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Abstract 

Background: Prediction of drug–target interaction (DTI) is an essential step for drug 
discovery and drug reposition. Traditional methods are mostly time-consuming 
and labor-intensive, and deep learning-based methods address these limitations 
and are applied to engineering. Most of the current deep learning methods employ 
representation learning of unimodal information such as SMILES sequences, molecu-
lar graphs, or molecular images of drugs. In addition, most methods focus on feature 
extraction from drug and target alone without fusion learning from drug–target inter-
acting parties, which may lead to insufficient feature representation.

Motivation: In order to capture more comprehensive drug features, we utilize 
both molecular image and chemical features of drugs. The image of the drug mainly 
has the structural information and spatial features of the drug, while the chemical 
information includes its functions and properties, which can complement each other, 
making drug representation more effective and complete. Meanwhile, to enhance 
the interactive feature learning of drug and target, we introduce a bidirectional multi-
head attention mechanism to improve the performance of DTI.

Results: To enhance feature learning between drugs and targets, we propose a novel 
model based on deep learning for DTI task called MCL-DTI which uses multimodal 
information of drug and learn the representation of drug–target interaction for drug–
target prediction. In order to further explore a more comprehensive representa-
tion of drug features, this paper first exploits two multimodal information of drugs, 
molecular image and chemical text, to represent the drug. We also introduce to use 
bi-rectional multi-head corss attention (MCA) method to learn the interrelationships 
between drugs and targets. Thus, we build two decoders, which include an multi-head 
self attention (MSA) block and an MCA block, for cross-information learning. We use 
a decoder for the drug and target separately to obtain the interaction feature maps. 
Finally, we feed these feature maps generated by decoders into a fusion block for fea-
ture extraction and output the prediction results.

Conclusions: MCL-DTI achieves the best results in all the three datasets: Human, C. 
elegans and Davis, including the balanced datasets and an unbalanced dataset. The 
results on the drug–drug interaction (DDI) task show that MCL-DTI has a strong gener-
alization capability and can be easily applied to other tasks.
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Introduction
Prediction of drug–target interactions (DTIs) is an essential step for drug discovery (i.e., 
to find new candidate drugs) and drug reposition (i.e., to find new indications for exist-
ing drugs). Drugs play an important role in the human body by interacting with mul-
tiple targets [1]. Proteins represent an important type of targets whose function can 
be enhanced or inhibited by drugs to achieve phenotypic effects for clinical therapeu-
tic purposes [2]. However, traditional experiments to obtain drug candidates through 
bioanalysis typically take 10–15 years and cost approximately 1 billion dollars from 
introducing the abstract concept to release into the market [3]. Large number of compu-
tational approaches are proposed for this task aim to mitigate the costs and risks of drug 
development.

Over the past decades, many computational methods have been widely applied to pre-
dict DTIs [4–8]. These computational methods can be mainly divided into three groups: 
docking-based methods [9, 10], ligand-based methods [11, 12], and chemogenomic-
based methods [2, 4]. Docking-based methods cannot be applied if the 3D structure 
information for many target proteins is unknown. Ligand-based methods will not be 
suitable when the number of known ligands is limited or few. The chemogenomic-based 
methods overcome the limitations by utilizing the chemical and genomic information of 
drugs and targets that are available in many online public databases. Currently, machine 
learning and deep learning approaches are very popular. Several studies [7, 13–17] have 
summarized the progress of ML and DL methods in DTI prediction tasks. Traditional 
machine learning methods include network-based methods [18–22], clustering-based 
methods [23], kernel-based methods [24–28], and matrix factorization-based methods 
[29–33].

Deep learning approaches generally treat the DTI task as a binary classification task 
by first learning the embedded representations of the drug and target separately and 
then connecting them for prediction. In the DTI task, according to the representation of 
drugs and proteins, we can categorize the mainstream deep learning methods into three 
groups, sequence-based methods, graph-based methods, and image-based methods.

Sequence-based approaches are more common. DeepDTA [34] uses a convolutional 
neural network to learn drug and protein sequence features, DrugVQA [35] uses a 
bi-directional long-short time memory network (BiLSTM) for feature extraction of 
sequence information, and TransformerCPI [36] builds a transformer architecture with 
a self-attention mechanism. The main idea of these methods is to construct neural net-
works to learn useful information from drug and target sequences for DTI task. Mol-
trans [37] propose an innovative FCS (Frequent Subsequence Algorithm) algorithm to 
decompose protein and compound sequences. By employing an augmented transformer, 
they successfully capture the semantic characteristics of substructures from a large vol-
ume of unlabeled biomedical texts. DeepCDA [38] combines CNN and LSTM to encode 
protein and compound sequences, and proposes a bidirectional attention mechanism 
to encode the intensity of their interaction. In order to solve the problem of sampling 
test and training data from different distribution domains, DeepCDA [38] also utilizes 



Page 3 of 19Qian et al. BMC Bioinformatics          (2023) 24:323  

adversarial domain adaptation methods to learn the feature encoder network in the test 
domain.

Graph-based neural networks have become a prominent approach for extracting 
abstract features of drug. The RDKIT toolkit can transform the drug into graph struc-
tures, enabling the application of graph neural networks (GNN) in the CPI task [39]. 
GraphCPI [40] and GraphDTA [41] adopts Graph Convolutional Networks (GCN) to 
perform convolutional operations on compound graph structures. LGDTI [42] is based 
on large-scale graph representation learning to predict DTI. Compared with the existing 
graph based neural network methods, LGDTI adopts a unique method to extract the 
potential graph features of drugs and targets in complex biological network by using two 
different graph representation learning methods. FuHLDR [43] is a novel graph repre-
sentation learning model for drug repositioning, which effectively integrates high-level 
and low-level biological information. It provides a new solution for constructing hetero-
geneous information networks for DTI tasks to improve prediction accuracy.

Image-based methods were previously underappreciated. Image-based approach to 
extract useful features from molecular images of drugs. PWO-CPI [44] constructs a 
CNN model to learn the features in molecular images as the embedding representation 
of the drug and uses word2vec [45] model learn the protein sequences.

These methods only considered single modal information of the drug, such as SMILES 
sequences, molecular graphs or molecular images. Huang et al. [46] worked out to the 
conclusion that the richer the variety of modalities, the more accurate the estimation of 
the representation space with sufficient training data. In order to obtain more compre-
hensive features of drugs, some researchers also use both the sequence and graph struc-
ture of drugs to achieve DTI tasks, such as SSGraphCPI [47]. This method can obtain 
effective information from the two modalities of drugs, which can effectively improve 
the effectiveness. In the field of computer vision, multimodal techniques are also widely 
used for various tasks, such as visual Question Answering, Image Caption, Referring 
Expression Comprehension and Visual Dialogue [48, 49]. In tasks such as DTI and 
interaction prediction, few people consider the combination of drug images and other 
information. Therefore, we will further discuss whether fusing and enhancing multiple 
modal information have improved drug and target embedding representation. In addi-
tion, TripletMultiDTI [50] is also a new multimodal DTI method, which designs a new 
architecture that integrates multimodal knowledge to predict affinity labels. At the same 
time, it also proposes a new loss function based on the triplet loss, making the model 
perform better. TranSynergy  [51]  designs  an enhanced deep learning model based on 
knowledge and self attention machine mechanism to predict collaborative drug combi-
nations, effectively improving the performance and interpretability of collaborative drug 
combination prediction.

In our previous work PWO-CPI [44], we have shown that the features of drug image 
can be well used for the task of DTI. In addition, the information contained in a sin-
gle image is not sufficient to fully characterize the drug. We want to introduce chemical 
properties that are valuable for understanding compounds. Therefore, we propose that 
combining the images of compounds and chemical features of drugs can lead to a more 
comprehensive abstract characterization of drugs, which can enhance the DTI results.
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Cross-attention mechanisms are often used in image description generation, visual 
questioning and answering, where it can cross-learn features from multiple modali-
ties. This cross-attention mechanism enhances the expressive power of feature repre-
sentation by introducing an attention mechanism to dynamically adjust the association 
weights between multimodal features, thus realizing effective feature fusion and interac-
tion. Therefore, this paper proposes to introduce the cross-attention mechanism into the 
learning of drugs and targets features, so that the cross-learning of the above two fea-
tures can be realized to extract the correlation relationship between the two, which helps 
to improve the performance of the DTI task.

In general, the main contributions of this paper are as follows:

• In this study, we introduce a novel approach by integrating the multimodal informa-
tion of compound images and chemical text information as input features for drugs. 
We can extract more comprehensive drug features from both modalities, which are 
effectively used for DTI tasks.

• An innovative method of bi-directional cross-attention learning is proposed. This 
bi-directional cross-attention learning mechanism can learn deeper semantic rela-
tionships between drugs and targets, capturing more useful interaction features to 
enhance DTI prediction effects.

• Improved predictive performance over state-of-the-art baselines on three public 
datasets with different scales. The DTI experimental results demonstrate the effec-
tiveness of the method. The excellent results on the DDI task demonstrate the gener-
alization of the method proposed in this paper.

Method
Overall workflow

DTI can be regarded as a classification problem, inputting drugs and targets into the 
model to predict where the two will interact with each other. If there is an interaction 
between the two, output 1, otherwise output 0. The method proposed in this paper 
inputs drug multimodal information as well as the FASTA sequence of the target into 
the model, and the predictive goal of the model is to output whether the two interact. 
The architecture of the MCL-DTI model is shown in Fig.  1. The whole model mainly 
consists of four modules: feature encoder module, feature decoder module, feature 
fusion module, and classifier. We use the Rdkit toolkit to obtain images and chemical 
features of drugs from SMILES sequences, used as multimodal representations of the 
drug. We input the multimodal representations of the drug and the sequence represen-
tation of the target into the feature extraction module, obtain the high-level abstract 
features of them respectively, and then feed them into the feature decoder module. The 
feature decoder module consists of independent drug decoder and target decoder, which 
are composed of MCA (Multi-head Cross Attention) Block and MSA (Multi-head Self 
Attention) Block. The feature decoder module can effectively decode the information of 
the drug and target as well as the interaction information between them. After the fea-
ture decoder, we send the two obtained feature maps to the feature fusion module, and 
then a classifier to get the final prediction result. We will describe each module in detail 
in the next few sections.
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Feature encoder module

To better capture the drug features, we input the image and the chemical features text 
of the drug. For drug image, we construct a CNN backbone Conv similar to PWO-CPI 
[44]. This backbone contains convolution, batch normalization, activation and pooling 
layers. We first obtain the structural formula images of drugs from SMILES sequence 
by RDKit [52] software. These images show visual representations of molecule, as can 
be seen in Fig. 2a. We define the input image as P ∈ Rh×h , where h denotes the size of 
image. The local feature map xv = Conv(P) of the image can be obtained by the con-
structed CNN backbone. Since CNN Block can only capture local information without 
considering global features, we build an MSA block to enhance semantic relations of 
features, and the specific flowchart of MSA is shown on the right side of Fig. 1. MSA 
block contains Layer Normalization (LN) [53] layers, multi-head self attention layer, 
MLP block and residual connections. Following prior works on transformers encoder 
in [54], we add a residual connection to the MSA computation. LN layers are applied 
before every block to normalize neuron nodes in the neural network. We pass the output 
xv = Conv(P) of the CNN Block through the MSA block to get the image feature of the 
drug, Ximg = MSA(xv).

The chemical features are defined by a feature type and a feature family. A feature fam-
ily is a general classification of features, such as hydrogen bond donors, aromaticity, etc., 
where pharmacophore matching is achieved based on the feature family [52]. Here we use 
a feature factory and choose feature family information, feature type information and fea-
ture corresponding atoms information as the chemical text information of the drug. We can 
obtain the chemical text information of the drug by Rdkit [52] software using the SMILES 

Fig. 1 An overall architecture of MCL-DTI
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sequences, as can be seen in Fig. 2b. In order to extract features from drug text, we first 
use the k − gram method to segment the text sequences by words. The text sequences are 
divided into phrases of length k, and build a dictionary to record the order in which the 
phrases appear. The numerical word order of the dictionary is used to replace the origi-
nal words, and these numbers are embedded for representation. Figure 3 shows k − gram 
method of protein sequence segmentation and embedding representation when k is 1. 

Fig. 3 Method for protein sequence segmentation and embedding representation when k is 1

Fig. 2 Multimodal information of drugs. a is the molecular image modal. b is the chemical text information 
modal
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Similarly, we feed the embedding representation into an MSA module to obtain textual fea-
tures of the compound, Xtext.

We take the sum of Ximg and Xtext as the drug’s features, while we assign learnable 
weights �1 and �2 to them. A higher weight indicates that the modality has a large influence 
on the drug feature representation. The drug is encoded as Xdrug:

For target sequence, we directly use its FASTA sequence as its text information. Simi-
lar to the chemical feature text of drug, we do the same for the FASTA sequence, first 
obtaining its embedding representation through k-gram, and then obtaining the abstract 
features of the target Xtgt through an MSA module.

Feature decoder module

After encoding the drug and target features, we feed the obtained Xdrug and Xtgt to the fea-
ture decoder module to learn the drug–target interaction information. As shown in Fig. 1, 
the feature decoder module consists of two decoders and each consists of an MSA block 
and MCA block. MCA block have the same LN layers, MLP blocks, residual connections 
with MSA layers. The main difference between MSA and MCA is the calculation process 
of attention output. The MSA block is designed to capture the internal relationships of the 
features themselves, and when computing the attention output, the query, key, and value 
are all obtained from the same feature through a linear matrix transformation. The MCA 
block, on the other hand, is designed to capture the interaction information between the 
drug and the target. Therefore, for the MCA block of the drug decoder, not only the drug 
features but also the target features need to be inputted. We perform matrix linear transfor-
mation on the input target features to get the query needed to compute the attention out-
put, and perform linear transformation on the input target features to get the key and value. 
Figure 4 illustrates the computational process of MCA. The target decoder is similar. With 
the drug decoder and the target decoder, we send their respective features to each other in 

(1)Xdrug = �1Ximg + �2Xtxt

Fig. 4 Architectural elements of a cross attention block between two time-seriers form drug α and target β
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both directions for two-way cross learning, and finally get two feature maps, Zdrug→target 
and Ztarget→drug.

Feature fusion module

The fusion block is used to receive the input feature maps Zdrug→target and Ztarget→drug 
from two decoders. We concatenate both feature maps by channel dimension and feed it 
into the fusion block. Fusion block contains a 2D convolution network Conv2D, a 1D con-
volution network Conv1D, a MLP block MLP and a fully connected layer FC. We extract 
the concatenated feature maps by convolution layers and finally feed them into FC layer to 
obtain the final prediction result P, this calculation can be expressed as:

where Z represents the feature map generated by decoder and ;  denotes the concatenate 
operation.

Classifier

We use cross-entropy as loss function specifically as follows:

where N denotes the total number of samples, and yn represents the true label. When 
model training, w choose the Adam [55] optimization algorithm as the optimizer of the 
model.

Experiment
In this section we present experimental comparisons of MCL-DTI with other state-of-
the-art methods.

Experimental setup

Dataset

In this work, we choose three DTI public datasets for experiments including Human 
[56], C. elegans [56] and Davis [57]. See Table 1 for specific drug and target statistics. 
Human and C. elegans are both positive and negative sample balanced datasets. Their 
positive samples are obtained from the highest confidence biochemical databases: Drug-
Bank [58] database and matador [59] database [56]. Davis contains 64 different drugs 
and 379 targets. In Davis, DTI pairs which have kd values < 30 units are considered posi-
tive [57]. Human and C. elegans datasets are divided into 8:1:1 ratio according to train 

(2)P = FC(MLP(Conv1D(Conv2D(Zdrug→target;Ztarget→drug ))))

(3)Loss = −
1

N

N

n=1

(ynlog(Pn)+ (1− yn)log(1− Pn))

Table 1 DTI dataset statistics

Datasets Drugs Targets Samples Pos Samples

Human 2496 1919 6184 3364

C. elegans 1716 1856 7509 3892

Davis 64 379 10439 1428



Page 9 of 19Qian et al. BMC Bioinformatics          (2023) 24:323  

set, valid set and test set when conducting the experiments. Davis dataset division is fol-
lowed by MolTrans [37]. In addition, we use the Biosnap [60] for DDI task which is to 
predict the interaction between drug and drug. Biosnap contains 9,648 drugs and 81,194 
samples with 50.5% of positive samples.

Metrics

In this work, we use ROC–AUC (area under the receiver operating characteristic curve), 
PR–AUC (area under the precision-recall curve) and recall as metrics to measure the 
prediction performance. The ROC–AUC is the main metric we use to evaluate all meth-
ods. The ROC–AUC curve takes into account both positive and negative examples and 
can effectively evaluate the overall performance of the model. The PR–AUC is more 
focused on positive examples, especially in data with unbalanced categories, and the 
value of PR–AUC is more indicative of the robustness of the model. Recall values indi-
cate the percentage of samples predicted to be truly positive in the positive class. Recall 
provides good feedback on the model’s ability to learn for positive samples. The data for 
all results are expressed as the mean of the results and their standard deviation.

Experiment settings

The implementation of our method is based on Pytorch [62]. Each experiment is run 
for 100 epochs. For training, we use a server with i7 10700f, 32GB RAM and RTX 3090 
GPU. For the selection of hyperparameters, we used the grid search method. The learn-
ing rate is searched in the range [1e−1, 1e−2, 1e−3, 1e−4, 1e−5], the learning rate decay 
coefficient is searched in the range [0.5, 0.6, 0.7, 0.8, 0.9], the batch size is searched in the 
range [32,64,128,256], the dropout rate is searched in the range [0.1,0.2,0.3,0.4,0.5]. We 
first use the grid search method to determine the learning rate and batch size, then fix 
the values of both, and then choose the dropout rate and learning rate decay coefficient. 
Through experiments, we choose the learning rate, learning rate decay coefficient, drop-
out rate, and batch size as 1e−3, 0.8, 0.1 and 128, respectively.

DTI experiment

Baseline.When choosing the comparative models, we mainly consider from three per-
spectives: Firstly, we chose representative and state-of-the-art methods, including Deep-
DTA [34], TransformerCPI [36], and MolTrans [37], to validate the competitiveness of 
our model. These methods are widely recognized and frequently used as benchmarks. 
Secondly, to assess the effectiveness of image-based methods, we included GNN-CPI 
[39] and TransformerCPI [36], which are typical examples of sequence-based and graph-
based approaches. Thirdly, as the MCL-DTI model is an extension of our team’s previous 
work, it was essential to include our previous model, PWO-CPI [44], for comparison. At 
last, We compare MCL-DTI with the following methods:

• GNN-CPI [39] uses molecular graph as drug representation and applies GNN for 
feature learning of embedded representation. They concatenate the outputs of the 
two neural networks for compound-protein interaction prediction. We follow the 
same hyperparameter setting described in this paper.
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• DeepDTA [34] applies CNN to two original extraction of local residual patterns 
using SMILES and protein sequences. The task of DeepDTA is to predict binding 
affinity values. We add a sigmoid activation function at the end of the model to turn 
it into a binary task and we set the same hyperparameters to ensure fairness.

• DeepConv-DTI [61] uses CNN and global max pooling layers to extract local fea-
tures of different lengths in protein sequences and applies the fully connected layer 
on drug fingerprint ECFP4. We obtain the same drug fingerprint ECFP4 and set the 
same hyperparameters for experimental comparison.

• TransformerCPI [36] uses the atomic information of the drug and distance matrix as 
a representation of the drug and a learned representation of the protein features by 
wod2vec [45]. They construct a decoder with a self-attention mechanism to learn the 
features of compounds and proteins.

• PWO-CPI [44] first uses drug images as molecular features. They use CNN to 
learn local information of drug images and apply word2vec [45] to encode protein 
sequences. Here, we use the same drug molecule images to represent the drugs and 
set the same hyperparameters for the experiments.

• MolTrans [37] builds a large corpus and extracts the most commonly used molecular 
fragments. The numbers are used to replace the original characters and embedding 
of these numbers is used for feature learning. It conducts extensive experiment on 
different datasets and is the SOTA method and this is also our main method of com-
parison.

Table 2 Performance comparison

Dataset Method ROC–AUC PR–AUC Recall

Human GNN-CPI [39] 0.974 ± 0.004 0.973 ± 0.005 0.953 ± 0.019

DeepDTA [34] 0.953 ± 0.002 0.981 ± 0.003 0.946 ± 0.024

DeepConv-DTI [61] 0.985 ± 0.001 0.982 ± 0.001 0.963 ± 0.002

TransformerCPI [36] 0.971 ± 0.002 0.973 ± 0.002 0.942 ± 0.004

PWO-CPI [44] 0.982 ± 0.003 0.980 ± 0.002 0.962 ± 0.001

MolTrans [37] 0.978 ± 0.002 0.978 ± 0.001 0.933 ± 0.003

MCL-DTI 0.987 ± 0.001 0.989 ± 0.001 0.961 ± 0.002

C. elegans GNN-CPI [39] 0.978 ± 0.002 0.975 ± 0.005 0.949 ± 0.003

DeepDTA [34] 0.987 ± 0.001 0.990 ± 0.002 0.964 ± 0.011

DeepConv-DTI [61] 0.980 ± 0.002 0.981 ± 0.001 0.937 ± 0.003

TransformerCPI [36] 0.985 ± 0.001 0.985 ± 0.002 0.952 ± 0.002

PWO-CPI [44] 0.979 ± 0.002 0.978 ± 0.003 0.933 ± 0.003

MolTrans [37] 0.985 ± 0.001 0.984 ± 0.002 0.962 ± 0.001

MCL-DTI 0.992 ± 0.001 0.994 ± 0.001 0.959 ± 0.002

Davis GNN-CPI [39] 0.840 ± 0.012 0.269 ± 0.020 0.696 ± 0.047

DeepDTA [34] 0.860 ± 0.002 0.238 ± 0.001 0.818 ± 0.003

DeepConv-DTI [61] 0.822 ± 0.003 0.192 ± 0.005 0.905 ± 0.004

TransformerCPI [36] 0.841 ± 0.001 0.227 ± 0.003 0.842 ± 0.004

PWO-CPI [44] 0.835 ± 0.004 0.188 ± 0.004 0.798 ± 0.003

MolTrans [37] 0.907 ± 0.002 0.404 ± 0.016 0.800 ± 0.022

MCL-DTI 0.922 ± 0.002 0.492 ± 0.002 0.895 ± 0.003
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To ensure the fairness of the experiments, we conduct experiments for other methods 
on the same dataset and use the same hyperparameter settings as in the original paper. 
The error between the reproduced results and the original results is acceptable. We use 
the cross-validation strategy and conduct five experiments for each method, and the 
final experimental results are shown in Table 2.

For the two balanced datasets Human and C. elegans, the current deep learning meth-
ods can achieve relatively promising performance. MCL-DTI achieves the best results 
and exceed our previous work PWO-CPI in all metrics. PWO-CPI only uses images 
of drugs and does not perform the operation of feature fusion. These experimental 
results demonstrate that MCL-DTI can effectively conduct feature learning on balanced 
datasets.

In addition, the deep learning methods for experiments on Davis dataset failed to 
achieve satisfactory results, especially in terms of PR–AUC values. In the test set of 
the Davis dataset, the ratio of positive to negative samples is 1:19, which tests the 
model’s ability to learn the full range of sample features under the same learning envi-
ronment. Compared to MolTrans as SOTA method, MCL-DTI improved by 0.014, 
0.073 and 0.069 for three metrics, respectively.

In summary, these deep learning methods all utilize only single modal information 
about the drug molecule such as molecular graph, SMILES sequence information and 
molecular image. MCL-DTI utilizes multimodal information, molecular images and 
chemical text information, so that it can provide more comprehensive information 
about drug. Results on both balanced and unbalanced datasets show the competitive 
performance of MCL-DTI.

Our excellent prediction results can be explained from the following perspectives: 

(1) From the biological perspective, the structure of a molecules determines their 
properties. The structural characteristics of molecules can be intuitively displayed 
in their images, and deep learning models have excellent performance in extract-
ing spatial structural features of images. Therefore, integrating representations from 
molecules images can provide a more comprehensive understanding of the biologi-
cal characteristics of these molecules.

(2) Chemical characteristics provides valuable information about compounds’ proper-
ties. These characteristics, such as molecular weight, polarity, or functional groups, 
are very relevant to the interaction between compounds and proteins. By incorpo-
rating chemical characteristics, the model can learn to recognize and exploit these 
properties, leading to more accurate predictions of compound-protein interactions.

(3) Integrating image features with the chemical properties of compounds at an 
advanced semantic level can better characterize the biological characteristics of 
compounds. The use of a multi-head cross-attention mechanism allows the model 
to learn the relationship between drugs (compounds) and targets (proteins) in a 
more sophisticated manner. This mechanism enables the model to focus on differ-
ent aspects of the compounds and proteins simultaneously, capturing their intricate 
interactions. By learning the complex relationships between compounds and pro-
teins, the model can better understand the underlying biological mechanisms and 
predict their interactions more accurately.
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DDI experiment

To further validate the learning ability of drug multimodality and MCA mechanism, 
we conduct experiments for DDI task. We use the same method as MCL-DTI for the 
embedding representation of drug. After obtaining the two drug embedding represen-
tations, these embedidng feature maps are fed into the same decoders as MCL-DTI to 
learn the interaction between different drugs respectively. Finally the prediction results 
are also obtained by a fusion block. We name this model for DDI tasks as MCL-DDI. 
Here we set ROC–AUC, PR–AUC and F1 values as indicators on Biosnap [60] dataset. 
Methods with which we have conducted experimental comparisons include LR [63], 
Nat.Prot [64], Mol2Vec [65], MoVAE, DeepDDI [66] and Caster [60].

The results of the DDI experiments are shown in Table 3. We find that MCL-DDI far 
exceeds the previous work in three different metrics. The performance of the model can 
indeed be effectively improved by multimodal and cross-attention learning of drugs. 
This also means that our model has strong generalization and is more suitable than pre-
vious methods for the prediction of both interactions.

Ablation study

In this section, several ablation experiments are performed on the whole model to 
effectively represent the influence of each module on MCL-DTI. To better represent 
the robustness of each module of MCL-DTI, we conduct experiments on balanced and 
unbalanced datasets, i.e., Human and Davis.

image + SMILES: we use the SMILES sequence of the drug as text information 
instead of the chemical text information
Text: we use only the chemical text modal information as the drug embedding repre-
sentation
Image: we use only molecular image modal as the drug embedding representation.

MCA: we remove the MCA block from drug and target decoders, so that only the 
MSA block remained in the decoder.
MCA, image: we remove both MCA block and image modal.
MCA, text: we remove both MCA block and text modal.

Table 3 Results on the Biosnap dataset in the DDI task

Dataset Method ROC–AUC PR–AUC F1

Biosnap LR 0.802 ± 0.001 0.779 ± 0.001 0.741 ± 0.002

Nat.Port 0.853 ± 0.001 0.848 ± 0.001 0.714 ± 0.001

Mol2Vec 0.879 ± 0.006 0.861 ± 0.005 0.798 ± 0.007

MolVAE 0.892 ± 0.009 0.877 ± 0.009 0.788 ± 0.033

DeepDDI 0.886 ± 0.007 0.871 ± 0.007 0.817 ± 0.007

Caster 0.910 ± 0.005 0.887 ± 0.008 0.843 ± 0.005

MCL-DDI 0.996 ± 0.001 0.994 ± 0.001 0.986 ± 0.002
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From the results in Table 4 we can see that in MCL-DTI as a complete model achieves 
the best results on both datasets.

The results for image + SMILES and image are similar, and we can see that the effect 
is not obvious when using SMILES sequences to enhance the features. This can indicate 
that the image may contain the information of SMILES sequences or more. It can be 
inferred from MCL-DTI and image + SMILES that the chemical text information of the 
drug contains different information from the SMIELES sequence. In the experiments of 
text and image, it can be seen that images play a more important role in the features of 
drug molecules. In addition, it can be observed from text that the information of the 
chemical text improves the model. The results from these experiments further demon-
strate that the multimodal and cross-attention modules have latent capabilities for fea-
ture learning.

Table 4 Results of ablation experiments on Human and Davis datasets

Dataset Method ROC–AUC PR–AUC Recall

Human MCL-DTI 0.987 0.989 0.961

Image + SMILES 0.983 0.982 0.926

Text 0.963 0.966 0.910

Image 0.983 0.985 0.935

-MCA 0.984 0.984 0.897

 MCA, image 0.968 0.971 0.919

 MCA,text 0.980 0.982 0.945

Davis MCL-DTI 0.922 0.492 0.895

Iimage + SMILES 0.917 0.462 0.874

Text 0.917 0.481 0.842

Iimage 0.916 0.466 0.884

 MCA 0.914 0.471 0.835

 MCA, image 0.912 0.473 0.839

 MCA, text 0.913 0.453 0.839

Table 5 Ablation study on combining image modal and text modal

Dataset λ1 λ2 ROC–AUC PR–AUC Recall

Human �1 �2 0.990 0.992 0.961

�1 1 0.984 0.983 0.942

1 �2 0.982 0.984 0.945

�1 1− �1 0.982 0.981 0.936

1 1 0.987 0.989 0.955

1 0 0.981 0.985 0.935

0 1 0.968 0.968 0.920

Davis �1 �2 0.922 0.492 0.895

�1 1 0.917 0.475 0.877

1 �2 0.918 0.467 0.861

�1 1− �1 0.917 0.474 0.891

1 1 0.916 0.486 0.874

1 0 0.918 0.469 0.891

0 1 0.916 0.487 0.856
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Bias towards different modal information

It is also valuable to see that MCL-DTI introduces two learnable scalars �1 and �2 to 
combine the outputs from image modal and text modal information (Eq. 1). This leads 
to a by-product of MCL-DTI where �1 and �2 actually reflect the model’s bias towards 
image modal and text modal information.

We explore how different combinations of image modal and text modal affect model 
performance. We conduct experiments using multiple combinations of methods and 
summarize the results in Table 5. We perform parallel experiments on Human and Davis 
datasets and show the learned scalars �1 and �2 from different values. In addition we 
set a fixed �1 and �2 to observe whether the model has learned the scalars effectively. 
This observation shows a stable perference for MCL-DTI towards the different design 
patterns of multimodality. Again the analysis of the data results from the fixed scalars 
shows that the experimental results all decrease in the absence of a certain modality. We 
can see that the performance is promising when both scalars are working and both are 
learnable.

In addition, we consider separately the learning process of the two learnable scalars 
during the experiment. We conduct experiments to show the learnable parameters �1 , �2 
from Human and Davis datasets. From the experimental results in Fig. 5, we can see that 
the learning scalars stabilize in the later stages of the experiment, and the ratio between 
the two parameters is relatively constant. The variation of the rates in different is rela-
tively small, especially when epoch increases. The ratio of the scalars is inversely propor-
tional to the value of the ROC–AUC, i.e., when the difference between the two learning 

Fig. 5 Variation of learnable variables �1 and �2 on the Human and Davis datasets. The process of change of 
scalars during the experiment and the learning ratio correspond to the experimental results
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scalars is greater, the model is less effective. By the fact that the ratios of the final learn-
ing scalars are all relatively close, it can be seen that the design pattern in this paper is 
indeed useful and effective in feature learning of multimodal information.

Case study

In order to verify the practical ability of the model, we conduct a case study on two 
highly valuable proteins, namely 3C-like protease (3CLpro) and RNA-dependent RNA 
polymerase (RdRp). We select experimentally confirmed drug molecules known to inter-
act with them, as well as unrelated drug molecules. The proposed MCL-DTI model 
was utilized to predict the interaction scores between them. A higher predicted score 
for interacting drugs and a lower predicted score for unrelated drugs would indicate 
the practical significance of our proposed model. The experimental results are shown in 
Table 6.

The 3CLpro is an enzyme found in coronaviruses. 3CLpro plays a crucial role in the 
replication of the virus by cleaving viral polyproteins into functional proteins necessary 
for viral assembly and replication. The effectiveness of 3CLpro as a target for antiviral 
drugs depends on its inhibition. By inhibiting 3CLpro, it is possible to disrupt the rep-
lication process of the virus, potentially reducing viral load and slowing down the pro-
gression of the disease. RdRp is an enzyme that plays a crucial role in the replication of 
RNA viruses. RdRp is a target for antiviral drug development, as inhibiting its activity 
can disrupt viral replication and potentially control viral infections. Therefore, identify-
ing the interaction relationship between drugs and the two aforementioned targets is of 
great significance. We select 3CLpro and RdRp as the research subjects to determine the 
reliability of the MCL-DTI model in practical applications by predicting their interac-
tions with candidate drugs such as Baritinib, Sofosbuvir, and Aspirin. Through experi-
ments, we obtain the probability of drug binding to the target.

From the experimental results, we can see that Baricitinib, Remdesivir, Lopinavir, and 
Ritonavir are highly likely to interact with 3CL pro and Sofosbuvir, Daclatasvir, Lopina-
vir, Ritonavir are highly likely to interact with RdRp. In fact, this results has been proven 
by many current studies and clinical trials. On the contrary, the probability of interac-
tion between unrelated drugs aspirin and 3CL pro and RdRp is very low, which is also in 
line with reality. These experimental results all demonstrate the reliability of MCL-DTI, 

Table 6 Experimental results of 3CLpro and RdRp with candidate drugs

Target Drug Predicted Probability Related or not

3CLpro Baricitinib 0.999 Related [67]

Remdesivir 0.998 Related [68]

Lopinavir 0.995 Related [69]

Ritonavir 0.874 Related [69]

Aspirin 0.097 Not Related

RdRp Sofosbuvir 0.993 Related [70]

Daclatasvir 0.834 Related [70]

Lopinavir 0.930 Related [69]

Ritonavir 0.986 Related [69]

Aspirin 0.007 Not Related
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therefore, we believe that the MCL-DTI model has guiding significance in practical 
research and drug discovery.

Conclusion
In this work, we propose a novel model MCL-DTI for DTI task. We exploit for the 
first time the multimodal information of drugs which characterize them in different 
modal. We perform semantic learning of molecular image modal and chemical text 
modal as the embedding representation of the drug by a multi-head self-attentive 
block. Then, we propose a bi-directional cross-attention mechanism, which allows for 
deeper semantic learning of drug and target features. From the data results of the 
experiments, MCL-DTI achieves the best results in all three datasets of DTI, includ-
ing the balanced datasets and unbalanced datasets. It also explained in the DDI 
task that MCL-DTI has a strong generalization capability and can be easily applied 
to other tasks. In additon, ablation experiments further demonstrate the robustness 
of multimodality and cross-attention block. All the results data indicate that multi-
modalities and cross-attention learning method can be well applied to DTI or other 
interaction prediction tasks. In additon, ablation experiments further demonstrate 
the robustness of multimodality and cross-attention block. All the results data indi-
cate that multimodalities and cross-attention learning method can be well applied to 
DTI or other interaction prediction tasks. In future work, we consider incorporat-
ing other modal information to construct a more rational heterogeneous network. 
Besides, the effectiveness of deep learning models is still largely limited by the quality 
and size of the dataset. Therefore, in the next step, we hope to design useful pre-train-
ing methods to obtain useful information from large-scale unlabeled biological data 
in order to further improve the model’s effectiveness.
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