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Abstract 

Background: Fusion of RNA‑binding proteins (RBPs) to RNA base‑editing enzymes 
(such as APOBEC1 or ADAR) has emerged as a powerful tool for the discovery of RBP 
binding sites. However, current methods that analyze sequencing data from RNA‑base 
editing experiments are vulnerable to false positives due to off‑target editing, genetic 
variation and sequencing errors.

Results: We present FLagging Areas of RNA‑editing Enrichment (FLARE), a Snake‑
make‑based pipeline that builds on the outputs of the SAILOR edit site discovery tool 
to identify regions statistically enriched for RNA editing. FLARE can be configured 
to analyze any type of RNA editing, including C to U and A to I. We applied FLARE 
to C‑to‑U editing data from a RBFOX2‑APOBEC1 STAMP experiment, to show that our 
approach attains high specificity for detecting RBFOX2 binding sites. We also applied 
FLARE to detect regions of exogenously introduced as well as endogenous A‑to‑I 
editing.

Conclusions: FLARE is a fast and flexible workflow that identifies significantly edited 
regions from RNA‑seq data. The FLARE codebase is available at https:// github. com/ 
YeoLab/ FLARE.
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Background
Transcriptomics assays that leverage RNA base editing, such as DART-seq [14], TRIBE 
[13] and STAMP [3] have recently gained visibility as alternative and complementary 
technologies to immunoprecipitation-based methods in the mapping of the binding sites 
of RNA-binding proteins (RBPs). In general, such approaches involve the expression of 
a chimeric protein containing an RNA-editing enzyme and the RBP under investiga-
tion such that upon sequencing, the resulting bioinformatically identified edits indicate 
loci where the RBP interacts with transcripts. Compared to traditional cross-linking 
and immunoprecipitation (CLIP)-based technologies, editing-based technologies offer 
advantages such as lower input material and faster and technically simpler assays, ena-
bling higher throughput RBP binding site analyses with isoform sensitivity and utility 
in single cell assays [3]. Although these novel technologies continue to be optimized 
for uses across a wide variety of RBPs, cell types and conditions, it is clear that such a 
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high-throughput protocol needs to be paired with a high-throughput, scalable and auto-
mated pipeline for determining sites with significant editing, which we call “clusters.” 
Calling clusters from edit data requires separating true edits from noise, with such noise 
deriving either from sequencing errors or off-target editing. While there are many tools 
available for detecting RNA-editing sites (i.e. single bases experiences editing), including 
SAILOR [4], SPRINT [24], and REDItools [12], there currently exist no computational 
pipelines for detecting clusters of enriched editing across groups of sites, aside from 
RNAEditor [8], which only is applicable for detection of A-to-I edits.

To address this need to identify regions exhibiting significant enrichment for various 
types of RNA edits, we present the FLARE (FLagging Areas of RNA-editing Enrichment) 
analysis pipeline. FLARE allows for analyses of all types of RNA base changes, includ-
ing A-to-I, C-to-U, and U-to-C [7], with only minor changes in configuration required 
to enable analysis of additional types of synthetic RNA edits. Using SAILOR outputs as 
a starting point—although in principle outputs from other similar tools like JACUSA2 
[18] could be adapted for use as FLARE inputs—FLARE accounts for background edit-
ing rates to filter false positives from truly edited regions, and scores identified clusters 
for use in downstream applications.

We demonstrate FLARE’s application to analyzing C-to-U RNA-editing data in the 
context of STAMP using the RNA-binding protein RBFOX2, in A-to-I editing in the 
context of TRIBE, and in the context of endogenous ADAR-deposited A-to-I edits. We 
also include a Snakemake [15] implementation of the SAILOR software [4] updated to 
enable detection of any types of edits.

Implementation
Region windowing, edit tabulation and Poisson filtering

FLARE takes as inputs the edited positions, which are the sites that contain at least one 
edit conversion at that position within any read as determined by the SAILOR algorithm 
[4]. The core assumption underlying FLARE’s methodology is that a large fraction of 
these candidates, after the removal of common SNPs as part of the SAILOR workflow, 
might represent non-specific binding or sequencing errors. These should be filtered out 
in the process of identifying regions where an RNA-editing enzyme, whether fused to 
an RBP as in STAMP or not, is more consistently editing. FLARE subdivides any gene 
sequences containing edits into fixed-size tiled windows in which the fraction of editable 
bases that are edited is calculated (a script for generating appropriate windows from a 
Gencode [5] GTF (Gene transfer format) file is included in the FLARE codebase). Apply-
ing a simplifying assumption that RNA-editing enzymes are uniformly likely to non-spe-
cifically stochastically interact with all expressed transcripts, we frame the deposition of 
spurious “noisy” edits found within each window as a Poisson process, with the Poisson 
rate parameter representing how many such “background” edits per editable site might 
be expected on average. Editable sites are defined as, for example, all Cs in a window in 
the case of C-to-U editing. Any windows exhibiting a statistically significant increase in 
their edit counts relative to the expected, Poisson-modeled distribution of “noisy” edits 
are considered enriched for editing, and kept for further processing (Fig. 1).

Given that FLARE only considers genomic regions known to have at least one edited 
site, we employ a zero-truncated Poisson model, which enforces a 0% probability of a 
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given window having zero edits. Simulating edit count data for one replicate using this 
model, based on the number of editable bases in a window, lines up well with empirical 
data (Additional file 1: Figure S1A). Adjusted residuals between modeled and empirical 
edit counts are only slightly positively correlated with total target editable substrates, 
indicating that the Poisson process is a reasonable model (Additional file 1: Figure S1B).

Clearly, the choice of the Poisson parameter is important—if it is too high this will lead 
to an increase in false negatives because certain regions that generally see lower editing 
will not achieve statistical significance, while if it is too low this will instead lead to an 
increase in false positives. FLARE employs a mix of different Poisson parameters for dif-
ferent subsets of windows to best account for region and coverage-related variation in 
background editing rates.

The first distinction is made between editing in intronic and exonic regions. RNA 
background editing rates would be expected to differ across intronic and exonic regions 
depending on where in the cell and at what point during pre-mRNA processing editing 
occurs. For example, a cytoplasmic RBP might be expected to interact less with intronic 
regions than a nuclear RBP, and any RNA base-editing enzyme fused to such an RBP 
would naturally deposit edits differentially on such regions. FLARE explicitly incor-
porates this possible difference in exonic and intronic editing noise, using the average 
editing rate across only all exons as the Poisson parameter when processing exons, and 
likewise for introns.

In addition, low read depth in a given window can mean that edit fractions are arti-
ficially inflated by noise, and must be taken into account when calculating a Poisson 
parameter. For instance, in a window where there are only 5 possible substrate bases due 
to low coverage, a single edited base will lead to a window edit fraction of 0.20, whereas 
a single edit in a window with 500 substrate bases will have an edit fraction of 0.002. Any 
window containing a single edit in a single read bearing multiple possible editable sites 
arguably represents noise, and it is evident that evaluating all windows using a Poisson 
background model derived from the mean edit fraction of highly covered windows will 
lead to an excess of such lowly covered windows being called significant.

Assuming that edits accumulate at regions where the RBFOX2 fusion protein is pre-
sent, one would generally expect windows with higher edit fractions to be more reflec-
tive of authentic RBFOX2 binding sites. That is, they should be more likely to overlap 
with RBFOX2 eCLIP (enhanced cross-linking immunoprecipitation) peaks, and to con-
tain the canonical GCAUG RBFOX2 binding motif, irrespective of window read depth. 
However, the correlation of edit fraction with these two “ground truth” metrics only 

SAILOR output

• Regions of interest, subdivided into 

• Edit type (e.g. C to U, A to G)

Calculate fraction 
of target bases edited 
in windows and 
background regions 

Calculate p-values 
for windows based on 
zero-truncated 
Poisson model

Merge overlapping
based on negative
binomial model

Calculate FDR
for each window and

below threshold

• FDR threshold • Minimum distance within 
which to merge windows

User-Provided
Parameters:

Scored clusters

Fig. 1 FLARE pipeline schematic. SAILOR edit sites serve as anchors informing which regions to search for 
edit enrichment. After filtering regions based on edit fraction using a Poisson model, remaining regions are 
merged to yield final clusters, which are then scored for downstream use
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approaches steady-state value for windows with at least 50 reads in our example (Addi-
tional file 2: Figure S2A). Based on this observation, the Poisson parameter for windows 
with lower read depths is calculated by taking the mean edit fraction of only windows 
with lower read depths. More specifically, a separate Poisson parameter is calculated for 
windows with less than 10, 20, 30, 40 and 50 reads, respectively. This ensures that the 
signal strength at lowly covered regions must be stronger than that at highly covered 
regions for a window to be considered significant.

False discovery rate calculation and window merging

After windows are assigned p-values depending on their particular Poisson model, mul-
tiple hypothesis testing is accounted for by applying a Benjamini–Hochberg false discov-
ery rate procedure to generate adjusted p-values for all windows. Contiguous windows 
with an adjusted p-value exceeding a user-defined filtering threshold (default of 0.1) 
are then merged to form clusters. Window-merging distance, which defaults to 15 base 
pairs, can be increased by users desiring coarser clusters (Fig. 1).

Cluster scoring

Once final clusters have been obtained by merging filtered windows, the FLARE pipe-
line assigns them a score based on the cumulative distribution function (CDF) value of 
a given cluster edit fraction within a negative binomial distribution, using mean editing 
fraction among clusters as the p parameter.

Results
FLARE interface and usage

The FLARE pipeline is command-line based, and uses the Python-based pipelining 
framework Snakemake [15]. All processing steps described above run automatically to 
completion when all required inputs—a GTF file of window regions, a reference fasta 
file, and bam file, bigwigs and SAILOR output for a given sample—are present. Required 
libraries are loaded automatically using Snakemake’s Singularity [10] integration, ensur-
ing portability across Linux releases at least as new as CentOS 7. The current FLARE 
release also includes an updated Snakemake version of the SAILOR [4] pipeline—future 
releases will merge the SAILOR and FLARE pipelines to enable automatic runs all the 
way from fastq files to clusters.

FLARE filters out editing noise

We initially tested FLARE on RBFOX2-APOBEC1 STAMP data (C-to-U edits) in 
HEK293T cells, which were transiently transfected with RBFOX2-APOBEC1 fusion 
construct (doxycycline-induced expression for 72  h) before being prepared for RNA 
sequencing at a depth of 30 million reads. Based on our experience, we recommend that 
any library being used for RNA editing analyses with SAILOR and FLARE be sequenced 
at least this deeply.

In this RBFOX2 example, window and cluster specificity can be evaluated using 
eCLIP peak and canonical RBFOX2 motif (GCAUG) overlap, under the assumption 
that true binding sites should have a higher overlap with such features. The publicly 
available eCLIP dataset we used for this calculation [3] represents binding sites of the 
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chimeric RBFOX2-APOBEC1 protein, filtered for peaks with log2(fold-change) > 1 and 
p-value < 0.05. By our overlap metric, it is clear that applying more stringent adjusted 
p-value filters results in better window filtering and higher quality clusters, regardless 
of window read depth. More specifically, 28%, 32% and 35% of windows with adjusted 
p-values of below 0.1, 0.01, and 0.001 overlapped with eCLIP peaks or the canonical 
motif, respectively, with these proportions increasing to 36%, 42% and 47% for windows 
with a read depth exceeding 50 (Fig. 2A). After merging, these windows yielded clusters 
exhibiting similar overlap fractions of 29%, 33% and 36%, respectively; clusters derived 
from windows with at least 50 reads exhibited overlap fractions of 35%, 42%, and 47% 
(Fig. 2B).

This increase in cluster quality corresponding to increasing p-value filtering stringency 
indicates that our model is successfully preferentially filtering out false positive sites. 
Importantly, using FLARE’s window-based approach to cluster detection attains higher 
sensitivity and specificity (more clusters at a lower false positive rate) than merely fil-
tering individual SAILOR-called sites based on SAILOR confidence scores (Additional 
file 2: Figures S2B, S2C).

Of course, the more genomic area any putative clusters cover, the more they will 
trivially overlap eCLIP peaks and canonical motifs, so it is important to ensure that the 
overlap is statistically significant. To this end, we randomly relocated clusters within 
their respective exons to create 30 artificial cluster sets derived from each replicate. 
We observed that none of these permutations coincide with eCLIP peaks and with 
the canonical GCAUG RBFOX2 motif as frequently as the true experimental clusters 
(Fig. 2C). In addition, increasing adjusted p-value filtering stringency also increases the 
overlap enrichment of our clusters compared to the artificial shuffles, defined as the 
true overlap value divided by the mean overlap value of the random permutations. This 
empirical assessment suggests that FLARE clusters are enriched for eCLIP overlap and 
GCAUG content with a high degree of significance, and that increasing FLARE filtering 
stringency enhances this enrichment.

FLARE scores stratify edited regions by confidence

Cluster specificity can be improved by retaining clusters with higher scores, which are 
more likely to overlap eCLIP peaks and GCAUG motifs (Fig. 2D). In addition, among 
the clusters that overlap eCLIP peaks, higher scoring clusters tend to overlap stronger 
eCLIP peaks (based on eCLIP log2 fold-change), implying that cluster score could pos-
sibly be an indicator of binding strength (Fig. 2E). Naturally, filtering more stringently 
comes at the cost of sensitivity, with less clusters recovered overall at higher minimum 
score thresholds (Fig.  2F). Choosing an appropriate threshold depends on how many 
clusters are identified by FLARE and how much stringency is desired, but based on this 
example we recommend filtering for clusters with a score of at least 0.95 initially.

Use of replicates and further exploration of FLARE cluster properties

The filtering and scoring steps in the FLARE pipeline successfully separate signal from 
noise, but confirmation of cluster presence across multiple replicates is recommended 
to further improve precision and confidence in detected binding-sites. We see a vast 
improvement in specificity attained in this example when retaining only clusters found 
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across all 3 biological replicates, with up to 58% of the highest-scoring clusters overlap-
ping with eCLIP or the canonical GCAUG motif (Fig. 2G).

There are various plausible reasons why even after filtering for high FLARE scores 
there is still a subset of STAMP editing clusters that overlap neither eCLIP peaks nor 
the canonical GCAUG motif. First of all, the APOBEC1 catalytic site does not edit at 

A

Cluster StatisticsB

Window Statistics

C
Actual fraction

Permuted fractions

Actual fraction

Permuted fractions

D E

F G

Number of Clusters, average over triplicatesFraction of Clusters Overlapping eCLIP Peak or GCATG motif, average over triplicates

Fraction of Windows Overlapping eCLIP Peak or GCATG motif, average over triplicates Number of Windows, average over triplicates

Actual vs permuted fraction of STAMP clusters with GCATG motifActual vs permuted fraction of STAMP clusters overlapped by eCLIP

Fraction of �nal clusters with supporting evidence by score Mean log2 fold-change for overlapped eCLIP peaks by minimum cluster score

Number of clusters by score, average over triplicates
Fraction of Final Clusters Overlapping eCLIP Peak or GCATG motif

for Various Replicate Merge Approaches by Score

Fig. 2 Poisson model scoring filters out regions less likely to reflect true RBFOX2 binding events. a Windows 
with lower adjusted p‑values are more likely to overlap with the canonical RBFOX2 motif, GCAUG, and with 
eCLIP peaks. b Clusters resulting from merging filtered windows reflect a similar trend, with clusters formed 
from more stringently filtered windows exhibiting a larger overlap with both motif and eCLIP peak presence. 
c Clusters formed from more stringently filtered windows are more highly enriched for motif and eCLIP 
presence compared to a null distribution of clusters of comparable sizes randomly shuffled within respective 
introns and exons. d RBFOX2 clusters with higher scores exhibit higher overlap with the canonical GCAUG 
motif or RBFOX2 eCLIP peaks. e Among clusters that overlap eCLIP peaks, higher scoring clusters tend to 
overlap stronger eCLIP peaks. f Representation of the number of clusters by score. g Cluster quality can be 
boosted immensely by retaining clusters found across multiple biological replicates
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the actual binding site, which is naturally occupied by RBFOX2. It follows that many 
clusters should be expected to reside at some distance from true binding sites, as Rah-
man et al. described in the context of their similar HyperTRIBE A-to-I editing-based 
method [21]. Indeed, many eCLIP peaks and GCAUG motifs can be found in regions 
within 200 bases from cluster boundaries, which might explain the presence of some 
of STAMP-specific clusters (Additional file 2: Figure S2D).

Along with this, introduction of the APOBEC1-RBFOX2 construct effectively 
results in elevated RBFOX2 concentrations, so that the fusion construct may be more 
likely to bind to lower binding-affinity, secondary versions of the GCAUG motif, as 
Begg et al. [2] described in their 2021 publication. To see if these intermediate affin-
ity motifs could partially explain some FLARE clusters’ provenance, we calculated 
what fraction of clusters contain at least one of the 7 top motifs found by Begg et al. 
[2] to most strongly bind RBFOX2: GCACG, GCUUG, GAAUG, GUUUG, GUAUG, 
GUGUG and GCCUG. Compared to a set of control motifs (all possible pentam-
ers, excluding ones containing 3-mer substrings of these 7 RBFOX2 motifs, or the 
highly conserved start and end pair of Gs), eCLIP-overlapping clusters are slightly 
more likely than non eCLIP-overlapping clusters to contain secondary motifs (Mann–
Whitney U test p-value = 0.038; Additional file  2: Figure S2E), indicating that the 
presence of an RBFOX2 secondary motif can increase our confidence that the clus-
ter reflects a real binding event. Even so, the fraction of eCLIP-overlapping clusters 
containing such motifs (Additional file 2: Figure S2F) is of a similar magnitude to that 
in non-eCLIP-overlapping clusters (Additional file 2: Figure S2G), relative to the con-
trol background, thus we can infer that many of these FLARE-exclusive clusters may 
indeed reflect real binding events at intermediate affinity motifs. Under this assump-
tion, then over 80% of FLARE clusters can be considered to have eCLIP or motif-
based evidence.

For reference, a majority of FLARE clusters in this example are less than 150 bases 
long, with a long tail of longer clusters (Additional file  2: Figure S2H), and only 
between 25 and 40% of individual edit sites are found in final clusters, depending on 
the score threshold used (Additional file 2: Figure S2I). Given the boost in specificity 
attained at higher score thresholds, this relatively low edit-in-cluster fraction simply 
reflects the high levels of off-target noise expected in a dataset of this nature and rein-
forces the need for statistical filtering.

Window size does affect final clusters and can be tuned empirically to achieve opti-
mal results. In these analyses we use a window size of 30 base pairs (set as the default 
in the window-generating script), as it appears to strike a balance between precision 
and statistical significance among the 10, 20, 30, 40, and 50 base pair size options 
we tested (Additional file  4: Figure S4A, B, C, D). In general, an optimal clustering 
solution will maximize the average number of editing sites per cluster, which should 
contain more than one editing site, while minimizing the total genomic area covered 
by all clusters, which ensures that cluster coordinates are precise enough to be useful 
in ascertaining exact binding sites. When assessing different window sizes, we suggest 
using a metric we term the “efficiency score”, (Additional file  4: Figure S4E), which 
incorporates these two competing demands into one optimization problem; in our 
example, we do indeed observe a maximization of the efficiency score at a window 
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size of 30 base pairs. As 30 base pairs also appears to work well in the analyses 
described in the next sections, we recommend it as a reasonable window size for most 
analyses.

Application to TRIBE and HyperTRIBE A‑to‑I editing data

To demonstrate FLARE’s compatibility with methods that use A-to-I editors, we ran 
SAILOR and FLARE on ADAR-induced editing data produced by Hrp48-TRIBE and 
HyperTRIBE in S2 cell lines [13, 21]. As expected, based on the known improvements 
in editing exhibited by HyperTRIBE, FLARE identifies an order of magnitude more clus-
ters in the Hrp48-HyperTRIBE dataset than in the Hrp48-TRIBE data, which in turn has 
an order of magnitude more clusters than a wild-type control (Fig.  3A). As described 
in McMahon et al. [13], a greater proportion of these clusters are found in the 3’UTRs 
than in the WT control (Fig. 3B). In addition, the differences in editing cluster counts 
are preserved across all FLARE cluster score thresholds (Fig. 3C), with FLARE scores for 
these clusters correlating well with enrichment of clusters for overlap with Hrp48 CLIP 
(Fig. 3D), both when comparing to wild-type Hrp48 CLIP data and Hrp48-TRIBE CLIP 
data (Additional file 3: Figure S3A). We have demonstrated how FLARE can be used to 
assess  both C-to-U and A-to-I based editing data in STAMP and TRIBE-like systems, 
but in principle SAILOR and FLARE are also amenable to analyses of any other type of 
base conversion.

Application to native ADAR A‑to‑I editing cluster detection

To assess to what extent FLARE can also be applied to detection of naturally occurring 
RNA editing, we ran FLARE on RNA-seq data from U87 glioblastoma cell lines from 
a recent publication exploring ADAR3’s impact on RNA A-to-I editing in glioblastoma 
[20]. Adenosine-to-Inosine edits, which are catalyzed by members of the ADAR family 

A B

C D

Fig. 3 FLARE can be used to analyze A‑to‑I editing in TRIBE and HyperTRIBE data. A An order of magnitude 
more clusters are found in Hrp48‑HyperTRIBE datasets than in Hrp48‑TRIBE datasets, which in turn has an 
order of magnitude more clusters than the WT control. B A greater proportion of clusters are found in 3’UTRs 
in the TRIBE and HyperTRIBE datasets than in the WT datset. C The relative differences in cluster count are 
preserved regardless of what FLARE score threshold is used. D Higher FLARE scores correlate positively with 
fraction of clusters overlapping CLIP peaks, normalized to fraction for WT
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on double-stranded RNA (dsRNA) substrates, are in coding regions usually found at 
isolated single sites. However, in non-coding areas of the genome including introns, 3’ 
UTRs and intergenic regions, they instead tend to be found in dense clusters amenable 
to detection using the FLARE methodology—indeed, this applies for more than 99% of 
the millions of A-to-I edits in the genome [1]. More specifically, edits caused by ADAR1 
are highly likely to be found in Alu repeat elements, which naturally form dsRNA due to 
their palindromic nature [1, 9].

Decreases in Alu editing have been observed across a variety of cancer tissues, both 
in terms of numbers of edited sites and fraction of reads edited at such sites [16]. In the 
brain, this inhibition of editing is in some cases prompted by the binding of ADAR3, 
which, unlike its globally expressed family members ADAR1 and ADAR2, is specifically 
expressed in brain tissue and does not exhibit A-to-I editing activity [19].

In a recent publication comparing A-to-I editing in U87 glioblastoma cells (which 
endogenously express low levels of ADAR3) to editing in U87 cells with higher levels 
of ADAR3 exogenously introduced, Kurup et al. determined that transcripts exhibiting 
reduced A-to-I editing in glioblastoma are more likely to be bound to ADAR3. Within 
such transcripts, Kurup et al. identified several dozen genomic sites consistently exhibit-
ing reduced editing across three biological replicates, but note that apart from these spe-
cific instances, “there was substantial variability in the specific sites with altered editing.” 
Indeed, among the replicates, about ten times more differentially edited sites were only 
specific to one replicate than were shared. Examining editing changes at wider regions 
representative of clustered editing, using the approach offered by FLARE, enables the 
aggregation of RNA editing signals to elucidate interesting changes that might be missed 
when analyzing changes at a site-specific level.

Comparing changes in A‑I editing rates in FLARE‑identified clusters across conditions

Running SAILOR followed by FLARE on the three wild-type (WT) replicates and 
ADAR3 + replicates yielded several thousand clusters across all six samples (Fig.  4A). 
To ensure subsequent analyses were carried out on highly confident clusters, the clus-
ters with a score below 0.99 were filtered out, which reduced the total cluster count by 
about half across samples (Fig. 4A). Among shared clusters within the WT set, correla-
tion coefficients of cluster edit fraction between any two of the three replicates ranged 
from 0.93 to 0.94, and among shared clusters within the ADAR3 + set, correlation coef-
ficients ranged from 0.86 to 0.9. This consistency supports the assertion that the clusters 
represent real A-to-I editing loci. There were 730 clusters exhibiting A-to-I editing that 
were shared across all replicates in both conditions, among which slightly less than 10% 
exhibited a directionally consistent shift in edit fraction between conditions (Fig.  4B, 
C). Echoing Kurup et al.’s findings in their original single site analysis, overlapping clus-
ters with decreased editing were more likely to be found in transcripts experimentally 
found to be bound by ADAR3 than overlapping clusters without decreases in edit-
ing (p-value = 0.0346, one-tailed Fisher’s Exact test; Fig.  4D), supporting the idea that 
ADAR3 presence on transcripts can inhibit the editing activity of ADAR1. It is worth 
noting that many individual editing sites within clusters exhibiting decreased editing are 
not shared across replicates, which would preclude the identification of a subset of these 
differentially edited loci using a site-specific approach (Fig. 4E).



Page 10 of 15Kofman et al. BMC Bioinformatics          (2023) 24:370 

While a cluster-based approach still recapitulates the main finding in Kurup et al. 
that the innate immunity-related protein MAVS exhibits reduced editing, there were 
also many other interesting genes that emerged from this analysis that were not found 
across all replicates in Kurup et al.’s site-specific approach. Specifically, a region coin-
ciding with an AluJo- element towards the 3’ end of the non-coding RNA NEAT1, 
whose expression has been linked to tumor malignancy in glioma [6, 11, 23], was 
found to consistently experience less editing in the ADAR3 + condition than in the 
control condition (Fig. 4F, G). Intriguingly, a recent study found that the NEAT1 tran-
script is stabilized via changes in binding behavior enabled by ADAR1-induced RNA 
editing, where the A-to-I edits in question are found within a dsRNA structure involv-
ing the exact same Alu element identified using FLARE [22]. Given that NEAT1 edit-
ing is inhibited in the ADAR3 + condition, it might be expected that reduced ADAR3 
levels might stabilize NEAT1 and contribute to tumor growth. This effect is seen in 
glioma, with ADAR3 expression dropping as tumor stage progresses, a pattern found 
both in the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas 

Fig. 4 FLARE identifies regions with ADAR3‑linked differential A‑to‑I editing. a Number of A‑to‑I editing 
clusters called across samples, without and with minimum score filtering. b Shared replicated clusters 
distribution. c Histogram depicting ratio of mean edit fraction in ADAR3+ vs control U87 at shared editing 
clusters identified by FLARE. d Shared clusters bound by ADAR3 are highly enriched for a decrease in edit 
fraction in the ADAR3+ condition compared to the control condition. e Even among clusters shared by 
replicates, many editing sites are unique to each replicate. f IGV snapshot of a Alu‑overlapping region towards 
the 3’ end of non‑coding RNA NEAT1 which experiences reduced editing in an ADAR3+ context. Coverage, 
edit fraction, and cluster regions plots are shown for each sample, with edits highlighted on bar plots (“A”s 
are green and “G”s are brown). A phastcons (20 species) conservation track is also shown at bottom. g Edit 
fractions across samples, within the differentially edited NEAT1 cluster



Page 11 of 15Kofman et al. BMC Bioinformatics          (2023) 24:370  

(TCGA; [25]). Although NEAT1 was not particularly highly enriched for binding to 
ADAR3 in Kurup et  al.’s RIP-seq assay, it was nevertheless enriched in IP fractions 
compared to input fractions in the ADAR3 + condition, leaving open the possibility of 
ADAR3-NEAT1 interactions. While follow-up experiments are necessary for confir-
mation, it is plausible that editing changes in the differentially edited region identified 
in NEAT1 using a cluster-based approach may be linked to tumor progression.

In general, the results of running FLARE to identify A-to-I editing clusters in these 
U87 samples indicates that the pipeline can indeed be successfully applied to detect 
endogenous RNA editing, and that employing a cluster-based method highlights dif-
ferent areas than a site-specific method when looking at differential editing. When 
analyzing clustered editing sites in non-coding regions of the genome, such as in Alu 
regions, a cluster-based approach may serve as an informative complement to a site-
based approach.

Comparison to similar tools

The most similar available pipeline for highlighting edit clusters is RNAEditor [8], 
which is designed to exclusively detect A-to-I edits, and finds RNA editing “islands” 
using heuristic cutoffs of edited site merge distance and cluster minimum edit site 
counts. We benchmarked FLARE’s performance against RNAEditor’s to make sure 
it achieves comparable results. We ran FLARE on the same datasets from the origi-
nal RNAEditor publication, namely whole transcriptomes of B cells both treated with 
non-targeting control (“NT”) and ADAR1 siRNAs.

As a minimum validation, after filtering for clusters with the maximum scores, 
FLARE-derived results recapitulate John et  al.’s expected observation that knock-
ing down ADAR1 leads to fewer editing clusters (Fig. 5A) [8]. In addition, the clus-
ters detected by FLARE in the ADAR1-knockdown condition generally boast lower 
edit fractions than those in the baseline or non-targeting siRNA conditions, again as 
expected (Fig. 5B), and replicable clusters for each condition also exhibit the expected 
count decrease (Fig. 5C).

Next we compared the overlap in A-to-I editing clusters found by each approach. In 
the baseline (untreated) condition, which had the most RNAEditor editing clusters, 
replicable FLARE clusters coincided with 484 of 627 (77.2%) replicable RNAEditor 
clusters (Fig.  5D). However, FLARE appears to be more sensitive, finding a total of 
1960 or approximately three times more replicable clusters than RNAEditor. Indeed, 
the replicable clusters exclusively found by FLARE tended to be of lower editing frac-
tions (Fig. 5E); RNAEditor’s heuristic approach might have missed them. To address 
the possibility that the clusters found exclusively by FLARE were not false positives, 
we demonstrated that the FLARE-specific clusters exhibited a marked decrease in 
overlap with Alu elements in the ADAR1 knockdown condition compared to the non-
targeting and baseline conditions (Fig. 5F). Given that ADAR1 is known to highly edit 
Alu elements [17], this lends weight to the argument that they are not false positives, 
and most likely do reflect true ADAR1-edited sites. Overall, this comparison again 
demonstrates that FLARE is well-suited to analysis of endogenous A-to-I editing, and 
that it achieves similar results to approaches currently in use.
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Conclusion
Whether applied in the context of exogenous RNA-editing using technologies such as 
STAMP or TRIBE, or endogenous ADAR-based A-to-I editing, the FLARE pipeline is 
an effective tool to efficiently locate and prioritize loci significantly enriched for edit-
ing. We demonstrate that FLARE’s Poisson-based filtering approach preferentially fil-
ters out false positive editing sites to yield high confidence clusters, and that the scores 
FLARE subsequently assigns to these clusters enable further stratification and increased 
stringency.

We emphasize that FLARE is capable of detecting clusters of any type of transition or 
transversion—to our knowledge, there are no existing RNA editing site detection and 
clustering pipelines currently available that can process all edit types.

FLARE leverages the Snakemake python framework [15] and Singularity [10] 
to ensure that researchers can easily run each step of FLARE on their data with-
out worrying about package requirements or obscure mid-run failures. FLARE is a 

Distribution of Edit Fraction in Clusters

Edit Fraction

Number of Replicable Clusters Cluster Overlap: FLARE vs RNAEditor

Edit fraction distribution within clusters for each sample

Fraction of FLARE-exclusive replicable clusters overlapping Alu elements

A B

C D

E F

Fig. 5 Comparison of FLARE to RNAEditor. A ADAR1‑knockdown leads to a decrease in cluster counts B 
Clusters in the ADAR1‑knockdown condition have lower edit fractions. C Replicable clusters also conform to 
the expected trend. D FLARE recapitulates a majority of RNAEditor “editing islands.” E The additional clusters 
found by FLARE but not RNAEditor tend to be of lower edit fraction, reflecting FLARE’s increased sensitivity. F 
FLARE‑exclusive clusters exhibit the expected decrease in overlap fraction with Alu elements
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parallelizable, fast and easily implementable tool for detecting editing-enriched foci, 
and we anticipate that it will prove useful to those in the research community looking 
to gain more insights from their RNA editing data.

Abbreviation
RBP  RNA‑binding protein
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Additional file 1: Figure S1. Validation of the zero‑truncated Poisson model. a Simulated edit count distribution 
matches actual edit count distribution well. b Residuals at lower coverage windows exhibit little correlation to cover‑
age. It is worth noting that although the model loses fidelity in regions at extremely highly covered windows (c), the 
resulting overestimation of expected edit counts in such areas will tend to lead to under‑calling of regions rather 
than false positives, erring on the conservative side to increase precision at the expense of recall

Additional file 2: Figure S2. FLARE cluster properties and comparison to site‑based approach. a The correlation of 
window edit fraction with window precision, which is expected to be both positive and uncorrelated to window 
read depth, only stabilizes above a read depth of approximately 50 reads. b Generating 50 base pair windows 
surrounding individual SAILOR sites, filtered by individual SAILOR site score exclusively, results in lower specificity 
than the approach employed by FLARE. c A site‑based approach also yields lower sensitivity than the cluster‑based 
approach. d Expanding RBOX2 FLARE clusters leads to higher rates of eCLIP or canonical RBFOX2 motif overlap. e 
FLARE clusters overlapping eCLIP are slightly likelier than ones not overlapping eCLIP to contain secondary RBFOX2 
motifs. f A higher fraction of eCLIP overlapping clusters contain secondary motifs than control motifs. g A higher 
fraction of non‑eCLIP overlapping clusters contain secondary motifs than control motifs. h Between approximately 
25% and 40% of edit sites can be found within peaks depending on score threshold. i The cluster length distribution 
with 30 bp windows has a long tail but is centered around approximately 100 bp

Additional file 3: Figure S3. TRIBE and HyperTRIBE datasets are amenable to FLARE analysis. a There is an enrich‑
ment for overlap with Hrp48 CLIP peaks of Hrp48‑TRIBE and Hrp48‑HyperTRIBE, when normalized to WT overlap

Additional file 4: Figure S4. Window size affects sensitivity and statistical significance—graphs produced using a 
single replicate. a Larger windows yield more precise but slightly less statistically significant RBFOX2 clusters based 
on eCLIP overlap. b Larger windows yield more precise but far less statistically significant RBFOX2 clusters based on 
eCLIP overlap. c Marginal gains in precision from larger window sizes decrease for each size increase. d As window 
size increases, neighboring small clusters merge to form larger clusters, but this merging and the resultant decrease 
in total clusters is less dramatic at higher values. e The “efficiency score” metric can be serve as a guide to tune 
window sizes for optimal clustering
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