
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Renaux et al. BMC Bioinformatics          (2023) 24:324  
https://doi.org/10.1186/s12859-023-05451-5

BMC Bioinformatics

A knowledge graph approach to predict 
and interpret disease-causing gene interactions
Alexandre Renaux1,2,3*, Chloé Terwagne1,2, Michael Cochez4,5, Ilaria Tiddi4, Ann Nowé1,3 and Tom Lenaerts1,2,3* 

Abstract 

Background: Understanding the impact of gene interactions on disease pheno-
types is increasingly recognised as a crucial aspect of genetic disease research. This 
trend is reflected by the growing amount of clinical research on oligogenic diseases, 
where disease manifestations are influenced by combinations of variants on a few 
specific genes. Although statistical machine-learning methods have been developed 
to identify relevant genetic variant or gene combinations associated with oligogenic 
diseases, they rely on abstract features and black-box models, posing challenges 
to interpretability for medical experts and impeding their ability to comprehend 
and validate predictions. In this work, we present a novel, interpretable predictive 
approach based on a knowledge graph that not only provides accurate predictions 
of disease-causing gene interactions but also offers explanations for these results.

Results: We introduce BOCK, a knowledge graph constructed to explore disease-
causing genetic interactions, integrating curated information on oligogenic diseases 
from clinical cases with relevant biomedical networks and ontologies. Using this graph, 
we developed a novel predictive framework based on heterogenous paths connect-
ing gene pairs. This method trains an interpretable decision set model that not only 
accurately predicts pathogenic gene interactions, but also unveils the patterns 
associated with these diseases. A unique aspect of our approach is its ability to offer, 
along with each positive prediction, explanations in the form of subgraphs, revealing 
the specific entities and relationships that led to each pathogenic prediction.

Conclusion: Our method, built with interpretability in mind, leverages heterogenous 
path information in knowledge graphs to predict pathogenic gene interactions 
and generate meaningful explanations. This not only broadens our understanding 
of the molecular mechanisms underlying oligogenic diseases, but also presents a novel 
application of knowledge graphs in creating more transparent and insightful predictors 
for genetic research.
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Background
In recent years, the field of medical genetics has seen a shift away from the traditional 
Mendelian model of genetic inheritance, challenged by the emergence of human disor-
ders that exhibit incomplete penetrance, high phenotypic variability or locus heteroge-
neity [1–5].

This has led to the consideration of alternative genetics models, one of them being the 
oligogenic model, where a combination of causative variants is distributed among two or 
a few genes [6–9]. This model represents a bridge between the traditionally considered 
monogenic and the poorly understood polygenic or complex disorders [10–12].

An increasing number of clinical studies have reported evidence of oligogenic eti-
ologies in various diseases, some of them previously considered as strictly monogenic. 
While some diseases may be strictly caused by the combined effect of multiple genes, 
others involve modifier genes that can affect the severity or presentation of the condition 
[13, 14]. The Oligogenic Disease Database (OLIDA) [15] provides a centralised resource 
for these studies. It collects genetic and clinical information from these reported cases 
and assigns curation scores based on multiple types of genetic and functional evidence. 
Meta-analyses from these studies revealed that genes associated with oligogenic diseases 
interact in intricate, epistatic ways [16] and exhibit a diverse range of functional relation-
ships involving both direct and long-range interactions [6, 17, 18]. Nevertheless, the pre-
cise causal mechanisms behind most oligogenic diseases remain unresolved.

Previous work has established predictive methods for the pathogenicity of variant 
combinations [19], as well as the likelihood that certain gene pairs may produce a digenic 
disease [20]. These tools, while reporting a good predictive performance in cross-valida-
tion and independent validation tests, demonstrate nonetheless limited interpretability 
owing in part to the structural complexity of the models (e.g. a random forest consisting 
of many deep trees), and the abstract and continuous nature of features, most of them 
derived from complex bioinformatics methods (e.g. CADD score [21] or recessiveness 
probability [22]). While such models may further provide a ranking of the factors con-
tributing the most to a given prediction, they provide little information about the molec-
ular associations and functional patterns driving the disease, such as compensatory and 
synergistic mechanisms [23–26]. Additional methods are thus required to translate pre-
dictive elements into biologically meaningful information and relationships by leverag-
ing prior knowledge, as demonstrated in [27]. This need aligns with recent efforts that 
have effectively harnessed background knowledge to uncover potential causal mecha-
nisms behind molecular signatures derived from high-throughput experiments [28–30].

Biological and molecular prior knowledge is commonly represented as networks, cap-
turing the physical and functional relationships between entities. Knowledge graphs 
(KGs) take this a step further by integrating diverse networks and ontologies into a sin-
gle, comprehensive graph. KGs leverage semantically-rich relationships and contextual 
connections to generate valuable insights. Integrated networks within KGs have demon-
strated superior performance in prioritising novel disease-gene associations [31–33] and 
are considered as a promising strategy to handle the data scarcity in rare diseases [34]. 
However, predictive methods on KGs often require transforming the original network 
into a homogeneous structure [35] or embedding it into a latent space [36], resulting in 
potential information loss and reduced interpretability [37].
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Path-based approaches on KGs represent a promising avenue for inferring new rela-
tionships transparently, providing meaningful explanations for these predictions. For 
instance, the RPath method [29] reasons over paths within a knowledge graph, guided 
by transcriptomic information, to prioritise drugs for a given disease and reveal targeted 
proteins along these paths. In the context of machine learning, path information has also 
been employed for rule inference in KGs [38–40], enabling the prediction of new facts 
with a high degree of interpretability [41, 42]. In particular, these methods can capture 
path information at a more abstract level, by recording their sequence of node and edge 
types, also known as metapaths [43, 44]. Metapaths have been employed to generate fea-
tures from KGs for various classification tasks. For example, metapath features derived 
from Hetionet, a large biomedical KG, have been applied in gene-disease prioritization 
[45] and drug repurposing [46].

In this work, we leverage a biological KG to i) mine association rules from frequently 
observed sets of metapaths in pathogenic gene pairs, ii) use these rules to identify novel 
pathogenic genetic interactions, while iii) providing a fully interpretable model and 
graphical explanations for each prediction.

To that end, we construct a new KG integrating known oligogenic disease informa-
tion within relevant and trusted multi-level biological networks. Our new framework 
mine complex association rules based on metapaths found in disease-causing gene pairs. 
These rules are combined as a decision set model [47], which transparently predicts 
potential pathogenic gene interactions.

Our model can accurately identify gene interactions beyond known disease-related 
genes. Importantly, this method is interpretable, providing graph-based explanations 
from the KG. This form of explanation, grounded in biological knowledge, can foster 
trust, aid expert assessment [48], and can help in formulating new hypotheses for under-
standing gene interactions and disease mechanisms.

Results
BOCK: a knowledge graph integrating oligogenic diseases with biological networks

Using the oligogenic information from the clinical literature present in OLIDA and mul-
tiple public biological network resources, we constructed BOCK (Biological networks 
and Oligogenic Combinations as a Knowledge graph), a KG that puts oligogenic com-
binations into a biological context. Compared to more generic KGs, we selected specifi-
cally networks relevant to understanding the molecular mechanisms of epistasis, placing 
genes as the central entities, and focusing on trusted resources describing a large set of 
human genes and their interactions.

This new resource comprises 158,964 nodes of 10 different types (Fig.  1B) and 
2,659,064 edges of 17 different types (Table 1), structured according to the schema pre-
sented in Fig. 1A. We provide the complete KG open-access, in semantically rich for-
mats that facilitate its exchange and use (see Availability of data and materials section).

The corresponding source databases for these networks were selected based on their 
quality, accessibility, and interoperability. Some edge types were filtered before inte-
gration, allowing only the connections with a minimal level of confidence provided 
in the original network resource. Considering that studies on oligogenic cases rarely 
report the specific impacted proteins and to simplify the model, BOCK collapses 
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genes and their associated proteins as a single entity type “Gene” (see BOCK data 
integration and resources in Methods). The non-redundant contribution of each net-
work source for genes is detailed in Additional file 1: Table A3.

The integration of OLIDA information together with the multi-scale biological 
networks enables the discovery of complex patterns that could not be found when 
considering each individual network in isolation. In this work, we focus on patterns 

Fig. 1 Schema and node statistics of the KG (BOCK). A KG schema representing the different node types (i.e. 
metanodes) as circles and their relationships as arrows (bidirectional arrows indicate undirected associations). 
B Number of nodes in the KG per metanode. We define an abbreviation for each metanode, in parenthesis, to 
simplify all metapath and rule notations in the following sections (see also Table 1)

Table 1 Knowledge graph edge types

Each type of edge (i.e. metaedge) in the KG is defined uniquely by its source and target node types with the relationship 
name in between. Directed metaedges are indicated by an arrow on the relationship. We define abbreviations for each 
metaedge to simplify further notations. The table presents statistics on the number of corresponding edges, source nodes 
and target nodes for each metaedge, ordered by decreasing number of edges

Metaedge Abbreviation # Edges # Sources # Targets

Gene–coexpresses–Gene GeG 1,338,764 14,940 14,940

Gene–physinteracts–Gene GpG 329,801 17,062 17,062

Disease–described→Phenotype DdP 233,175 12,676 10,423

Gene–associated→Phenotype GaP 209,416 4870 9151

Gene–seqsimilar–Gene GsG 186,445 12,226 12,226

Gene–associated→BiologicalProcess GaBP 93,676 16,323 10,570

Gene–associated→CellularComponent GaCC 58,432 16,978 691

Gene–belongs→ProteinFamily GbPF 45,454 19,657 11,187

Gene–associated→MolecularFunction GaMF 43,331 14,540 4042

Gene–hasunit→ProteinDomain GuPD 41,314 15,828 6636

BiologicalProcess–resembles–BiologicalProcess BPrBP 33,102 10,811 10,811

Phenotype–resembles–Phenotype PrP 16,000 7681 7681

Gene–forms→ProteinComplex GfPC 14,531 4357 3604

MolecularFunction–resembles–MolecularFunction MFrMF 11,239 3710 3710

OligogenicCombination–involves→Gene OCiG 2700 1118 907

OligogenicCombination–causes→Disease OCcD 1173 1118 175

CellularComponent–resembles–CellularComponent CCrCC 793 483 483
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mined from both direct and long-range relationships between pairs of genes associ-
ated with oligogenic diseases.

As visualised in Fig. 2a, b, confident disease-causing gene pairs (i.e. those with at least 
a weak evidence level) exhibit only a partial connectivity (i.e. presence of at least one 
path between genes of a pair) when considering each BOCK component individually 
(see component details in Additional file  1: Table  A2), indicating that single network 
approaches would be insufficient to support all cases.

Fusing these KG components as single graphs (Fig. 2c, GENE-CENTRIC; COMPOS-
ITE) enables the connection of a majority of oligogenic gene pairs, when considering 
3 and 4-hop paths. When integrating both gene-centric and composite graphs (ALL in 
Fig. 2), paths of lengths ≤ 3 are sufficient to connect all oligogenic gene pairs. This obser-
vation remains true when excluding the Phenotype information (ALL_NOPHENO), 
prone to study biases for oligogenic gene pairs, as discussed in the following results.

A framework to discover predictive rules from knowledge graph paths

Building upon our knowledge graph BOCK, we extended its capabilities with the crea-
tion of ARBOCK (Association Rule learning Based on Overlapping Connections in 
Knowledge graphs). This innovative approach specifically harnesses the characteristics 
of paths linking potential pathogenic gene pairs within the knowledge graph to construct 
a rule-based classification model (Fig. 3). Built on associative classifier principles [49–
51], this two-step model starts by generating a rule set from local patterns of the patho-
genic gene pairs (Fig. 3(2), (3)). The second step combines these rules into a decision set 
(DS) classifier [47], enabling identification of potential pathogenic gene pairs (Fig. 3(4)). 
This approach was chosen to balance interpretability and performance.

Fig. 2 Ratio of connected disease-causing gene pairs in different components of BOCK. A gene pair 
is considered connected if there exists a path between the two genes, regardless of directionality, that 
can be traversed given a path length cutoff. Nodes of types “Disease” and “OligogenicCombination” 
were excluded and BOCK was decomposed into: (a) gene-centric networks (COEXP: Gene-coexpresses, 
PPI: Gene-physInteracts, SEQSIM: Gene-seqSimilar) shown merged as GENE-CENTRIC; (b) composite 
networks (DOMAIN: Gene-hasUnit-ProteinDomain, FAMILY: Gene-belongs-ProteinFamily, COMPLEX: 
Gene-forms-ProteinComplex, PROCESS: Gene-associated-BiologicalProcess, FUNCTION: Gene-associated-Mol
ecularFunction, CELLCMP: Gene-associated-CellularComponent, PHENO: Gene-associated-Phenotype) shown 
merged as COMPOSITE; (c) integrated networks (GENE-CENTRIC: merge of (a), COMPOSITE: merge of (b), ALL: 
merge of (a) and (b), ALL_NOPHENO: a subset of ALL excluding paths traversing “Phenotype” nodes). The 
ratios of connected oligogenic gene pairs with at least a weak evidence-level (Additional file 1: Table B2) are 
presented for these components according to path length cut-offs ranging from 1 to 4
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The model’s parameters, summarised in Additional file 1: Table C1, can be adjusted to 
manage computational complexity and the volume of discovered patterns. These param-
eters were empirically determined in this study to optimise predictive performance 
while minimising explanation complexity (Additional file 1:  Figures in Appendix C).

Our approach starts by traversing all paths in BOCK, that connect a specified starting 
gene to a targeted ending gene, up to a predetermined path length cutoff (path_cut-
off). For this study, we set this length cutoff to 3, which ensures full connectivity among 
known pathogenic gene pairs (Fig. 2). Although the traversal does not consider the origi-
nal edge directions, the original edge directionality is retained within their encodings. 
For this study, genes are ordered according to the Residual Variant Intolerance Score 
(RVIS) and paths traversing “OligogenicCombination” and “Disease” nodes are ignored, 

Fig. 3 KG-based associative classifier training workflow. The diagram outlines how our framework uses 
labelled gene pairs and the path information in BOCK to train a rule-based model predicting pathogenic 
gene interactions. (1) Given a disease-associated gene pair (represented as D1 ( GS,GT)), all paths in BOCK 
starting at the gene node GS and ending at the gene node GT  are collected, up to a certain predetermined 
path length cutoff. Although this traversal disregard edge directionality, the original direction of the edges 
is encoded in the recorded paths; (2) Each path is attributed a reliability score based on the original edge 
weight. Paths are then aggregated into their metapaths (i.e. path types) (M); (3.a) Association rules (R) are 
mined by finding frequent patterns of metapaths occurring in disease-causing gene pairs (D). Rules are 
extended with additional metapath conditions as long as their support (i.e. the weighted frequency of 
the pattern) is greater than a defined threshold (minsup); (3.b) Rules can be extended with a unification 
condition (e.g. node GX common to metapaths M1 and M2) if such pattern remains frequent; (3.c) The mined 
rules are refined with path reliability thresholds aiming to filter paths of lower quality while preserving a high 
rule support; (4) Using all pre-mined rules (R) and training data made of disease-causing gene pairs (D) as 
positive examples and a set of putative neutral gene pairs (N) as negative examples, a decision set model is 
trained by selecting a subset of predictive rules
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as these inherently contain the answer to our predictive problem. For each path, a path 
reliability score is attributed based on the geometric mean of its edge scores and paths 
are then grouped into corresponding path types, or metapaths (Fig. 3(2); see Path tra-
versal and confidence scoring in Methods).

Next, association rules are mined from the positive set only using the Apriori algo-
rithm [52]. This algorithm finds sets of metapaths that frequently occur together 
(Fig. 3(3.a)). A rule is deemed frequent if its support is greater than or equal to a pre-
determined threshold (minsup_ratio, set to 0.2 for this study). The number of meta-
paths in a rule is limited (max_rule_length, set to 3 in this study) and redundant 
rules are removed. Rules can be optionally extended with a unification condition, which 
involves a common node between paths of at least two metapaths (Fig. 3(3.b)) (see Asso-
ciation rule mining on paths in Methods). Subsequently, rules are optimised with path 
reliability thresholds to improve interpretability and limit potentially spurious paths 
(Fig. 3(3.c); see Optimisation of path reliability thresholds in Methods).

The final stage of our approach involves training a decision set (DS) classifier [47] 
(Fig. 3(4)). This algorithm aims to find a subset of rules maximising the coverage of posi-
tive instances and minimising the coverage of negative instances (which balance is deter-
mined by the α parameter, set to 0.5 for this study). The trained DS model takes a gene 
pair and its associated BOCK-paths as input and returns a probability of pathogenicity 
along with the matched rules, if any (see Training of a decision set classifier in Methods).

We implemented this framework as a Python package and made available all scripts to 
replicate the subsequent results. Users can evaluate selected gene pairs on pre-trained 
models and train new models following the same methodology (refer to the Availability 
of data and materials section). The current implementation, tested on an Intel Core i7, 
is capable of retrieving path data from BOCK at an average speed of 1.16  s (std. 2.2) 
for each gene pair (using path_cutoff=3), and produces predictions along with corre-
sponding explanations at an average rate of 0.5 milliseconds (std. 2.9) for each gene pair. 
Excluding the path retrieval, the training of a new model (rule mining + decision set 
learning), using the parameters and the full data presented in this study, took an average 
of 29.26 mn parallelised on 8 cores.

In this study, we applied our methodology on two labelled training datasets: a positive 
set (D) of 441 disease-causing gene pairs with established familial or statistical evidence 
of pathogenicity, and a negative set (N) of 44,100 putative neutral gene pairs, selected 
from a cohort of healthy individuals. Each gene pair is given a weight signifying the con-
fidence in its label. Detailed process for these sets’ creation is described in the Gene pair 
selection criteria Methods section.

We also assessed two distinct DS models. The first model considers all valid paths 
(designated as incl.Pheno), whereas the second excludes paths involving Phenotypes 
(excl.Pheno). The practical implementation of this methodology and its effectiveness for 
this application are demonstrated in the subsequent sections.

Rule mining detects prevalent patterns in oligogenic combinations

Considering only the rule mining part of our framework and the previously defined 
parameters (Additional file  1: Table  C1), we now explore common patterns occur-
ring in the 426 pathogenic gene pairs from the training dataset. These patterns, 
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represented as rules, are integral to the following predictive modelling stage. Each 
rule is formulated as a set of conditions, involving multiple metapaths, associated to 
a class label (here, the disease-causing label lD ). The predictive power of each rule is 
estimated through its confidence metric – the likelihood of a gene-pair being patho-
genic when it satisfies the conditional clause – assessed against both the disease-caus-
ing (D) and neutral (N) sets.

To better understand the relationship between the rule metapath content and its 
predictive power, we analysed metapaths significantly associated with higher rule 
confidence, enabling us to shed light on the most influential types of relationships 
(Fig. 4). The confidence distribution of the rules, in relation to their support, can be 
found in Additional file 1: Fig. D1.

Upon considering all valid paths (incl. Pheno), 6917 rules were mined. Analysing 
the rules’ conditions, 16 metapaths emerged as significantly associated with higher 
confidence rules (Fig.  4A). High-confidence rules often include metapaths related 
to similar phenotypes ( 50% ), biological processes ( 31.2% ), and molecular functions 
( 12.5% ), and typically involve intermediate genes ( 75% ) linked with a diverse range of 
relationships. Metapaths containing phenotype information, specifically GaPaG and 
GaPrPaG (reflecting common and related phenotypes between gene pairs), hold the 
most influence among high-confidence rules.

Conversely, excluding paths traversing Phenotype nodes (excl. Pheno) resulted in 
4124 rules. Analysis of the rules’ conditions revealed 16 metapaths significantly asso-
ciated with higher confidence rules, of which 8 were unique to this setting (Fig. 4B). 
High-confidence rules predominantly present heterogenous metapaths associated 
with a wider range of entities including biological processes ( 43.8% ), molecular 
functions ( 18.8% ), cellular components ( 12.5% ), protein families ( 6.2% ), and protein 
domains ( 6.2% ). Metapaths related to biological processes and molecular functions 

Fig. 4 Metapath influence on rule confidence Metapaths significantly associated with higher rule confidence 
are shown. Rule confidence distributions are compared for each metapath, considering both its presence 
and absence as a rule condition. The significance of the difference is determined using a one-tailed Wilcoxon 
ranksum test with Bonferroni correction (adjusted p-value ≤ 0.01 ). Metapaths are ranked based on their effect 
size, measured by the rank-biserial correlation. A Rules mined from paths including Phenotype (incl. Pheno). B 
Rules mined from paths excluding Phenotype (excl. Pheno)
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are most influential. Particularly, GpGaBPaG and its reverse, which capture shared 
processes between a gene pair and an interacting gene, stand out in the highest confi-
dence rules.

An optimal set of rules can identify potential pathogenic gene pairs

Using our new approach with empirically determined parameters (see full analysis in 
Appendix  C and the summary of selected parameters in  C1), we trained decision set 
(DS) models based on 426 pathogenic gene-pairs and 42,600 neutral gene pairs (imbal-
ance ratio at 1:100), setting aside 15 recently published and high-quality pathogenic gene 
pairs for independent testing. (see Gene pair selection criteria in Methods).

We analysed two DS models: DS incl.Pheno (including Phenotype-traversing paths) 
and DS excl. Pheno (excluding Phenotype-traversing paths). Both were evaluated under 
a stratified 10-fold cross-validation and tested on the independent test set. We reported 
essential information to assess this machine learning approach following the DOME rec-
ommendations [53] in Additional file 1: Table E1.

The performance of these models is depicted in Fig.  5. The DS incl.Pheno model 
achieves an AUROC of 0.903 (std. 0.03) and AUPRC of 0.548 (std. 0.07), recalling 81.8% 
of pathogenic gene pairs with a 6.6% false positive rate at the optimal threshold. The final 
model, consisting of 35 rules, successfully predicts 10/15 held-out pathogenic gene pairs. 

Fig. 5 Decision set models performance. Two DS models have been evaluated: one trained with all valid 
paths (DS incl.Pheno) and one trained without Phenotype-traversing paths (DS excl. Pheno), on a stratified 
10-fold cross-validation setting. A test set of 15 pathogenic gene pairs from recent literature has been held 
out for independent evaluation. A Receiver operating characteristic (ROC) curve obtained by averaging all 
fold curves. The best classification threshold is evaluated using the geometric mean between the sensitivity 
and the specificity. B Precision-Recall curve obtained by averaging all fold curves. C Test set predicted 
probabilities, displayed in decreasing order. The horizontal lines represent the optimal thresholds for binary 
classification
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In comparison, the DS excl.Pheno model achieves an AUROC of 0.810 (std. 0.03) and an 
AUPRC of 0.200 (std. 0.07), recalling 75.9% of pathogenic gene pairs with a 24.1% false 
positive rate at the optimal threshold. The fully trained model, consisting of 27 rules, 
identifies 12/15 held-out pathogenic gene pairs.

For baseline comparison, we compared these to a simpler model based on the random 
walk with restart (RWR) probability from the knowledge graph (restart probability = 
0.7) [37]. Our analysis, detailed in Additional file 1: Fig. F1, demonstrates that while the 
graph’s topology alone can predict disease-association patterns, our approach, by har-
nessing the semantics of heterogeneous paths, outperforms this baseline model (incl. 
Pheno: mean AUPRC=0.159, excl.Pheno: mean AUPRC=0.084).

While the model incorporating phenotype information delivers promising results, 
its limitations must be considered. Specifically, the disproportionate Gene-Phenotype 
annotation coverage in disease-associated genes could introduce bias in machine-learn-
ing models trained on this dataset. While only 23.5% of all human genes are linked to 
a phenotype term, the proportion rises notably to 82.6% when considering only genes 
involved in known oligogenic diseases (see Additional file 1: Fig. G1).

This suggests that models trained with phenotype association features could primar-
ily make decisions based on these features and thus, disproportionately identifying 
gene pairs from the limited 23.5% pool of phenotype-annotated genes. To illustrate the 
effect of this bias, we examined the Digenic Gene Predictor (DiGePred) [20], a statisti-
cal machine-learning method that reports high-accuracy (average AUROC of 0.972 in 
cross-validation) in predicting pathogenic gene pairs. This model assigns 44% of feature 
importance to phenotype-based characteristics, indicating a strong reliance on such fea-
tures. We evaluated this model on our independent test set comprised of recently pub-
lished instances (i.e potentially less affected by such knowledge bias). DiGePred was able 
to correctly identify 4/15 gene pairs, all of which were fully annotated with phenotype 
terms. The remaining gene pairs often lacked complete phenotype annotation (6/11) or 
had limited common phenotype terms (Jaccard Index between 0.01 and 0.11), making 
them harder to identify by this model (see Additional file 1: Table G3).

Similarly, the phenotype-inclusive model (DS incl. Phenotype) exhibits a similar bias 
(Additional file 1: Fig. G2). However, this model can nonetheless capture indirect Phe-
notype relationships due to the metapath-based design of its rules. This property ena-
bles the coverage of a wider pool of genes than methods relying on direct Phenotypic 
associations only (see example of the gene pair MYO7A-SHROOM2 in Additional file 1: 
Table G3).

We extended our analysis to evaluate the impact of removing various types of rela-
tionships (i.e., metaedges) in BOCK beyond just Phenotype relationships. Detailed 
results, provided in Additional file 1: Appendix H, show that eliminating physical inter-
action edges (GpG) and associations with biological processes (GaBP) adversely affects 
classifier performance. Removing other metaedges has a negligible effect on predictive 
performance. Interestingly, omitting gene functional relationships results in more intri-
cate graphical explanations (see next section), possibly due to an increased prevalence 
of gene-gene relationships in rules. The removal of the coexpression relationship GeG 
reduces the number of paths in the provided explanations, likely owing to the high fre-
quency of GeG edges in BOCK (see Table 1).
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Metapath‑based rules highlight relevant paths as predictive explanations

The predictive model presented in this work offers both global interpretability and 
context-specific explanations for pathogenic gene pairs. On the one hand, the sim-
plicity of this model model allows users to examine all the rules that contribute to a 
pathogenic prediction. On the second hand, it provides transparent predictions by 
returning the matching rules associated with each predicted pathogenic gene pair.

Most importantly, all the rules from our model can be translated into a KG query, 
which retrieves a manageable subset of paths from BOCK. This subgraph contains 
concrete relationships and entities that can assist in generating hypotheses about the 
potential molecular mechanisms underlying the disease of interest.

As an example, we consider the gene pair MYH7-ANKRD1 from the independent 
test set, which was predicted as pathogenic with a high probability by both deci-
sion set models. Previous studies have demonstrated the involvement of this gene 
pair, with a digenic pattern, in Left ventricular noncompaction disease (LVNC) 
(ORPHA:54260; HP:0030682) associated with Dilated cardiomyopathy (DCM) phe-
notype (HP:0001644) based on familial evidence [54]. Exploring paths of up to length 
3 between these two genes in BOCK (excluding “Phenotype,” “Disease,” and “Oli-
gogenicCombination” entities) reveals a large subgraph comprising 342 paths, 127 
nodes, and 447 edges (Fig. 6A).

Fig. 6 Predictive explanations generated by querying matching rules on the KG This figure showcases 
the example of the digenic gene pair MYH7-ANKRD1, part of the independent test set and predicted as 
disease-causing with the highest probability. A Subgraph extracted by traversing all paths (excluding those 
traversing “Phenotype”, “Disease” and “OligogenicCombination” nodes) of a length ≤ 3. A total of 342 paths, 
127 nodes and 447 edges exists. B Top 5 matching rules ranked by their associated probability score. Each 
rule is written in their abbreviated form (see Table 1) with its conditions separated by &. Indices for node types 
(e.g. BP1 ) are used in unification conditions (e.g. BP1=BP2 ) to constrain entities to be the same across different 
metapaths. The numerical value associated with each metapath (e.g. ≥ 0.21) sets the path reliability threshold, 
which conditions the minimum path reliability score of all underlying paths. We display the number of paths 
obtained by querying the KG with the rule with that specific gene pair. C Returned explanation subgraph for 
the 1st rule based on the 7 matching paths. D Returned explanation subgraph for the 2nd rule based on the 
5 matching paths. Entity types are represented with the same colors as in (A). Explanations subgraphs for the 
3rd, 4th and 5th rules are provided in Additional file 1: Figs. I
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The DS excl.Pheno model applied to the MYH7-ANKRD1 gene pair returns matching 
rules ranked by their associated probabilities. Figure 6B displays the top 5 rules along 
with the number of paths retrieved by querying the KG. Due to stringent path thresholds 
and the use of unification conditions, each of the top rules yields only a few paths. The 
first two rules are showcased in Fig. 6C, D, providing graphical explanations.

The first rule corresponds to a pattern where both genes of the combination share a 
common biological process (GaBP1aG) and where a third gene, physically interacting, is 
also involved in the same biological process (GaBP2aGpG; BP1=BP2 ). Both genes from 
the pair are also linked with a long-range physical interaction.

The second rule describes a pattern where a central gene (G1=G2 ) physically interacts 
with the second gene while sharing a biological process (GaBPaGpG) and a common 
cellular component (GaCCaGpG) with the first gene. Both genes of the pair also share a 
common biological process (GaBPaG).

In 4 out of the 5 presented rules, functional entities associated with the sarcomere 
(GO:0030017, GO:0045214) are shown relevant both via direct and indirect paths (Fig. 6 
and Additional file 1: Fig. I). Mutations in sarcomere protein genes have been linked to 
both LVNC and DCM diseases [55, 56]. Among traversed genes, ACTN2 has been previ-
ously associated with LVNC [57], TTN to LVNC and DCM [58, 59] and MYPN to DCM 
[60]. The association of other genes postulates novel hypotheses for further exploration. 
For example, MYL1, MYOM2, TRIM63 and PSMD4 have been broadly associated with 
myopathies [61–64] but not directly to LVNC or DCM yet, and could therefore be con-
sidered as potential targets to investigate.

Discussion
In this study, we introduced BOCK, a knowledge graph (KG) developed to contextu-
alise oligogenic interactions within broader biological networks. This new resource, in 
combination with our associative classification framework, allows for the extraction of 
predictive rules based on path information between known pathogenic gene pairs in the 
KG. Notably, this approach predicts the pathogenicity of gene pairs with accuracy and 
provides relevant path-based explanations.

Previous methods often examined biological networks in isolation, using simplified 
quantitative measures such as graph distances or Jaccard indexes as features. By con-
trast, our unified KG-based strategy consolidates disparate resources and uncovers a 
wider range of semantically rich interactions. While individual biological networks can 
be noisy and incomplete, combining them into a KG mitigates these issues, enhancing 
network connectivity and substantiating the relationship evidence between gene pairs. 
Additionally, we focused on trusted high-quality sources to build BOCK and refined our 
rules with operators able to filter lower quality or uninformative paths.

The rules underpinning our model are generated using an association rule mining 
approach, with a focus solely on known oligogenic gene pairs and their frequency of 
occurrence. This unsupervised methodology allows exploration of larger feature space 
compared to traditional greedy algorithms, particularly beneficial for discovering inter-
esting rules within imbalanced datasets [65]. The minimum support criterion prevents 
overfitting by excluding rare and non-generalisable patterns, ensuring that each rule 
is based on multiple instances of known pathogenic combinations. Additionally, the 
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incorporation of unifications and path reliability thresholds further enhances the speci-
ficity and interpretability of the extracted patterns. However, to manage the extensive 
number of rules potentially generated, we imposed stringent constraints on the search 
space. Enhancements in computational efficiency or KG filtering approaches [66] could 
be considered to explore patterns beyond these limitations.

We chose to construct an associative classifier, specifically a decision set [47], known 
for their interpretability within machine learning models. These models have been 
shown to enhance classification accuracy compared to other rule-based models by 
uncovering global patterns during the mining stage [50]. However, it is important to 
acknowledge that our gene pair pathogenicity predictor, when excluding phenotype 
information, exhibits a relatively high false positive rate. This outcome may be due in 
part to the uncertainty surrounding our selection of neutral gene pairs, which relied on 
the frequency of potentially deleterious variant pairs in healthy controls. To address this 
issue, future work might involve more nuanced strategies for neutral pair selection, as 
well as the integration of gene or variant-level features, KG latent representations [67], 
or a combination of our approach with existing black-box predictors [68].

To mitigate potential bias stemming from the limited phenotype annotation cover-
age across human genes, we intentionally developed a model that excludes phenotype-
related paths. Our method demonstrates the capability to handle indirect relationships, 
allowing the inclusion of a wider pool of genes beyond those directly linked by phe-
notypic associations. However, incorporating phenotype-based rules may favour well-
studied gene pairs and overlook those located in less-explored regions of the phenotype 
annotation network. In light of these considerations, when exploring the oligogenic ori-
gins of diseases, employing both phenotype-inclusive and exclusive predictors could be 
advantageous to ensure a comprehensive analysis.

Our proposed approach stands out by providing contextual explanations based on a 
knowledge graph (KG), offering insights that are more meaningful and trustworthy com-
pared to explanations based solely on abstract features [48]. By translating rules into KG 
queries, we transform the explanations from an abstract feature space into concrete enti-
ties and relationships with traceable provenance, enhancing interpretability for the end-
user. However, applying this method in real-world cases comes with challenges, such as 
potential explanation complexity when querying dense regions of the KG and the pres-
ence of overlapping rules for some predictions. We also currently do not offer ways to 
validate explanations based on external sources of information. Further research should 
focus on developing systematic assessment methods to enhance the quality of explana-
tions and address these challenges.

Conclusion
In conclusion, our study highlights the potential of leveraging heterogeneous paths 
in knowledge graphs (KGs) for accurate and interpretable predictions of pathogenic 
gene interactions. Our novel predictive framework distinguishes itself from exist-
ing approaches by featuring: (1) a KG that serves as a hub for deriving all metapath-
based features, (2) a rule-based model that transparently explains its decisions, and 
(3) context-based explanations that present relevant subgraphs tied to positive pre-
dictions. Although our present work primarily focuses on interaction patterns and 



Page 14 of 25Renaux et al. BMC Bioinformatics          (2023) 24:324 

interpretability, future research could further develop this model by including addi-
tional features or working in concert with statistical learning methods. Such advance-
ments, when linked with explanation-focused approaches using knowledge graphs, 
could offer a deeper understanding of oligogenic diseases and provide clearer and 
more insightful genetic interaction predictions.

Methods
BOCK data integration and resources

We integrated multiple biological network and ontology resources, together with the 
information on known oligogenic diseases, into a KG called BOCK (Biological net-
works and Oligogenic Combinations as a KG). In KGs [69, 70], nodes and edges can 
be qualified with types, facilitating the integration of heterogeneous concepts into a 
single graph.

In our KG, nodes represent biological entities and biomedical concepts defined by a 
specific node type, a unique Uniform Resource Identifier (URI) linking the node to its 
source database entry, as well as optional node properties. Edges represent relation-
ships between these entities, defined by a specific type and an optional confidence 
score, indicative of the quality or the strength of the relationship.

Sources for creating the KG were selected based on domain knowledge and accord-
ing to multiple criteria: (1) Relevance in human disease aetiology: by considering mul-
tiple biological levels of organisation often affected in pathologies and by selecting 
strictly for human-derived data; (2) Quality control: by favouring resources based on 
clear curation policies and substantial accuracy in the case of electronically inferred 
annotations; (3) Gene coverage: by only considering resources linking at least 20% of 
all human genes; (4) Accessibility and interoperability: by choosing resources from 
public and free-to-use databases, attributing each entity with a unique and retrievable 
identifier. The KG integration is summarised in Additional file 1: Table A1, describing 
all source databases and their versions, and in Additional file 1: Table A2 describing 
how the source information is structured and pre-processed. The final schema of the 
KG is provided in the results, Fig. 1.

Oligogenic combinations

OLIDA aggregates curated information about oligogenic diseases gathered from the 
medical literature [15]. Each entry consists of a genetic variant combination involving 
several genes linked with contextual information, such as the associated disease, the 
source scientific article, the suspected oligogenic effect and its curation confidence 
scores.

The BOCK KG encodes the relational information from OLIDA by linking the 
involved “Gene” and “Disease” entities via a dedicated “OligogenicCombination” node 
pointing to the OLIDA identifier of a given oligogenic variant combination. Addi-
tional properties have been added to this node, such as the OLIDA curation con-
fidence scores, the publication DOI and timestamp, the ethnicity of the associated 
patient and the suspected oligogenic effect [71].
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Gene mappings

Considering that clinical studies on oligogenic cases rarely report the effect of vari-
ants on specific encoded proteins, we chose to reduce the model complexity of BOCK 
by collapsing all protein identifiers at the gene level into entities of type “Gene”. Gene 
and protein identifiers from all integrated resources were collapsed and mapped 
into their corresponding Ensembl identifiers. The databases Ensembl [72], UniProt 
[73] and HGNC [74] were used as a reference to handle potential identifier mapping 
ambiguities.

Edges linking protein pairs were also collapsed as edges between their associated 
genes, with an associated score computed as the maximum of all original scores.

Two properties were also added to the “Gene” entity: the Residual Variation Intoler-
ance Score (RVIS) [75] and the human Gene Damage Index (GDI) [76], obtained from 
dbNSFP [77].

Protein interactions

Direct protein-protein interactions (PPI) were sourced from Mentha [78], a resource 
aggregating exclusively manually curated protein-protein interaction databases that 
have adhered to the IMEx consortium, with a particular emphasis on experimentally 
verified interactions compared to other PPI sources. The Mentha human interactome 
data was integrated into BOCK, establishing physInteracts edges between Gene enti-
ties, weighted by the provided Mentha reliability score.

Protein sequence similarity

Sequence similarity links were built using BLAST pairwise protein alignment bit 
scores [79] obtained from STRING [80]. In line with human homology detection 
recommendations [81], only proteins with aligned regions covering at least 50% of 
the shorter protein were considered. The Blast Score Ratio (BSR) was computed [82], 
bounding all alignment scores in the interval [0,  1], and edges with BSR values of 
at least 0.2, determined based on functional similarity signal [83], were included as 
“seqSimilar” types, linking “Gene” entities and weighted based on BSR.

Tissue co‑expression

We extracted tissue-specific co-expression data from the TCSBN database [84]. Com-
pared to other databases, TCSBN leverages GTEx’s comprehensive RNA-seq data 
[85] and offers detailed tissue-specific co-expression statistics, greatly enhancing the 
resolution of downstream analyses. To enhance signal strength, we applied several 
filters: (1) Tissues with fewer than 70 samples were excluded per GTEx recommen-
dations, and redundant subtypes were consolidated. (2) Co-expression relationships 
involving a gene with a z-score below -3 in any given tissue, as per the standardised 
GTEx median tissue gene expression levels, were discarded [86]. (3) Edges were kept 
only if they exhibited significant adjusted p-values (< 0.01) and strong correlation 
( ρ ≥ 0.80), adjusted by tissue sample size with the Fisher transformation [87]. These 
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were integrated into the KG as type “Gene”, linked by “coexpresses”, and scored by the 
maximum correlation value across tissues. The “in” edge property records the set of 
tissues.

Protein domain and families

We extracted protein domain and family information, as well as their annotations on 
human proteins, from the InterPro database [88]. Entries from InterPro were integrated 
as “ProteinDomain” and “ProteinFamily” node types and linked to nodes of type “Gene” 
via edges of types “hasUnit” and “belongs” respectively.

Protein complexes

Protein complexes were extracted from the CORUM database [89], a resource of man-
ually annotated protein complexes from mammalian organisms. Compared to other 
resources, CORUM exclusively provides species-specific data from curated publications, 
without any inference between organisms. We selected complexes found in human and 
integrated each complex as a “ProteinComplex” node linked, via an edge “forms”, to its 
sub-units corresponding “Gene” entities.

Phenotype and disease information

Phenotypic information from the Human Phenotype Ontology (HPO) [90] was inte-
grated, focusing on all non-obsolete terms under the category “Phenotypic abnormal-
ity” as “Phenotype” nodes. These nodes were connected with respective “Gene” entities 
using the provided phenotype-gene annotations, creating “associated” edges.

Disease information, sourced from medical literature and reference disease data-
bases such as OMIM and Orphanet [90, 91], was coupled with phenotype associations. 
A “described” edge was created between “Disease” and “Phenotype” entities, scored 
according to the frequency of the phenotype when available.

Gene ontology annotations

The Gene Ontology (GO) knowledge base’s three sub-ontologies — “BiologicalProcess” 
(BP), “Molecular Function” (MF), and “Cellular Component” (CC) — were integrated 
into the KG, excluding obsolete and root terms [92]. Human gene associations from 
the Gene Ontology Annotation (GOA) file were included, specifically retaining posi-
tive associations identified with qualifiers “enables”, “involved_in”, “is_active_in”, and 
“located_in”. We discarded non-curated or not biologically supported associations (evi-
dence code IEA and ND, respectively). The refined associations were linked to “Gene” 
entities and the corresponding GO entity with an “associated” edge type.

Gene functional annotation relationships

In the KG, many entities linked to “Gene” correspond to functional annotation terms, 
represented as nodes of type: “ProteinDomain”, “ProteinFamily”, “ProteinComplex”, 
“Phenotype”, “BiologicalProcess”, “MolecularFunction” and “CellularComponent”.

We assigned a score to the edges between one gene and an annotation term, esti-
mating how informative these relationships are. This score was determined by looking 
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at how frequently an annotation term occurs on human genes, with infrequent terms 
receiving higher scores and more common terms receiving lower scores.

More formally, we defined a metric, the functional information (FI), given an annota-
tion term t ∈ T  of a specific entity type. This metric corresponds to the information con-
tent of the term t, scaled by the maximum information content and is therefore bound in 
the [0, 1] interval (Eq. (1)). The information content of a term t is derived from the ratio 
of the count of genes associated with that term, g(t), and its subterms ts , to the count of 
genes associated with all terms of the same entity type, g(T).

Semantic similarity relationships

The KG incorporates the terms from two comprehensive ontologies, GO and HPO, 
structured as hierarchies of terms interconnected by semantic associations in the form 
of a directed acyclic graph. We considered the term subclass hierarchies, obtained by 
extracting all “is a” relationships, to compute semantic similarity links between each pair 
of terms. The semantic similarity is a measure taking into account the distance between 
terms in a subclass hierarchy, with a higher value indicating terms with a similar mean-
ing. More specifically, we computed the SimGIC semantic similarity, based on the infor-
mation content of ancestor terms, which has been shown to perform best when assessing 
similar gene sequences [93]. We integrated these semantic relationships with an edge of 
type “resembles” whenever the semantic similarity between two terms is higher than 0.5.

Gene pair selection criteria

Disease‑causing gene combinations

Familial and statistical evidence scores from OLIDA were used to attribute a weak, mod-
erate, and strong evidence level for each pathogenic variant combination. A weight was 
attributed to these instances according to the three defined levels of confidence (Addi-
tional file 1: Table B1).

All variant combinations involving two genes satisfying at least a weak evidence level 
were considered, amounting to a total of 794 variant combinations. These were subse-
quently aggregated at the gene pair level, weighted by the maximum confidence level. A 
total of 441 disease-causing gene pairs (D) were selected after aggregation (Additional 
file 1: Table B2).

To provide an independent testing of the predictive models, 15 pathogenic gene pairs 
were held-out. This test set was selected based on an automatic procedure designed to 
favour diverse, confident and recently published cases: first, all disease-causing gene 
pairs were ranked by their first associated article publication date, then for each gene 
pair from the most recent to the oldest, gene pairs were chosen if their evidence level 
was at least Moderate (Additional file 1: Table B1) and if none of their genes overlapped 
with the previously selected ones. Details about the selected gene pairs are provided in 
Additional file 1: Table B3.

(1)FI(t) =
− log |g(t ∪ ( ts⊑t ts))| / |g(T)|

log g(T)
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Neutral gene combinations

A neutral gene pair dataset (N) was collected from healthy individuals by selecting gene 
pairs frequently mutated with variants statistically similar to those observed in oligo-
genic combinations. Variants coming from 2490 healthy individuals from the 1000 
genome project (1KGP) [94] were first filtered based on the criterion of minimum allele 
frequency (MAF) ≤ 0.03.

The variants were collapsed at the gene level for each control individual, by retain-
ing the maximum CADD score [95] for all variants in each gene, resulting in a list of 
candidate genes and their associated score for each individual. Gene pairs were then 
generated and filtered, based on their frequency, to ensure that each selected gene pair 
occurred in a minimum of 50 healthy individuals.

Gene pairs were further selected if their maximum CADD score was higher than 3.57, 
corresponding to the first quartile (Q1) of the distribution of maximum CADD scores 
for all gene pairs occurring in OLIDA. In order to prevent sampling too many gene pairs 
from the same linkage disequilibrium block, we further constrained neutral gene pairs to 
be sampled from different chromosomes or to have their genomic coordinates at least 10 
kb apart.

We finally calculated a gene pair score by averaging the minimum CADD scores 
between genes over all patients. This score was used to rank the selected gene pairs in 
decreasing order and the top 44.100 gene pairs were selected from this ranking, resulting 
in an imbalance ratio of 1:100 between the disease-causing gene pairs and the neutral 
gene pairs, respectively. This score was also used to assign a weight to each gene pair.

Rule discovery using KG paths

Path traversal and confidence scoring

The relational information between all selected gene pairs was captured via a path tra-
versal of the oligogenic KG, a path filtering procedure and a subsequent aggregation of 
paths into path types, also known as metapaths.

In the initial phase of the method, a traversal is conducted over all potential paths 
within the oligogenic KG between each identified gene pair. Each path begins from the 
gene with the lowest Residual Variant Intolerance Score (RVIS) [75] and ends at the 
gene with the highest score. The traversal process is not constrained by the original edge 
directionality; however, this directionality is encoded within the resulting metapath. For 
this study, the path_cutoff parameter, limiting the maximum number of edges in a 
path, was set to 3.

In order to maintain consistency between the properties of edges traversed, certain 
paths were automatically discarded. This consistency filtering was, in practice, only 
applied to paths crossing multiple “coexpresses” edges, where the tissues specified in the 
“in” property of these edges were not compatible with each other.

Finally, the paths were aggregated into metapaths, a sequence of node types and edge 
types that records the semantic pattern of the relationship. The original path informa-
tion was recorded for later use in the mining stage.

To be able to compare and rank paths following the same metapath based on the infor-
mativeness and quality of relationships, a path reliability score was also attributed to 
each path by computing the geometric mean of all composing edge scores.
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Association rule mining on paths

Frequent associations of metapaths were extracted from the disease-causing gene 
pairs using a level-wise search based on the Apriori algorithm [52], designed for the 
efficient exhaustive discovery of frequent patterns over transactional data. These pat-
terns are considered as class association rules (CAR) [49] in the form: conditional 
pattern → class label, with disease-causing ( lD ) as the only class label.

Each mined rule r is associated with a support value based on the covered disease-
causing gene pairs Cr(D) . We set the minsup_ratio parameter controlling the min-
imum relative support to consider a rule valid to 0.2 for this study. Both support and 
minsup_ratio were adjusted according to the weight associated with each gene 
pair in order to give more importance to instances with higher confidence. For this 
study, the max_rule_length parameter was set to 3, limiting the maximum num-
ber of metapath conditions in a rule.

We extended the mining of simple metapath associations by searching for unifica-
tion constraints between metapaths. Unifications are variables expressed in multi-
ple conditions that can be substituted with the same value. This concept has been 
adapted to metapaths by searching for nodes at the intersection of paths associated 
with at least two different metapaths. Unified patterns were limited to one unification 
constraint and these patterns have the same minimum support constraint.

Finally, to minimise the redundancy of mined patterns, we only selected closed 
itemsets, by discarding all patterns where at least one of its superset pattern has the 
same support count [96].

Optimisation of path reliability thresholds

In order to limit the number of paths that could contribute to noise and reduced 
interpretability, previously mined rules were refined with conditions aiming to filter 
out paths below a certain path reliability score threshold. We implemented this refine-
ment stage by searching, for every metapath composing a rule, a minimum threshold 
in the interval [0, 1] conditioning the associated paths in the training set to be scored 
with a value higher or equal to that threshold.

Note that, if high threshold values for a rule are set, fewer paths may be yielded, 
but the rule support may be decreased or the rule may even be invalidated if the sup-
port doesn’t meet the minimum support constraint; therefore, this search was imple-
mented to take this tradeoff into account.

A differential evolution algorithm [97, 98] was used for this search, considering the 
non-linear problem to be solved. This algorithm works by evolving and combining a 
population of solutions (here, the optimal threshold values for a rule), retaining the 
most fit candidate solutions at each generation.

We implemented the fitness of a rule, given a set of thresholds � , as defined in 
Equation (3). This fitness function is influenced positively by the rule support (i.e the 
coverage of disease-causing instances Cr(D) ) and negatively by the number of paths 
returned on matching instances Pr(d) (with d ∈ D ) on average (Eq. (2)). A fitness of 0 
was returned for thresholds where the rule support was lower than minsup_ratio, 
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to enforce the minimum support constraint. Gene pair weights were used to adjust 
both the rule support and the average number of paths calculation.

This optimisation was performed with the differential evolution DE/best/1/bin scheme 
[99] shown to be the most accurate and robust strategy, regardless of the characteristics 
of the problem to be solved. The algorithm was set with the following hyperparameters: 
a population size of 50, up to 1000 generations, a recombination constant of 0.7 and a 
mutation constant dithering from 0.5 to 1.

Training of a decision set classifier

All rules mined in the previous step were also applied to neutral gene pairs (N) to esti-
mate the rule negative coverage Cr(N ) for any rule r.

Using these rules, we trained a decision set (DS) model [47], a type of associative clas-
sifier [50] based on a collection of unordered rules interpreted as disjunction. Training 
a decision set consists of two phases: first, selecting a representative subset of rules out 
of an initial rule set and second, estimating the class probabilities associated with each 
model decision.

We implemented the first phase with the weighted set cover algorithm, inspired by the 
RUDIK rule mining method [38]. This greedy heuristic can find a representative subset 
of rules in reasonable time constraint. In this approach, a weight is assigned to a can-
didate rule set (Eq. (4)), with lower weights given to rule sets that have a high coverage 
of disease-causing gene pairs ( CR(D) ) and a low coverage of neutral gene pairs ( CR(N ) ). 
We adapted the coverage calculation to take into account instance weights. A parameter 
α ∈ [0, 1] calibrates the relative importance of the positive coverage or negative coverage.

This algorithm also defines a marginal weight wm (Eq.  (5)), that quantifies the weight 
increase by adding a rule r to the decision set of rules R.

The greedy procedure starts with an empty decision set solution R. Then, at each itera-
tion, it picks the rule from the original rule set with the minimum marginal weight and 
adds it to the solution R. The procedure stops when the marginal weight is greater than 
or equal to 0.

The selected rules were then used to build a predictive model. We assigned to each 
rule a probability estimate for the disease-causing class label ( lD ), defined in Equa-
tion  (6). This estimate corresponds to the precision of the rule corrected by the class 
imbalance in the training dataset.
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The model decision process was set up according to these criteria: (1) if a gene pair 
matches multiple rules in the decision set, the rule with the highest probability estimate 
is chosen; (2) If a gene pair does not match any of the rules, it is predicted as neutral with 
a probability estimate based on uncovered training instances.

Generation of knowledge‑based explanations

Contextual explanations were generated by first obtaining the matching rules 
returned by the model for a predicted positive gene pair and then using these rules 
to query the KG. The returned paths were then transformed into a set of nodes and 
edges, forming a subgraph.

The subgraphs were subsequently saved in the Graph Markup Language (GraphML) 
format [100] and could be explored via the graph visualisation software Cytoscape 
[101].
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