
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Mahar et al. BMC Bioinformatics (2023) 24:341
https://doi.org/10.1186/s12859-023-05445-3

BMC Bioinformatics

A systematic comparison of human
mitochondrial genome assembly tools
Nirmal Singh Mahar1, Rohit Satyam2, Durai Sundar1 and Ishaan Gupta1*

Abstract

Background: Mitochondria are the cell organelles that produce most of the chemi-
cal energy required to power the cell’s biochemical reactions. Despite being a part
of a eukaryotic host cell, the mitochondria contain a separate genome whose origin
is linked with the endosymbiosis of a prokaryotic cell by the host cell and encode inde-
pendent genomic information throughout their genomes. Mitochondrial genomes
accommodate essential genes and are regularly utilized in biotechnology and phyloge-
netics. Various assemblers capable of generating complete mitochondrial genomes are
being continuously developed. These tools often use whole-genome sequencing data
as an input containing reads from the mitochondrial genome. Till now, no published
work has explored the systematic comparison of all the available tools for assembling
human mitochondrial genomes using short-read sequencing data. This evaluation
is required to identify the best tool that can be well-optimized for small-scale projects
or even national-level research.

Results: In this study, we have tested the mitochondrial genome assemblers
for both simulated datasets and whole genome sequencing (WGS) datasets
of humans. For the highest computational setting of 16 computational threads
with the simulated dataset having 1000X read depth, MitoFlex took the least execu-
tion time of 69 s, and IOGA took the longest execution time of 1278 s. NOVOPlasty
utilized the least computational memory of approximately 0.098 GB for the same
setting, whereas IOGA utilized the highest computational memory of 11.858 GB. In
the case of WGS datasets for humans, GetOrganelle and MitoFlex performed the best
in capturing the SNPs information with a mean F1-score of 0.919 at the sequencing
depth of 10X. MToolBox and NOVOPlasty performed consistently across all sequencing
depths with a mean F1 score of 0.897 and 0.890, respectively.

Conclusions: Based on the overall performance metrics and consistency in assembly
quality for all sequencing data, MToolBox performed the best. However, NOVOPlasty
was the second fastest tool in execution time despite being single-threaded, and it
utilized the least computational resources among all the assemblers when tested
on simulated datasets. Therefore, NOVOPlasty may be more practical when there
is a significant sample size and a lack of computational resources. Besides, as long-read
sequencing gains popularity, mitochondrial genome assemblers must be developed
to use long-read sequencing data.

Keywords: Mitochondria, Genome, Benchmark, Assembly

*Correspondence:
Ishaan.Gupta@dbeb.iitd.ac.in

1 Department of Biochemical
Engineering and Biotechnology,
Indian Institute of Technology,
New Delhi 110016, India
2 Jamia Millia Islamia, Jamia
Nagar, Okhla, New Delhi 110025,
India

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05445-3&domain=pdf

Page 2 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Background
General introduction

Mitochondrial DNA (mtDNA) is present in all aerobic eukaryotes 1, with human mtD-
NA’s size being ~ 16 kbp, encoding for 13 proteins 2. The first draft of human mitochon-
drial genome assembly was published by Anderson et al. in 1981 2, leading to advances
in several fields such as forensics 3, pharmaceuticals 4, anthropology 5 and evolu-
tion 6. However, this reference mitochondrial genome, often called Cambridge Refer-
ence Sequence (CRS), is a contemporary European sequence that has not been revised
since 1999 7. After the availability of the complete Neanderthal mitochondrial genome
8, Behar et al. proposed the usage of the Reconstructed Sapiens Reference Sequence
(RSRS) over the revised Cambridge Reference Sequence (rCRS). RSRS was constructed
using ~ 8 K human mitochondrial genomes 9; however, this preposition was later refuted
by Bandelt et al. 10

The deluge of sequencing data in the past decade enables us to study more complex
attributes of the mitochondrial genome at the population level. Heteroplasmy, the co-
occurrence of multiple mitochondrial DNA haplotypes within an individual 11, was
previously considered rare. However, with the advent of high throughput sequencing,
we can now enumerate the extent of polymorphism of the mitochondrial genome at the
population level 12. Technological advances in mtDNA sequencing, such as isothermal
rolling circle amplification 13 and targeted nanopore sequencing 14, now enable selec-
tive sequencing of the mitochondrial genome.

The task of assembling organelle genomes is critical. The mitochondrial genome has
been extensively utilized in examining non-model species evolution 15, studying phylo-
genetics 16 and species identification research 17. Assembly of the circular mitochon-
drial genome has also been shown to help in understanding the evolution of frogs 18.

Since mitochondrial reads represent a significant proportion of reads (up to 25%) in
Next-Generation whole genome sequencing data, they can be considered one of the
most extensively sequenced genomes in eukaryotes 19. In human specific context, they
can be segregated from the sequencing data and leveraged to build mitochondrial Pan
genomes 20, study heteroplasmy 1, 12, and the hypermutation process 21. Human mito-
chondrial genome sequences are also used to analyze human lineages and migration
trends 22, 23, study population genetics 24, research human mitochondrial illnesses 25,
and conduct forensic science research 26. It is a mainstay in forensic research as some
locations of mtDNA evolve 5–10 times faster than nuclear genes, and these regions are
routinely typed in forensic studies 27. Furthermore, having access to multiple mitoge-
nomes allows us to conduct large-scale comparative research 19.

Mitochondrial genomes have been assembled using various methods, and in this
study, we specifically focus on assembling human mitochondrial genomes. Typically,
two main approaches are involved in deriving a mitochondrial genome from whole-
genome sequencing (WGS) data: The first approach is reference genome mapping
to extract mitochondrial reads from the sequencing data, followed by assembly and
resolution of the specific circular structure 28, 29. This can be achieved by mapping
the reads to the current reference mitochondrial genome (rCRS). The reference-based
category has the benefit of requiring less memory and running time. The second
strategy, also known as de novo assembly, uses increased coverage of reads coming

Page 3 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

from the mitochondria and therefore does not rely on the existence of a reference
genome 30. The most common reads may be extracted using a k-mer analysis. One
of the mitochondrial genome assembling tools utilizing the k-mer-based approach is
MitoZ 31. These approaches have the benefit of being widely applicable as they can
be utilized in assembling genomes of novel species. However, nuclear-embedded
mitochondrial DNA sequences (NUMTs) 32, the mitochondrial DNA sequences inte-
grated into the nuclear genome, present a significant challenge in the de novo assem-
bly. The inherent sequence similarity between NUMTs and mitochondrial DNA can
cause misassignments of reads during the assembly process, leading to excessive
runtimes and a higher likelihood of generating fragmented mitochondrial assem-
blies. A hybrid strategy, for instance, utilized by NOVOPlasty 33, combines the two
approaches mentioned above by concurrently assembling the reads based on k-mers
and utilizing a mitochondrial reference gene as a seed. The benefit of the seed-and-
extend category is that it can be used for any known species; all that is required, in
addition to the paired-end reads in FASTQ format, is a brief seed sequence of that
species or any closely related species. However, because of the read length limitation
offered by short-read sequencing, it struggles to decode repetitive regions seen in
some mitochondrial genomes 34.

Purpose and scope of this study

Though several tools were developed for mitogenome assembly, this study, for the
first time, evaluates the performance and efficacy of open-source command-line tools
currently available for performing de novo and reference-based assembly from raw
genomic data for human mitochondrial genomes. Benchmarking online servers for
human mitochondrial assembly is beyond the scope of the present study. Further, we
limited our benchmark to readily configurable tools, straightforward to install and
actively maintained. We restrict the input to paired-end Illumina data as contempo-
rary sequencing technologies often produce them.

We tested all the tools on six publicly available human datasets with various down-
sampling rates and simulated datasets. In this study, we have observed that the per-
formance of the majority of tools was enhanced considerably by downsampling the
sequencing data to an average sequencing depth of 10X. We also believe that the per-
formance of some tools can be improved by fine-tuning their parameters. However,
this was beyond the scope of this study.

Methodology
Data availability

Docker images of all the tools used in this study have either been present or deposited
on Dockerhub 35, and all the tools are hosted on GitHub (Table 1).

Simulated data have been used to collect the run metrics for various run param-
eters, and the guidelines for computational benchmarking have been followed while
conducting this study 36.

Page 4 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Table 1 Information about the mitochondrial genome assemblers utilized in this study

Tool Source
repository

Links for
docker
images
available
online

Reference
genome
dependency

Main
approach

Programming
language

License Miscellaneous
features

Multithreading
support

Input data

ARC https://
github.
com/ ibest/
ARC. git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/ arc_
docker/

Yes Mapping
to the
reference
genome
followed
by de novo
assembly.

Python 2 Apache
License
2.0

NA Yes Paired-End
Illumina
Fastq Files
(Unzipped)

GetOrga-
nelle

https://
github.
com/ Kingg
erm/ GetOr
ganel le. git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
getor
ganel le_
docker/

Yes Mapping
to the
reference
genome
followed
by de novo
assembly.

Python 3 GNU GPL
v3.0

NA Yes Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

IOGA https://
github.
com/ holmr
enser/ IOGA.
git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
ioga_
docker/

Yes Mapping
to the
reference
genome
followed
by de novo
assembly.

Python 2 GNU
Affero
GPL v3.0

NA Yes Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

MEANGS https://
github.
com/
YanCC scu/
MEANGS.
git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
meangs_
docker/

No De novo
Assembly

Python 3 GNU GPL
v3.0

NA Yes Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

MITObim https://
github.
com/ chris
hah/ MITOb
im. git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
mitob im_
docker/

Yes Mapping
to the
reference
genome
followed
by de novo
assembly.

Perl MIT
LICENSE

NA No Paired-End/
Single-End
Illumina
Fastq Files
(Paired-End
should be
Interleaved
and
Unzipped)

https://github.com/ibest/ARC.git
https://github.com/ibest/ARC.git
https://github.com/ibest/ARC.git
https://github.com/ibest/ARC.git
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://hub.docker.com/repository/docker/nirmal2310/arc_docker/
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://github.com/Kinggerm/GetOrganelle.git
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://hub.docker.com/repository/docker/nirmal2310/getorganelle_docker/
https://github.com/holmrenser/IOGA.git
https://github.com/holmrenser/IOGA.git
https://github.com/holmrenser/IOGA.git
https://github.com/holmrenser/IOGA.git
https://github.com/holmrenser/IOGA.git
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://hub.docker.com/repository/docker/nirmal2310/ioga_docker/
https://github.com/YanCCscu/MEANGS.git
https://github.com/YanCCscu/MEANGS.git
https://github.com/YanCCscu/MEANGS.git
https://github.com/YanCCscu/MEANGS.git
https://github.com/YanCCscu/MEANGS.git
https://github.com/YanCCscu/MEANGS.git
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://hub.docker.com/repository/docker/nirmal2310/meangs_docker/
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://github.com/chrishah/MITObim.git
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitobim_docker/

Page 5 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Table 1 (continued)

Tool Source
repository

Links for
docker
images
available
online

Reference
genome
dependency

Main
approach

Programming
language

License Miscellaneous
features

Multithreading
support

Input data

MitoFlex https://
github.
com/ Pruno
ideae/ MitoF
lex. git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
mitof ex_
docker/

No De novo
assembly

Python 3 GNU GPL
v3.0

Genome anno-
tation

No Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

MitoZ https://
github.
com/ linzh
i2013/
MitoZ. git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
mitoz_
docker/

No De novo
assembly

Python 3 GNU GPL
v3.0

Genome anno-
tation

Yes Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

MToolBox https://
github.
com/ mitoN
GS/ MTool
Box. git

NA Yes Mapping
to the
reference
genome
followed
by de novo
assembly.

Python 2 GNU GPL
v3.0

Haplogroup
Prediction, Vari-
ant Calling

Yes Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

NOVO-
Plasty

https://
github.
com/ ndier
ckx/ NOVOP
lasty. git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
novop
lasty_
docker/

Yes Seed and
extend
approach

Perl NA NA No Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

(Can be a
single gene
sequence)

ORG.Asm https:// git.
metab arcod
ing. org/ org-
asm/ org-
asm. git

https://
hub.
docker.
com/
repos
itory/
docker/
nirma
l2310/
org- asm_
docker/

Yes Seed and
extent
approach

Python 3 CeCILL
LICENSE

NA No Paired-End/
Single-End
Illumina
Fastq Files
(Can be
Gzipped)

(Can be a
single gene
sequence)

Detailed information about the mitochondrial assemblers used in this study has been given in Table 1. The Docker container
for MToolBox is unavailable via Docker Hub but can be built locally using the Docker file provided in the GitHub repository:
https:// github. com/ Nirma l2310/ Mitoc hondr ial_ Bench marki ng_ study. The information about GitHub commits for the tools
has been provided in Additional file 2: Table S6

https://github.com/Prunoideae/MitoFlex.git
https://github.com/Prunoideae/MitoFlex.git
https://github.com/Prunoideae/MitoFlex.git
https://github.com/Prunoideae/MitoFlex.git
https://github.com/Prunoideae/MitoFlex.git
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoflex_docker/
https://github.com/linzhi2013/MitoZ.git
https://github.com/linzhi2013/MitoZ.git
https://github.com/linzhi2013/MitoZ.git
https://github.com/linzhi2013/MitoZ.git
https://github.com/linzhi2013/MitoZ.git
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://hub.docker.com/repository/docker/nirmal2310/mitoz_docker/
https://github.com/mitoNGS/MToolBox.git
https://github.com/mitoNGS/MToolBox.git
https://github.com/mitoNGS/MToolBox.git
https://github.com/mitoNGS/MToolBox.git
https://github.com/mitoNGS/MToolBox.git
https://github.com/ndierckx/NOVOPlasty.git
https://github.com/ndierckx/NOVOPlasty.git
https://github.com/ndierckx/NOVOPlasty.git
https://github.com/ndierckx/NOVOPlasty.git
https://github.com/ndierckx/NOVOPlasty.git
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://hub.docker.com/repository/docker/nirmal2310/novoplasty_docker/
https://git.metabarcoding.org/org-asm/org-asm.git
https://git.metabarcoding.org/org-asm/org-asm.git
https://git.metabarcoding.org/org-asm/org-asm.git
https://git.metabarcoding.org/org-asm/org-asm.git
https://git.metabarcoding.org/org-asm/org-asm.git
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://hub.docker.com/repository/docker/nirmal2310/org-asm_docker/
https://github.com/Nirmal2310/Mitochondrial_Benchmarking_study

Page 6 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Tool selection

In this study, we have only included those tools for assembling a mitochondrial genome
that uses Short Paired End Reads. Tools must be available as open source and must
allow command-line execution. Only tools that offered command line interface (CLI)
were open-source and were actively maintained were included. Tools having graphical
user interfaces weren’t included in the study since they couldn’t be used to automate
the assembly of tens of thousands of samples. The tools that met all criteria mentioned
above are listed below:

ARC v1.1.4-beta 37, Get-Organelle v1.7.5.1 38, MEANGS v1.0.1 39, IOGA 40, MITO-
bim v1.9.1 41, MitoZ v2.3 31, NOVOPlasty v4.3.1 33, MToolBox v1.2 29, MitoFlex v0.2.9
42 and ORG.Asm v2.2 43.

These assemblers have been successfully used in assembling organelle genomes of var-
ious species [44–46; however, we are focusing on the performance of these assemblers
for assembling human mitochondrial genomes.

Some CLI-based tools that couldn’t be part of this study include Organelle PBA
47, Norgal 30 and mitoMaker 48. Organelle PBA is designed to deal with long reads
sequencing data generated by PacBio technology. Norgal and mitoMaker failed initial
testing of assembling mitochondrial genomes and hence were excluded from the study.
Similarly, web-based GUI-based SMART 49 software is also available but doesn’t fulfil
this study’s scope.

Our setup

We used default parameter settings to compare all of the assembly tools equitably. The
input sequencing data included a pair of FASTQ files, one representing forward (R1.
fastq) and the other representing reverse (R2.fastq) read. The output files generated
were named after the tool that produced them. Additionally, we created separate conda
50 environments for each tool. Finally, to get the run metrics for each run (CPU usage,
memory usage etc.), we generated docker images for each tool based on Ubuntu 18.04
base image preloaded with all the dependencies and software. The benchmark was per-
formed on an AMD EPYC 7502 processor with 32 cores and 512 GB RAM.

Data

Simulated data

We simulated reads based on the human mitochondrial genome retrieved from
the recently published complete human genome 51 (GenBank accession number
CP068254.1) to avoid errors produced by sequencing runs and biological variation. To
generate these perfect reads, we used InSilicoSeq NGS simulator 52 with the Novaseq
error model (150 bp paired) and various coverage models offered by the simulator using
the –coverage parameter. Previous studies suggest that 53 whole genome sequencing
results in a mean read depth between 1200 and 4000X for the mitochondrial genome.
The high coverage for mitochondrial reads is due to a cell’s high copy numbers of the
mitochondrial genome. Hence, we generated simulated data containing 115 K, 175 K
and 225 K numbers of reads to get the mean depth of 2000X, 3000X, 4000X respectively.

Page 7 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Real data

We selected six whole genome sequencing datasets (NA12877, NA12878, NA12889,
NA12890, NA12891, NA12892) from the study "Whole genome sequencing and vari-
ant calls from Coriell CEPH/UTAH 1463 family to create a platinum standard compre-
hensive set for variant calling improvement" 54, sequenced by Illumina Cambridge Ltd.
with the sequencing depth varying from 46 to 55X. We down-sampled the six paired-
end FASTQ files for further analysis to a mean sequencing depth of 10X, 20X, 30X and
40X, respectively.

Evaluation criteria

Computational resources

We recorded each assembler’s peak CPU and memory load and the size of the assembly
files. All assembly tools were run on our docker image configuration using 2, 4, 8, and 16
threads for various simulated data sets (115 K, 175 K, and 225 K reads).

Besides, we observed that several tools used more threads than were specified dur-
ing the initial run, so we used the –cpu argument of the docker run command to reduce
the overhead. We estimated each configuration’s memory consumption and CPU usage
using the docker stats command, which produces a live stream of a container’s runtime
metrics.

Qualitative

The qualitative assessment of all the tools used in this study was based on the Journal of
Open-Source Software (JOSS) 55 reviewer guidelines. The evaluation was done based on
the following questions:

1. Are the tools easy to install?
2. Is there proper documentation for running the tool or a test dataset to check the

installation?
3. Is the tool well maintained (issues answered, continuous update)?
4. Is the tool Open Source?

These questions were answered "good", "bad", and "okay" based on the experience
while installing and running the tool. If the tool is available as a CONDA package, bun-
dled into a container, or has pre-compiled binaries, that tool will be considered "good".
An "okay" installation tag would refer to a scenario where a custom script is available
to download and compile all the dependencies needed for the tool. However, a tool is
tagged "bad" when the tool is unable to install using improper and insufficient documen-
tation and requires intensive debugging and dependencies resolution. Detailed informa-
tion about the criteria for these evaluations has been explained in Additional file 1.

Quantitative

For assessing the quality of the genomes assembled by each assembler, we used the
scoring scheme used by Freudenthal et al.44 . In this study, the authors compared
assembling tools for chloroplast genomes. Since mitochondrial genomes are also

Page 8 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

extra-chromosomal, we found it appropriate to use the same method for mitochondrial
genomes. This scoring scheme contains four metrics, each contributing one-fourth of
the total score: completeness, correctness, repeat resolution and continuity.

To estimate the completeness of the assembled mitochondrial genome, the coverage
of the assembled mitochondrial genome with respect to the reference genome was cal-
culated (COVref). The assembled mitochondrial genome was aligned with the reference
mitochondrial genome (GenBank accession number CP068254.1) using minimap2 v2.17
56, and the coverage was calculated using bedtools v2.30.0 genomecov module 57. This
metric represents how many bases in the assembled genome are mapped to the refer-
ence genome. The second metric, correctness, was calculated by mapping reference to
the assembled genome and calculating the coverage (COVquery). Repeat resolution was
calculated using {min (COVquery/COVref, COVref/COVquery)}, representing the difference
between the length of the assembled genome and the reference genome. The number of
contigs estimated the fourth metric continuity; the higher the number of contigs lower
the continuity. We also applied this scoring schema on the assemblies generated using
the down-sampled data to gauge if down-sampling is improving the performance of the
assemblers or not. For downsampling the raw sequencing data, the reformat.sh module
of bbtools (v. 37.62) 58 was used. The final assemblies were also compared with the refer-
ence mitochondrial genome using QUAST v5.0.2 59 since it is a well-known assessment
tool for the assemblies. The perfect assemblies obtained by calculating the score using
Eq. 1 were assessed for misassemblies, INDELs and mismatches, and the resulting met-
rics are stored in Additional file 2: Table S7.

We sought to determine whether the assembled mitochondrial genomes had any vari-
ations or were identical to the reference we provided since most of these assemblers are
reference-based. Only Single Nucleotide Polymorphisms (SNPs) were probed for in the
assembled genomes in this work, and they were compared with variants obtained from
the raw sequencing data. The SNPs were called from raw sequencing data using Mut-
serve (v.2.0.0-rc13) 60, given its accuracy for mitochondrial variant calling as assessed
in a benchmark study of mitochondrial variant calling tools 61. Mutserve utilizes the
mapped bam file and calls SNPs while comparing the mapped reads with the reference
mitochondrial genome. The SNPs from the assembled genomes were called using the
show-snps utility of MUMmer (v.3.1) 62. The output of show-snps was converted to a
VCF file using all2vcf63 . Lastly, we compared the SNPs from the assembled genomes
with those from the raw sequencing data using bedtools intersect to get the True Posi-
tive, False Positive and False Negative metrics. These metrics were used to calculate the
F1-score, the harmonic mean of precision and recall for each assembler to assess their
variant retaining performance.

True Positive (TP): SNPs common in both analyses.
False Positive (FP): SNPs are only listed in the MUMmer output.
False Negative (FN): SNPs are only listed in the Mutserve output.

(1)SCORE =
1

4
COVref + COVqry +min

COVqry

COVref
,
COVref

COVqry
+

1

Ncontigs

Page 9 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Results
Performance metrics

All of the short-read assemblers examined in this study were compared regarding execu-
tion time, memory requirement, and CPU utilization.

Time requirements

Significant differences in total execution time were observed for the same input data
across the different tools (Fig. 1). Aside from tool differences, input data and the number
of threads used significantly impacted the time required; the execution time ranged from
1.15 min for MitoFlex to 1.032 h for IOGA. For the highest computational setting of 16
computational threads with the simulated dataset of 4000X read depth, IOGA took an
execution time of approximately 39 min, whereas MitoFlex took approximately 1.3 min.
This trend of IOGA taking the longest execution time and MitoFlex taking the least

(2)Precision =
True Positives

True Positives + False Positives

(3)Recall =
True Positives

True Positive + False Negatives

(4)F1 Score = 2 ∗ (
precision ∗ recall

precision+ recall
)

115K
175K

225K

ARC GetOrganelle IOGA MEANGS Mitobim MitoFlex MitoZ MToolBox Novoplasty Org.Asm

4

5

6

7

8

4

5

6

7

8

4

5

6

7

8

Assembler

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

) i
n

Lo
g

Sc
al

e

Threads
2
4
8
16

Fig. 1 Computation time depending on the number of threads and size of input data. The box and swarm
plots depict the differences in run time for various thread counts and input data sizes for the ten assemblers.
MitoFlex took the least execution time, utilizing 16 computational threads, followed by GetOrganelle and
NOVOPlasty. However, IOGA took the longest time to assemble mitochondrial genomes irrespective of read
abundance or the number of threads specified

Page 10 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

execution time was consistent across all the other run settings. MitoFlex was followed
by GetOrganelle and NOVOPlasty in terms of execution time. Not all tested tools ben-
efited from having access to multiple computational threads. NOVOPlasty, ORG.Asm
and MITObim do not support multithreading.

Memory and CPU Usage

Based on the same input data set and thread count, the peak CPU and memory usage
and average CPU usage were recorded for all assemblers (Fig. 2). Most programs ben-
efited from more threads for the input data size. However, the increment in the CPU
threads increases the peak memory required in most cases. Again, for the same run set-
ting of 16 computational threads and a simulated dataset of 4000X read depth, IOGA
utilized the highest computational memory of 11.87 GB. In contrast, NOVOPlasty uti-
lized the least computational memory of approximately 0.17 GB. This trend of IOGA
utilizing the highest computational memory and NOVOPlasty utilizing the least compu-
tational memory was consistent across all the other run settings.

Qualitative

On average, the user experience, in terms of installation and running of the analyses,
was evaluated as "Good" for all the tools considered in this study. (Fig. 3).

115K
175K

225K

ARC GetOrganelle IOGA MEANGS Mitobim MitoFlex MitoZ MToolBox Novoplasty Org.Asm

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

Assembler

Pe
ak

 C
PU

 U
sa

ge

115K
175K

225K

ARC GetOrganelle IOGA MEANGS Mitobim MitoFlex MitoZ MToolBox Novoplasty Org.Asm

100

300

1000

100

300

1000

100

300

1000

Assembler

M
ea

n
C

PU
 U

sa
ge

Threads
2
4
8
16

115K
175K

225K

ARC GetOrganelle IOGA MEANGS Mitobim MitoFlex MitoZ MToolBox Novoplasty Org.Asm

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Assembler

Pe
ak

 M
em

or
y

U
sa

ge
 (G

B)

Number of Reads
 115K
 175K
 225K

)B)A

C)

Fig. 2 Performance metrics of all the mitochondrial assemblers with simulated data as the input data. A Box
and Swarm Plots showing the peak CPU usage (1 Thread = 100%) for all the assemblers at various input data
sizes and the number of threads. The plot shows variation in the peak CPU usage with the number of threads
specified. B Box and Swarm plots of each assembler’s average CPU usage. The plots clearly show a difference
between mean and peak CPU usage, indicating that the assemblers do not use all of the threads provided
by the user throughout the entire run. C Box and Swarm Plots showing the peak memory usage for all the
assemblers at various input data sizes and the number of threads. An increase in the RAM requirement can be
seen with the increment in the input data size. Additional file 2: Table S1 provides detailed information on the
computational resources used by each tool for simulated datasets

Page 11 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Quantitative

For a quantitative evaluation, we tested the capacity of all programs to assemble the
human mitochondrial genome based on different input data. Input data were gener-
ated from the current reference mitochondrial genome or downloaded from sequenc-
ing repositories.

Simulated data

The datasets with various sequencing depths were simulated using the mitochon-
drial genome retrieved from the latest complete human genome sequence (T2T-
CH13). Assemblies obtained from the assemblers were compared with the reference

Fig. 3 Overview of the results of the qualitative usability evaluation. Each tool was categorized as GOOD,
BAD or OKAY based on specific metrics defining the ease of installation, test run, documentation and code
maintenance

60

70

80

90

100

ARC GetOrganelle IOGA MEANGS Mitobim MitoFlex MitoZ MToolBox Novoplasty Org.Asm
Assembler

Sc
or
e

Assembler
ARC
GetOrganelle
IOGA
MEANGS
Mitobim
MitoFlex
MitoZ
MToolBox
Novoplasty
Org.Asm

Fig. 4 Score of the mitochondrial assemblies produced using simulated datasets. The Box and Swarm Plot
describe the assemblies’ scores produced by the tools. The score was calculated based on the mapping
statistics of the assembly with the reference mitochondrial genome (Eq. 1). Except for MEANGS, all the other
tools generated high-quality mitochondrial assemblies (score > 99). Scores for all the assemblies generated
are given in Additional file 2 Table S2

Page 12 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

mitochondrial genome, and a score was calculated based on Eq. 1. Except for MEANGS,
all the other tools generated high-quality perfect assemblies (score ≥ 99) for every simu-
lated dataset (Fig. 4).

Publicly available datasets

The assemblies generated by the ten assemblers were scored based on their alignment
with the reference mitochondrial genome. We observed significant variation in the per-
formance of the tools considered in this study, among all the tools MToolBox, NOVO-
Plasty, and ORG.Asm assembled perfect genomes for all six samples (Fig. 5A). However,
since some of the tools failed to assemble the genomes for all six samples, we exam-
ined the impact of downsampling on their performance. Most of the assemblers dem-
onstrated higher quality and produced perfect assemblies at a sequencing depth of 10X,
confirming that downsampling the data enhances the performance of the assemblers
(Fig. 5). The UpSet plot, which compares the perfect assemblies generated by the assem-
blers, also illustrates the impact of downsampling. At a sequencing depth of 10X, most
assemblers produced high-quality assemblies for all six samples (Fig. 6).

It is noteworthy that ARC and MITObim did not produce perfect assemblies at any
sequencing depth (Table 2, Additional file 2: Table S4). The perfect assemblies were
compared with the reference mitochondrial genome using QUAST v5.0.2 to assess the
assemblies for misassemblies, INDELs and mismatches. Apart from the assemblies

0

25

50

75

100

ARC
Getorganelle

IOGA
MEANGS

Mitobim

MitoFlex

MitoZ
MToolBox

Novoplasty

Org.Asm

0

25

50

75

100

0

25

50

75

100

ARC
Getorganelle
IOGA
MEANGS
Mitobim
MitoFlex
MitoZ
MToolBox
Novoplasty
Org.Asm

sc
ore

0

25

50

75

100

A. B.

C. D.

sc
ore

sc
ore

sc
ore

ORIGINAL 40X Depth

htpeD X01htpeD X02

ARC
Getorganelle

IOGA
MEANGS

Mitobim

MitoFlex

MitoZ
MToolBox

Novoplasty

Org.Asm

ARC
Getorganelle

IOGA
MEANGS

Mitobim

MitoFlex

MitoZ
MToolBox

Novoplasty

Org.Asm

ARC
Getorganelle

IOGA
MEANGS

Mitobim

MitoFlex

MitoZ
MToolBox

Novoplasty

Org.Asm

Fig. 5 Comparing the effect of down sampling on the score of the mitochondrial assemblers. The bar and
swarm plots in Figures A, B, C, and D show the scores of the assemblies generated by the assemblers using
original data and down-sampled data of mean sequencing depth of 40X, 20X, and 10X, respectively. Most of
the tool’s performance increased for all six datasets at a sequencing depth of 10X

Page 13 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Org.Asm
Novoplasty
MToolBox
MitoFlex
MitoZ

MEANGS
IOGA

Getorganelle
0.0

0.5

1.0

1.5

2.0

In
te

rs
ec

tio
n

Si
ze

Org.Asm
Novoplasty
MToolBox
MitoFlex
MEANGS
IOGA
Getorganelle
MitoZ

0246

Set Size

In
te

rs
ec

tio
n

Si
ze

0.0

0.5

1.0

1.5

2.0

0246

Set Size

0.0

1.0

3.0

0246

Set Size
Org.Asm
Novoplasty
MToolBox
MitoFlex
MEANGS

IOGA

Getorganelle
MitoZ

In
te

rs
ec

tio
n

Si
ze

0246

Set Size
Org.Asm

Novoplasty
MToolBox
MitoFlex

MEANGS

IOGA

Getorganelle

MitoZ

0.0

3.0

1.0

In
te

rs
ec

tio
n

Si
ze

2.0

A BA

C D

htpeDX04LANIGIRO

10X Depth20X Depth

Fig. 6 Comparison of effect of down sampling on the perfect assemblies generated by the assemblers.
UpSet plot comparing perfect assemblies (score > 99) generated by different mitochondrial assemblers for
original samples and down-sampled to the sequencing depths of 40X, 20X and 10X, respectively. Most tools
produced high-quality assemblies for most datasets at a mean sequencing depth of 10X

Table 2 Scores of the assemblies generated by each mitochondrial genome assembler for samples
with a mean sequencing depth of 10X

Overall GetOrganelle, IOGA, MitoFlex, MToolBox, NOVOPlasty and ORG.Asm produced the perfect assemblies (score > 99)
for all six datasets, followed by MEANGS and MitoZ. MITObim and ARC failed to produce good-quality assemblies for these
datasets. Information about the scores obtained for the original, 40X and 20X sequencing data assemblies is available in the
Additional file 2: Table S4

Sr. no. Assembler Median IQR Perfect
assemblies

1 ARC 28.85 7.20 0

2 GetOrganelle 99.99 0.01 6

3 IOGA 99.98 0.03 6

4 MEANGS 99.97 0.19 5

5 MITObim 0 0.00 0

6 MitoFlex 99.99 0.001 6

7 MitoZ 99.97 1.58 4

8 MToolBox 100.00 0.00 6

9 NOVOPlasty 99.99 0.01 6

10 ORG.Asm 99.99 0.03 6

Page 14 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

obtained from MEANGS, no other assemblies showed misassemblies compared to
the reference mitochondrial genome. This information is available in Additional file 2:
Table S7.

Additional file 2: Table S3 details the number of reads, mitochondrial genome
sequence depth, and mean sequencing depth.

To assess the performance of the assemblers in capturing SNPs, we compared the
F1-score calculated for the perfect assemblies (Fig. 7). This plot demonstrates the impact
of downsampling on the resulting assemblies in terms of the F1 score, which combined
precision and recall. Most tools performed best at a downsampling sequencing depth of
10X in terms of F1-score.

Among the assemblers, MitoFlex and GetOrganelle performed the best at a sequenc-
ing depth of 10X, consistently capturing the SNPs across all samples with an average
F1-Score of 0.919. Additionally, MToolBox and NOVOPlasty performed consistently
across all samples with an average F1-score of 0.897 and 0.890, respectively. Among
these two, MToolBox consistently outperformed NOVOPlasty in capturing the SNPs
present in the mitochondrial genome as calculated by the F1-score.

Discussion
In this study, we evaluate the performance of ten short-read mitochondrial genome
assemblers for assembling the human mitochondrial genome. The weightage of assess-
ment criteria used in this study varies based on the downstream analysis. For instance,

10X
20X

30X
40X

O
riginal

Getorganelle IOGA MEANGS MitoFlex MitoZ MToolBox Novoplasty Org.Asm

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Assembler

F1
Sc

or
e

Assembler
Getorganelle
IOGA
MEANGS
MitoFlex
MitoZ
MToolBox
Novoplasty
Org.Asm

Fig. 7 Comparison of F1-scores for SNPs calling using the assembled genomes and using the sequencing
data. A box and swarm plot depicts F1-scores for precision and recall for SNPs calling using perfect
assemblies (Score ≥ 99) produced by the ten mitochondrial assemblies methods using MUMmer and the
original sequencing data using Mutserve. Overall, GetOrganelle and MitoFlex had the highest mean F1
scores (0.919) at the 10X sequencing depth, whereas MToolBox and NOVOplasty performed consistently
at all sequencing depths with a mean F1 score of 0.897 and 0.890, respectively. Detailed information about
precision, recall and other metrics are available in the Additional file 2: Table S5

Page 15 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

when the sample size is modest, the run time parameter might not be all that useful.
Still, this becomes crucial when the ultimate objective is to assemble 100 or 1000 mito-
chondrial genomes. Thus, the primary evaluation criterion for a tool is whether it can
generate quality assemblies; otherwise, if the tool is not functioning correctly, all other
criteria are irrelevant. This study used the default parameters or parameters advised to
be altered in the documentation. Recommendations regarding parameter usage made
by developers and past users in the GitHub issues were also used, if required, after care-
ful consideration and are otherwise stated. While it is possible that adjusting other
advanced settings might lead to different results from these tools, the impact of such
configuration was not explored in the current study.

MToolBox, NOVOPlasty and ORG.Asm are the only tools that produce high-qual-
ity assemblies for all the samples with varying sequencing depths. Based on F1-score
MToolBox outperformed the other two tools with a mean F1-score of 0.897. Also, out
of these three tools, only MToolBox supported additional features like variant calling,
haplogroup detection etc., which can be utilized in many downstream analyses. Based
on these characteristics MToolBox achieved the best performance overall, followed by
NOVOPlasty. MitoFlex and GetOrganelle got the best performance overall in terms of
F1-score, with a mean F1-score of 0.91 for the samples with a mean sequencing depth of
10X. So, it is advantageous to utilize MitoFlex or GetOrganelle when dealing with low-
sequencing data.

Guidelines for the end‑user

From this study, we recommend that MToolBox may be used to reconstruct the mito-
chondrial genome from short-read whole genome sequencing data, especially if suffi-
cient computing power is available and the sequencing depth varies. Use NOVOPlasty,
the second-best tool, if MToolBox occasionally fails to produce the correct assembly. In
the case of samples with low sequencing depth, MitoFlex and GetOrganelle can be uti-
lized to get high-quality mitochondrial genome assemblies. Other options include man-
ually adjusting the tool’s parameters. Since NOVOplasty uses a single thread, running it
in parallel will result in a shorter run time and a higher success rate for a large sample
size.

Ideas for future development

The statistics of average CPU utilization make it abundantly evident that not all of the
tools in a mitochondrial assembly pipeline are making full use of the computational
resources allocated by the user. Ergo, one possibility for future improvement is to alter
the current tools to leverage the availability of computational resources. This will result
in a shorter run time, increasing throughput given large datasets. Since most of the
assemblers require other software to function, a decent strategy for future development
and distribution would be to either containerize all the tools using docker, singularity,
or conda package etc. or use workflow management languages such as Nextflow, Snake-
make that allow reproducibility and reduce hassle for end users.

Page 16 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Finally, given that long-read sequencing is mainstream nowadays (Nanopore® 64 and
PacBio® 65) and that the significant benefits of these technologies include repeat resolu-
tion 66 and identification of large structural variants 67, there is a need to develop tools
that can take full advantage of long reads to generate better mitochondrial genomes for
any species. Currently, only one reference-based assembler is available, Organelle_PBA,
that effectively leverages the benefits offered by PacBio sequencing reads to assemble the
organelle genomes. Furthermore, long-read sequencing has made remarkable progress,
from generating high error rates to producing high-quality (Q30) reads 68. Therefore,
moving forward, the most effective approach is to develop assemblers capable of har-
nessing high-quality long-read sequencing data to assemble the organelle genomes with
resolved repeats for any given species.

Conclusion
Whole genome sequencing data can be used to assemble mitochondrial genomes. The
assembled genomes can find their application in tracing maternal ancestry, human
migration and forensic analysis. Except for MToolBox, all the other tools explored in
this study can be used to assemble the mitochondrial genomes from other species’ whole
genome sequencing data. Still, in this study, we only focused on assembling human
mitochondrial genomes.

Nevertheless, this study demonstrates that not all techniques can assemble com-
plete mitochondrial genomes effectively, irrespective of the kind of data (real or
simulated) used as the input. The assemblies generated by MEANGS for simulated
datasets exhibited fragmentation, resulting in relatively poor assembly scores. How-
ever, all the assemblies successfully captured the human mitochondrial genome’s
protein-coding genes (PCGs). The developers of MEANGS suggested that gaps in the
assembly could be attributed to the low sequencing depth of the NGS data 39. How-
ever, in our study, the simulated datasets had mitochondrial sequencing depths rang-
ing from 1000 to 4000X, yet MEANGS still struggled to produce complete assemblies
like other tools. For WGS datasets of humans, Norgal and mitoMaker failed the initial
testing of assembling the mitochondrial genomes. Norgal exceeded the time limit of
24 h for completion, and the resulting assembly had a length of approximately 73 Kbs.
Similarly, mitoMaker didn’t finish under the time limit when executed with 16 com-
putational threads. Additional information regarding the failure of these two tools is
provided in Additional file 3.

Given the varying success among these tools, our study highlighted the merits and
drawbacks of each tool, enabling end users to make informed decisions. Further-
more, we have provided instructions to guide end users ineffectively utilizing these
tools for their specific needs. This assessment was weighted on various parameters
such as computational power, data size, run time and assembly quality. Our investi-
gation has led us to the conclusion that it is now feasible to reconstruct thousands
of mitochondrial genome assemblies using the available mitochondrial genome
assemblers.

Page 17 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05445-3.

Additional file 1. Details about the qualitative assessment of the human mitochondrial assemblers evaluated in this
study.

Additional file 2. An Excel spreadsheet containing Tables S1–S6. Table S1. Computational metrics including
run time, memory and CPU usage for simulated datasets. Table S2. Scores were calculated for the mitochondrial
assemblies generated by all ten tools using the simulated dataset. Table S3. Information about sequencing depth
and number of reads. Table S4. Scores were calculated for the mitochondrial assemblies based on publicly available
datasets, including the down-sampled data. Table S5. Detailed information about True Positives, False Positives,
Precision and other metrics. Table S6. Information about the Mitochondrial assemblers GitHub commits used in this
benchmark study. Table S7. Comparison of perfect assemblies of all the sequencing depths for each assembler with
the reference mitochondrial genome using QUAST.

Additional file 3. Details about the problems with Norgal and mitoMaker.

Acknowledgements
We thank Functional Genomics Lab (DBEB, IIT Delhi) for proofreading and editing the manuscript.

Author contributions
IG and RS conceived the concept. IG and DS supervised the findings. NSM ran and analyzed the benchmarking of all the
tools. All the authors wrote, read, and approved the final manuscript.

Funding
This work was supported by the funds from Intramural MFIRP grant by IIT Delhi MI02512G to IG and in part by a grant
from the (Department of Biotechnology (DBT)), Govt. of India (BT/GenomeIndia/2018) to DS.

Availability of data and materials
The Supplementary materials, including program codes, simulated datasets, assemblies and other metrics, are available
in the GitHub repository https:// github. com/ Nirma l2310/ Mitoc hondr ial_ Bench marki ng_ study. The raw sequencing
data used in this study is publicly available under the google cloud platform https:// conso le. cloud. google. com/ stora ge/
brows er/ genom ics- public- data/ plati num- genom es/ fastq? pageS tate= (% 22Sto rageO bject ListT able% 22: (% 22f% 22:% 22%
255B% 255D% 22)) & prefix= & force OnObj ectsS ortin gFilt ering= false.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Received: 25 January 2023 Accepted: 14 August 2023

References
 1. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and

disease. Nat Rev Genet. 2015;16:530–42.
 2. Anderson S, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.
 3. Lutz S, Weisser HJ, Heizmann J, Pollak S. mtDNA as a tool for identification of human remains. Identification using

mtDNA. Int J Legal Med. 1996;109:205–9.
 4. Calvo SE, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci

Transl Med. 2012;4:118ra10.
 5. Oota H, Saitou N, Matsushita T, Ueda S. Molecular genetic analysis of remains of a 2,000-year-old human population

in China-and its relevance for the origin of the modern Japanese population. Am J Hum Genet. 1999;64:250–8.
 6. Brown WM, Prager EM, Wang A, Wilson AC. Mitochondrial DNA sequences of primates: tempo and mode of evolu-

tion. J Mol Evol. 1982;18:225–39.
 7. Andrews RM, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA.

Nat Genet. 1999;23:147.
 8. Green RE, et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequenc-

ing. Cell. 2008;134:416–26.
 9. Behar DM, et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am J Hum Genet.

2012;90:675–84.

https://doi.org/10.1186/s12859-023-05445-3
https://github.com/Nirmal2310/Mitochondrial_Benchmarking_study
https://console.cloud.google.com/storage/browser/genomics-public-data/platinum-genomes/fastq?pageState=(%22StorageObjectListTable%22:(%22f%22:%22%255B%255D%22))&prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/genomics-public-data/platinum-genomes/fastq?pageState=(%22StorageObjectListTable%22:(%22f%22:%22%255B%255D%22))&prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/genomics-public-data/platinum-genomes/fastq?pageState=(%22StorageObjectListTable%22:(%22f%22:%22%255B%255D%22))&prefix=&forceOnObjectsSortingFiltering=false

Page 18 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

 10. Bandelt H-J, Kloss-Brandstätter A, Richards MB, Yao Y-G, Logan I. The case for the continuing use of the revised Cam-
bridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. J Hum
Genet. 2014;59:66–77.

 11. Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull. 2013;106:135–59.
 12. Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat

Rev Genet. 2021;22:106–18.
 13. Yao Y, et al. A simple method for sequencing the whole human mitochondrial genome directly from samples and

its application to genetic testing. Sci Rep. 2019;9:17411.
 14. Dhorne-Pollet S, Barrey E, Pollet N. A new method for long-read sequencing of animal mitochondrial genomes:

application to the identification of equine mitochondrial DNA variants. BMC Genom. 2020;21:785.
 15. Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol

Evol. 1989;4:6–11.
 16. Keith Barker F. Mitogenomic data resolve basal relationships among passeriform and passeridan birds. Mol Phylo-

genet Evol. 2014;79:313–24.
 17. Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences

among closely related species. Proc Biol Sci. 2003;270(Supple 1):S96-9.
 18. Kurabayashi A, Sumida M. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement

mechanisms, and evolutionary trends of duplicated and rearranged genes. BMC Genom. 2013;14:633.
 19. Smith DR. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief

Funct Genom. 2016;15:47–54.
 20. Wang T, et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature. 2022;604:437–46.
 21. Yuan Y, et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet.

2020;52:342–52.
 22. Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325:31–6.
 23. Alves-Silva J, et al. The ancestry of Brazilian mtDNA lineages. Am J Hum Genet. 2000;67:444–61.
 24. Denaro M, et al. Ethnic variation in Hpa 1 endonuclease cleavage patterns of human mitochondrial DNA. Proc Natl

Acad Sci USA. 1981;78:5768–72.
 25. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6:389–402.
 26. Budowle B, Allard MW, Wilson MR, Chakraborty R. Forensics and mitochondrial DNA: applications, debates, and

foundations. Annu Rev Genomics Hum Genet. 2003;4:119–41.
 27. Bruce MW, Allard MR, Wilson R. Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev

Genom Hum Genet. 2003;4:119–41.
 28. Lischer HEL, Shimizu KK. Reference-guided de novo assembly approach improves genome reconstruction for

related species. BMC Bioinform. 2017;18:1–12.
 29. Calabrese C, et al. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of

human mitochondrial variants in high-throughput sequencing. Bioinformatics. 2014;30:3115–7.
 30. Al-Nakeeb K, Petersen TN, Sicheritz-Pontén T. Norgal: extraction and de novo assembly of mitochondrial DNA from

whole-genome sequencing data. BMC Bioinform. 2017;18:510.
 31. Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization.

Nucleic Acids Res. 2019;47:e63.
 32. Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ. Numt, a recent transfer and tandem amplification of mitochondrial

DNA to the nuclear genome of the domestic cat. J Mol Evol. 1994;39:174–90.
 33. Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome

data. Nucleic Acids Res. 2017;45: e18.
 34. Lee YS, Kim W-Y, Ji M, Kim JH, Bhak J. MitoVariome: a variome database of human mitochondrial DNA. BMC Genom.

2009;10(Suppl 3):S12.
 35. Docker. https:// hub. docker. com/ repos itori es/ nirma l2310.
 36. Weber LM, et al. Essential guidelines for computational method benchmarking. Genome Biol. 2019;20:1–12.
 37. ARC: Assembly by Reduced Complexity (ARC). (Github).
 38. Jin J-J, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome

Biol. 2020;21:241.
 39. Song M-H, Yan C, Li J-T. MEANGS: an efficient seed-free tool for de novo assembling animal mitochondrial genome

using whole genome NGS data. Brief Bioinform. 2022;23:538.
 40. Bakker FT, et al. Herbarium genomics: plastome sequence assembly from a range of herbarium specimens using an

Iterative Organelle Genome Assembly pipeline. Biol J Linn Soc Lond. 2015;117:33–43.
 41. Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation

sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41:e129.
 42. Li J-Y, Li W-X, Wang A-T, Yu Z. MitoFlex: an efficient, high-performance toolkit for animal mitogenome assembly,

annotation, and visualization. Bioinformatics. 2021. https:// doi. org/ 10. 1093/ bioin forma tics/ btab1 11.
 43. ORG.Asm / ORG.Asm. GitLab https:// git. metab arcod ing. org/ org- asm/ org- asm.
 44. Freudenthal JA, et al. A systematic comparison of chloroplast genome assembly tools. Genome Biol. 2020;21:254.
 45. Yu R, et al. De novo assembly and comparative analyses of mitochondrial genomes in Piperales. Genome Biol Evol.

2023;15:evad041.
 46. Milián-García Y, et al. Mitochondrial genome sequencing, mapping, and assembly benchmarking for Culicoides spe-

cies (Diptera: Ceratopogonidae). BMC Genom. 2022;23:584.
 47. Soorni A, Haak D, Zaitlin D, Bombarely A. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial

genomes from PacBio DNA sequencing data. BMC Genom. 2017;18:49.
 48. Schomaker-Bastos A, Prosdocimi F. mitoMaker: a pipeline for automatic assembly and annotation of animal mito-

chondria using raw NGS data. (2018) https:// doi. org/ 10. 20944/ prepr ints2 01808. 0423. v1
 49. Alqahtani F, Măndoiu II. Statistical mitogenome assembly with RepeaTs. J Comput Biol. 2020;27:1407–21.
 50. Conda — conda documentation. https:// docs. conda. io/ en/ latest/.

https://hub.docker.com/repositories/nirmal2310
https://doi.org/10.1093/bioinformatics/btab111
https://git.metabarcoding.org/org-asm/org-asm
https://doi.org/10.20944/preprints201808.0423.v1
https://docs.conda.io/en/latest/

Page 19 of 19Mahar et al. BMC Bioinformatics (2023) 24:341

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 51. Nurk S, et al. The complete sequence of a human genome. Science. 2022;376:44–53.
 52. Gourlé H, Karlsson-Lindsjö O, Hayer J, Bongcam-Rudloff E. Simulating Illumina metagenomic data with InSilicoSeq.

Bioinform. 2019;35:521–2.
 53. Watson E, Davis R, Sue CM. New diagnostic pathways for mitochondrial disease. J Transl Genet Genom. 2020.

https:// doi. org/ 10. 20517/ jtgg. 2020. 31.
 54. BioProject. https:// www. ncbi. nlm. nih. gov/ biopr oject/ PRJEB 3381.
 55. Review criteria — JOSS documentation. https:// joss. readt hedocs. io/ en/ latest/ review_ crite ria. html.
 56. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
 57. Quinlan AR, Hall IM. BEDTools: a fexible suite of utilities for comparing genomic features. Bioinformatics.

2010;26:841–2.
 58. BBMap. SourceForge https:// sourc eforge. net/ proje cts/ bbmap/ (2022).
 59. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics.

2013;29:1072–5.
 60. Weissensteiner H, et al. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in

the cloud. Nucleic Acids Res. 2016;44:W64–9.
 61. Ip EKK, et al. Benchmarking the effectiveness and accuracy of multiple mitochondrial DNA variant callers: practical

implications for clinical application. Front Genet. 2022;13:692257.
 62. Marçais G, et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:e1005944.
 63. GitHub - MatteoSchiavinato/all2vcf: Toolkit to convert the output of common variant calling programs to VCF.

GitHub https:// github. com/ Matte oSchi avina to/ all2v cf
 64. Oxford Nanopore technologies. Oxford Nanopore Technologies https:// nanop orete ch. com/
 65. PacBio - sequence with confidence. PacBio https:// www. pacb. com/ (2015)
 66. Amarasinghe SL, et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol.

2020;21:30.
 67. Begum G, et al. Long-read sequencing improves the detection of structural variations impacting complex non-

coding elements of the genome. Int J Mol Sci. 2021;22:2060.
 68. Kovaka S, Ou S, Jenike KM, Schatz MC. Approaching complete genomes, transcriptomes and epi-omes with accu-

rate long-read sequencing. Nat Methods. 2023;20:12–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.20517/jtgg.2020.31
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB3381
https://joss.readthedocs.io/en/latest/review_criteria.html
https://sourceforge.net/projects/bbmap/
https://github.com/MatteoSchiavinato/all2vcf
https://nanoporetech.com/
https://www.pacb.com/

	A systematic comparison of human mitochondrial genome assembly tools
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	General introduction
	Purpose and scope of this study

	Methodology
	Data availability
	Tool selection
	Our setup
	Data
	Simulated data
	Real data

	Evaluation criteria
	Computational resources

	Qualitative
	Quantitative

	Results
	Performance metrics
	Time requirements
	Memory and CPU Usage
	Qualitative
	Quantitative
	Simulated data
	Publicly available datasets

	Discussion
	Guidelines for the end-user
	Ideas for future development

	Conclusion
	Anchor 32
	Acknowledgements
	References

