
more, we have provided instructions to guide end users ineffectively utilizing these 
tools for their specific needs. This assessment was weighted on various parameters 
such as computational power, data size, run time and assembly quality. Our investi-
gation has led us to the conclusion that it is now feasible to reconstruct thousands 
of mitochondrial genome assemblies using the available mitochondrial genome 
assemblers.
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