
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Chen et al. BMC Bioinformatics          (2023) 24:325  
https://doi.org/10.1186/s12859-023-05453-3

BMC Bioinformatics

EDST: a decision stump based ensemble 
algorithm for synergistic drug combination 
prediction
Jing Chen1, Lianlian Wu2, Kunhong Liu1*, Yong Xu3, Song He4 and Xiaochen Bo4 

Abstract 

Introduction: There are countless possibilities for drug combinations, which 
makes it expensive and time-consuming to rely solely on clinical trials to determine 
the effects of each possible drug combination. In order to screen out the most effec-
tive drug combinations more quickly, scholars began to apply machine learning 
to drug combination prediction. However, most of them are of low interpretability. 
Consequently, even though they can sometimes produce high prediction accuracy, 
experts in the medical and biological fields can still not fully rely on their judgments 
because of the lack of knowledge about the decision-making process.

Related work: Decision trees and their ensemble algorithms are considered to be 
suitable methods for pharmaceutical applications due to their excellent performance 
and good interpretability. We review existing decision trees or decision tree ensemble 
algorithms in the medical field and point out their shortcomings.

Method: This study proposes a decision stump (DS)-based solution to extract inter-
pretable knowledge from data sets. In this method, a set of DSs is first generated 
to selectively form a decision tree (DST). Different from the traditional decision tree, our 
algorithm not only enables a partial exchange of information between base classifiers 
by introducing a stump exchange method but also uses a modified Gini index to eval-
uate stump performance so that the generation of each node is evaluated by a global 
view to maintain high generalization ability. Furthermore, these trees are combined 
to construct an ensemble of DST (EDST).

Experiment: The two-drug combination data sets are collected from two cell lines 
with three classes (additive, antagonistic and synergistic effects) to test our method. 
Experimental results show that both our DST and EDST perform better than other 
methods. Besides, the rules generated by our methods are more compact and more 
accurate than other rule-based algorithms. Finally, we also analyze the extracted 
knowledge by the model in the field of bioinformatics.

Conclusion: The novel decision tree ensemble model can effectively predict the effect 
of drug combination datasets and easily obtain the decision-making process.
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Introduction
In recent decades, great advances in drug development have been made with the dis-
covery and application of new therapeutic targets [1]. However, because many diseases 
are complex and involve multiple target genes, a single therapy cannot cure the disease 
completely. Moreover, drug resistance in many cases is a major barrier to effective treat-
ment due to the complexity of the disease. To overcome the limitations of monotherapy, 
combination therapy is considered a promising approach to achieving better disease 
control. While high-throughput screening methods can be effective in speeding up the 
identification of synergistic drug combinations, the increasing number of drugs every 
year makes it expensive and time-consuming to rely solely on experiments to determine 
the effect of each possible drug combination [2]. So academics have begun to use meth-
ods in the field of statistics or computers to predict the most effective combination of 
drugs [3].

Having a complete drug combination database is the primary condition for analyzing 
efficacy, so some scholars have collected various existing experimental data and summa-
rized them into the database [4, 5]. And to better help others understand the relationship 
between drug resistance and drug signature attributes, they also provide visualization 
tools for drug combinations in the database [6–8]. With the support of databases, vari-
ous technologies began to emerge. More and more machine learning techniques-based 
applications had been proposed from different aspects [9–12]. For example, Julkunen 
et  al. [13] proposed comboFM, which modeled multidirectional interactions between 
cell lines and dose-response matrices of two drugs. Shi et  al. [14] combined one-class 
SVM to design a two-layer multi-class classification system integrating five types of 
features that can discover potential drug pairs among unknown drugs. There are also 
some scholars use semi-supervised heterogeneous network algorithms based on graph 
embedding to predict the combination patterns of drugs [15]. However, these methods 
based on traditional machine learning often do not achieve better prediction results. To 
this end, some scholars have tried to give up interpretability in exchange for improved 
accuracy.

DeepSynergy [16] which was constructed by a feed-forward neural network with two 
hidden layers is one of the early deep learning algorithms used in the drug combina-
tion. MatchMaker [17] which contained three neural subnetworks was proposed by 
Kuru et  al. Both DeepSynergy and MatchMaker have been used to predict drug syn-
ergies in recent years and proved popular. There are many similar deep learning-based 
algorithms used in drug prediction, and they usually have good performance [18–22]. 
However, the hundreds of neurons and the complex network structure make their inter-
nal logic incomprehensible. People therefore unable to conclude whether the predictions 
given by these models in practical applications can be trusted, which is considered very 
dangerous.

In order to balance the performance and interpretability of the model, scholars have 
made many attempts, including the ensemble algorithm based on decision trees. This 
algorithm not only improves the model performance by means of ensemble, but also 
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maintains the interpretability of the decision tree. That’s why our algorithmic frame-
work uses this approach. In addition, to avoid the problem of reduced interpretabil-
ity of knowledge after integration due to excessive depth of decision trees. We replace 
the binary splitting of traditional decision trees with multi-branched decision stump 
merging.

This study proposes an interpretable method for drug combination analysis. In detail, 
an ensemble algorithm is designed using DS-based tree structures as base learners. Our 
method is applied to classifying the drug combination data and extracting interpretable 
rules simultaneously. The main contributions of the paper are:

• The construction of a 1956-dimensional dataset of the drug combination in two cell 
lines.

• An effective ensemble algorithm, which not only eliminates the class imbalance 
problem by balancing the sampling probability and pairwise classification scheme, 
but also makes the decision information more global by introducing the stump 
exchange strategy.

• A new tree generation algorithm based on the combination of DSs, taking the influ-
ence of the entire data set into consideration with the trees growing in shallower 
depth and fewer leaf nodes to maintain high interpretability.

• The knowledge extracted by the algorithm analyzed in the field of bioinformatics.

Related work
Application of decision trees

As a typical interpretable model, the decision tree has been successfully applied to dif-
ferent situations [23]. For example, Deelder et al. [24] developed a customized decision 
tree method called Treesist-TB, which can detect genomic variants in individual studies 
within aggregated datasets and model variant interactions to predict TB drug resistance. 
Tayefi et al. [25] extracted rules from the decision trees to maintain high accuracy and 
strong ability in biomarker discovery. Narayanan et al. [26] proposed a new multivariate 
statistical algorithm, Decision Tree-PLS (DTPLS), which improves the prediction and 
understanding ability of models based on local partial least squares regression (PLSR). 
Azagury et al. [27] developed a decision tree-based machine learning model to capture 
drug pairs with biological synergy as well as synergistic chemical self-assembly.

Application of tree ensemble

The data distribution has a great impact on the decision tree structure, and the 
ensemble of decision trees tends to provide better stability. For example, Lu et  al. 
[28] proposed a hybrid ensemble algorithm combining AdaBoost with a genetic algo-
rithm for cancer gene expression data analysis. An et  al. [29] developed a Network 
EmbeDding framework in mulTiPlex networks (NEDTP) and used it to predict novel 
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drug-target interactions. This method first applies a random walk algorithm to the 
similarity network of drugs and proteins to extract and merge features in the net-
work. Finally, drug-target interactions prediction is made using the GBDT model 
implemented by LightGBM using drug and protein signatures. Xuan et al. [30] pro-
posed a new gradient boosting decision tree-based method named DTIGBDT and 
used it to predict drug candidate-target interactions. The algorithm divides the path 
between the drug and target into multiple classes through the topological informa-
tion of the drug-target heterogeneous network and constructs a model based on gra-
dient a boosting decision tree. Ma et  al. [31] combined a random forest algorithm 
and Shapley Additive exPlanation to predict the response of hepatocellular carcinoma 
under combination therapy. Hadi et al. [32] investigated the combination of quantita-
tive computed tomography parametric imaging with the AdaBoost decision tree to 
predict how LABC tumors respond to NAC.

However, some of these algorithms take lots of time because of their complexity, 
and some do not achieve ideal results in pursuit of interpretability. So we propose an 
algorithm with faster running speed and better interpretability under the premise of 
ensuring good performance.

Method
This section gives the details about the proposed adaptive ensemble method, as 
shown in Fig.  1. The right side of the figure shows the process of dividing the sub-
datasets through the one-vs-one method and training their decision trees for final 

Fig. 1 Overall flow chart of EDST algorithm
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voting. On the left is the process of data preprocessing and how to integrate the deci-
sion-making results of each subdatasets. The specific steps are as follows. Assume 
D = {(xp1, xp2, . . . , xpv , yp)}

n
p=1 represents the data set containing v features and n sam-

ples, where yp denotes the label of the p-th sample. Algorithm 1 describes the specific 
contents of the entire ensemble algorithm. In order to reduce redundancy and speed 
up operation, our algorithm first selects the features of the dataset in step 1. Unlike 
simple random sampling in traditional random forests, our algorithm generates sub-
datasets by the following sampling probability α:

where Nj represents the number of samples of the j-th class in dataset D and C repre-
sents the number of classes in dataset D. By assigning different sampling probabilities to 
samples of different classes, the samples in minority classes get higher sampling prob-
ability, so as to overcome the class imbalance problem. In this way, 2×m replicates give 
2×m different subsets of samples. Then, a stump-based decision tree (DST) is trained 
on each subset of samples and the top m trees that work best on the training set D are 
retained. Finally, the results of these m trees probabilistically vote to obtain the final 
output.

After introducing the overall framework of the integration algorithm, the specific 
process of generating a complete decision tree (DST) will be followed (steps 4–24). To 
increase accuracy for multi-classification problems, our algorithm first divides the data-
set into several sub-datasets by sampling in the one-vs-one scheme, which pairs up c 
classes to generate c(c − 1)/2 binary classification tasks (steps 4–5). Then, the algorithm 
needs to generate a corresponding stump for each feature (step 6). Fig. 2 shows the gen-
eral process of generating a DS on fi , where {(xpi, yp)|xpi = a} represents a set of sam-
ples taking value a and L represents the proportion of relevant labels in the group. For 
the continuous feature fi = {x1i, x2i, . . . , xni}

T which denotes the i-th feature vector, all 
training samples are sorted by their values in fi , forming a set of intervals. Samples are 

(1)αj =

1
Nj

C
j=1

1
Nj

,

( x1i = a, y1 = label 1 )
( x2i = b, y2 = label 2 )

( xni = h, yn = label 1 )

i th
feature

{(xpi, yp)|xpi=a}
L :[10:1]

{(xpi, yp)|xpi=b}
L :[8:0]

{(xpi, yp)|xpi=c}
L :[2:16]

{(xpi, yp)|xpi=g}
L :[1:20]

{(xpi, yp)|xpi=h}
L :[0:30]

i th
feature

{(xpi, yp)|xpi=a||xpi=b}
L :[18:1]

{(xpi, yp)|xpi=c}
L :[2:16]

{(xpi, yp)|xpi=g||xpi=h}
L :[1:50]

A dataset containing 
only a single feature

Fig. 2 An example of the tree stump generation
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divided into different intervals from smallest to largest according to their distribution. 
The label that appears most often in each interval is set as the final label. After that, the 
labels of all the intervals are checked, and the adjacent intervals with the same label are 
combined to form a group. For example, the top green square contains all samples with 
the i-th feature value a, where label 1 and label 2 are 10 to 1. Then, by comparing the 
proportion of samples in the adjacent green squares, the algorithm determines that the 
samples contained in the xpi = a and xpi = b squares are of the same category, and can 
be combined.

Next, we draw on ideas from the Genetic Algorithm (GA) to cross-mutate stumps in 
different subsets of samples (step 7). Based on the classification results of the stumps, 
the similarity of the two stumps is calculated by Eq 2. The 50% stump with the highest 
sum of similarities is screened out, which may have less information. Since there are a 
total of 2×m subsets of data, 2×m sets containing the highest similarity stumps can 
be obtained. If the stump generated by the same feature appears in multiple sets at the 
same time, the algorithm randomly exchanges them so that information can be passed 
between different subsets of data.

After the stump exchange is completed, the algorithm evaluates the classification perfor-
mance of their stumps and selects the stump with the best performance as the root node 
stump (steps 8–13). Here use the Gini index as the evaluation method for each node of 
the DS-based decision tree, and its formula is as follows:

where c is the number of classes in the present sub-dataset, u is the number of leaves of 
the feature tree stump, and p(j, z) represents the ratio of the number of samples in the j-
th class to the total number of samples in the z-th leaf node. This Gini index is modified 
by removing the penalty on the number of samples in the leaf to split the samples better. 
Finally, the stump is spliced in a loop iteration to generate an entire decision tree (steps 
14–21) until the sample contained in a branch is smaller than θ , which is set to n/10 in 
our algorithm.

In our algorithm, the use of DSs as the elements to build a decision tree makes the tree 
gain global information instead of local information on the data at each split, to enhance 
the tree’s generalization ability. The results of each tree are fused by the majority soft 
voting strategy to get the final decision. In this way, the base classifier DST required for 
the ensemble is obtained.

(2)Similarity =

∑n
p=1(xp × yp)

√

∑n
p=1(xp)

2 ×
∑n

p=1(yp)
2
,

(3)Gini =

u
∑

z

(1−

c
∑

j

p2j,z),
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Experiment
Datasets

In the dataset, a sample represent a drug combination on a particular cancer cell line, 
i.e., a drug combination-cell line pair. The samples are collected from DrugComb data-
base (v1.4) [4]. To predict cell line-specific synergistic drug combinations, samples from 
different cell lines are modeled separately. For a sample, DrugComb contains four types 
of synergy scores, including Bliss Independence, Highest Single Agent, Loewe Additivity, 
and Zero Interaction Potency, where positive values represent synergy and negative val-
ues represent the antagonism of the drug combination. In this study, samples are divided 
into three categories (Synergy, Antagonism, and Additive) based on all mentioned four 
synergy scores. Synergy or Antagonism represent those samples whose four synergy 
scores are both positive or negative numbers, respectively, while the remaining samples 
are classified as Additive. Then, the samples with missing features are removed. Finally, 
two typical cell lines, HT29 colorectal cell line and A375 melanoma cell line, that have 
the largest sample capacity are selected to construct the data set. Table 1 lists the num-
ber of samples in each class and each cell line. It can be observed that the number of 
samples in the Additive class is greater than the sum of the samples of the other two 
classes. This problem will affect model training and prediction.

The feature data are cell line-specific drug-inducible gene expression data extracted 
from L1000 project of the LINCS database. LINCS L1000 is the expanded CMap (Con-
nectivity Map) that can be used to discover mechanism of action of small molecules, 
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functionally annotate genetic variants of disease genes, and inform clinical trials [33]. 
In 2006, Lamb et al. piloted the CMap concept by treating cells with 164 drugs and tool 
compounds, and then performing mRNA expression profiling using Affymetrix micro-
arrays [34]. However, the small scale of CMap limited its utility [33]. Therefore, the 
CMap team proposed a new approach, L1000, to obtain gene expression profiling based 
on a reduced representation of the transcriptome. L1000 is a low-cost, high-through-
put method that only needs 1,058 probes for 978 landmark transcripts and 80 control 
transcripts, making it well-suited for a large-scale Connectivity Map. The first release 
of 1,319,138 L1000 profiles are termed CMap-L1000v1, which serves as the data source 
for our study. In this study, the cell line-specific drug-inducible gene expression data of 
978 landmark genes from the LINCS L1000 database are used to construct the feature 
dataset. The 978 landmarks have been shown to be sufficient to recover 80% of the infor-
mation in the full transcriptome by Subramanian et al. We first obtain the Level 5 data 
from LINCS L1000 project, which contain the z-scores of gene expressions with multi-
ple doses and times. For the data of different doses and times of the same drug in Level 
5, we get the unique gene expression by applying the moderated z-score approach, which 
is used to derive the consensus replicate signatures from Level 4 in LINCS L1000 project 
[33]. More specifically, the z-scores are weighted and averaged according to Spearman 
correlations. Finally, to obtain the feature of a sample, we splice together the 978-dimen-
sional gene expression profiles of two drugs in combination, resulting in a 1956-dimen-
sional feature vector. Excessive dimensionality of features is also a common problem in 
drug combination datasets [9]. This may increase the complexity of data processing and 
affect the prediction performance of the model.

The above-mentioned two major problems of unbalanced dataset samples and too 
high feature dimensions can be well solved in our algorithm through one-vs-one clas-
sification, probability sampling, and feature selection.

Classification performance

In this section, we verify the classification effect of our method with the above-men-
tioned dataset and compare it with other common algorithms and some tree-based 
methods, including decision tree, XGboost, traditional random forest, SVM, KNN, MLP, 
etc. The neural network model that is difficult to explain is not the focus of our atten-
tion. So we only choose Deep Synergy and MatchMaker, which are widely used for drug 
synergy prediction among the classifiers based on deep learning. In addition, in order to 
facilitate comparison, we also built a simple single-layer network structure with only the 
minimum parameter configuration. These machine learning methods are implemented 
through the scikit-learn. When the two deep learning methods of Deep Synergy and 
MatchMaker are used, we do not modify the default parameters except for changing the 

Table 1 Data distribution in each cell line

Name Combination medication dataset

Dataset size Antagonism Additive Synergy

HT29 (725, 1956) 134 451 140

A375 (130, 1956) 21 74 35
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activation function from linear to softmax. To ensure fairness, we use the same sample 
set for all methods. We used 80% of the samples in the combination drug data of the two 
cell lines as the training set and the remaining 20% as the test set and adopted a five-fold 
cross-validation method. The specific files of the dataset and algorithm implementation 
can be found at https:// github. com/ chenj ing13/ EDST.

Since the dataset contains a large number of addition effect samples, which are often 
the ones that we do not need to pay too much attention to, we focus on the performance 
evaluation indicators such as AUC, F1 score, and the minority class metrics of recall and 
precision, which are also calculated through metrics function in the scikit-learn library, 
the formula is as follows:

where TP/FP indicates that the positive predictions are true/false, and TN/FN indicates 
that the negative predictions are true/false. ranki indicates the position of the i-th sam-
ple sorted by probability from smallest to largest. These indicators are used because all 
of the above datasets are unbalanced, and the more important synergies and antago-
nisms account for a small number of samples in the total sample size.

Tables  2 and 3 show the results obtained from different cell lines. The F1 score* is 
calculated by the algorithm on the recall and precision metrics in the Antagonism and 
Synergy categories. For the classification results of different categories, the EDST model 
proposed in this paper outperforms other methods on most metrics, especially on AUC 
and F1 score. Furthermore, our method yields higher recall for both antagonism and 
synergy samples. Although performance on precision is not always the optimal, preci-
sion and recall have some degree of conflict, especially with unbalanced datasets. From 
the table, we can see that SVM, KNN, and so on all get a recall of the additive higher than 
0.8. That is because they classify more samples as additive, which results in fewer minor-
ity classes being identified. It can partly explain why these algorithms may show slightly 
higher in the precision of minority classes than ours. So AUC and F1 score can be the 
good criterion in this case. Finally, to observe the effect of each algorithm more clearly, 
we rank it, where Rank represents the ranking of each algorithm on AUC, F1 score, and 
all classes of recall and precision, and Rank* indicates the ranking of each algorithm on 
AUC, F1 score*, and the recall and precision of the class with fewer samples. he smaller 
the Rank or Rank* of an algorithm, the better it is. We can see that whether on Rank or 
Rank*, our algorithm is ahead of others. All the hyperparameters used in the model are 
shown in Table 4.

(4)Precision =
TP

TP+ FP
,

(5)Recall =
TP

TP+ FN
,

(6)F1score =
2 · Precision · Recall

Precision + Recall
,

(7)AUC =

∑c
i∈k ranki −

(TP+FP)(TP+FP+1)
2

(TP+ FP)(TN + FN)
,

https://github.com/chenjing13/EDST
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While our method does not always perform better on summed samples, it can achieve 
better performance in the minority class. That is, our method slightly sacrifices the per-
formance of the majority class to guarantee results for the minority class. The method 
achieves the highest AUC and F1 score, which further confirms that the method can 
handle the class imbalance problem well.

Performance of DS‑based tree

Again, we are using the F1 score as a judging metric to compare the performance differ-
ences between the DS-based decision tree and the traditional one without an ensemble. 
The results are shown in Fig. 3. The F1 score of the DS-based tree is always better than 
that of the traditional decision tree on the dataset of both cell lines. This means that our 
algorithm performs better than traditional decision trees on the balance of predictions 
between the two cell line samples.

Ablation experiment

Advantages of the one‑vs‑one scheme

Table 5 gives the classification results of DST with and without the one-vs-one scheme. 
Whether it is in the F1 score or the recall and precision of minority classes, those that 
have used the one-vs-one scheme have better results than those that have not used the 
one-vs-one scheme, which indicates that some samples not identified by the feature 
stump can be partially correctly identified after using the one-vs-one scheme.

Table 4 Model Hyperparameters

Number of trees 100

Proportion of the exchange of stumps 10%

Maximum depth of the decision tree 10

Minimum number of samples for leaf nodes 10%

Fig. 3 DS-based tree and traditional decision tree F1 score comparison
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Advantages of the stump exchange module

Table  6 shows the performance comparison of the algorithm EDST with or without 
using the stump exchange module. We can see from the table that the EDST algorithm 
using the stump exchange module performs significantly better on the F1 score and the 
recall and precision indicators of one minority class, but does not significantly improve 
on the other minority class. We suspect that this may be due to the data of the Synergy 
class being insensitive to distribution.

Determination of feature selection number

To solve the high-dimensional problem of the data and reduce the time and storage costs 
of the algorithm, we added a feature selection module and found the optimal number of 
features through experiments. We used chi-square as the criterion for feature selection 
and used five-fold cross-validation to look at the relationship between the number of 
selected features and the F1 score, respectively. In the experiment, we first worked out 
the correlation between the F1 score and the number of selected features and found that 
increasing the number of features did not significantly improve the performance of the 
algorithm (Fig. 4). This shows that our algorithm can perform well using only very few 
features. On the other hand, more features would greatly reduce the efficiency of the 
algorithm. Then we found by ANOVA that when the number of features is set to around 
300, the variance of the algorithm is small (Figs. 5, 6). We believe that too many or too 
few features may increase or decrease the selection range of tree node features, thereby 
increasing the instability of the tree. Therefore, 300 is finally determined as the number 
of features selected by the algorithm.

Table 5 Dst module with and without using the one-vs-one scheme on HT29 and A375

HT29 F1 score Minority class recall Minority class 
precision

With one-vs-one 0.4598 0.3872 0.4857 0.3301 0.3429

Without one-vs-one 0.4539 0.3202 0.4286 0.3076 0.3938

 A375 F1 score Minority class recall Minority class 
precision

With one-vs-one 0.3947 0.3429 0.3500 0.4278 0.2086

Without one-vs-one 0.3747 0.2571 0.3000 0.3217 0.3357

Table 6 EDST algorithm with and without using the stump exchange module on HT29 and A375

HT29 F1 score Minority class recall Minority class 
precision

With stump exchange 0.4603 0.5148 0.6286 0.3223 0.3824

Without stump exchange 0.4470 0.4926 0.6214 0.2917 0.3694

 A375 F1 score Minority class recall Minority class 
precision

With stump exchange 0.4680 0.5143 0.3900 0.4593 0.3319

Without stump exchange 0.4470 0.4286 0.3900 0.3979 0.3652
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Evaluation of interpretability

To compare the interpretability of two trees with different growth patterns, we calcu-
lated the average maximum depth and number of leaf nodes for the two trees under five-
fold cross-validation, respectively. The depth of the tree is used to represent the number 
of features used in a single decision, and a shallower tree means a shorter length of the 
generated rules. The number of leaf nodes can represent the complexity of the model to 
a certain extent. As can be seen from Table 7, the average maximum depth and number 
of leaf nodes of trees grown using our method are half of those of traditional decision 
trees. This means that DS-Based Trees have better interpretability than traditional deci-
sion trees. Next, we extract the rules of each tree according to the decision path and cal-
culate the accuracy and coverage of each rule using the following formulas:

Fig. 4 The relationship between the number of features selected and the F1 score in the EDST algorithm

Fig. 5 The relationship between the number of features selected and the variance in the EDST algorithm on 
HT29
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where Rcoverage and Raccuracy represent the coverage and the accuracy of the rule R. The 
extracted rules are shown as “IF 0.59 < feature 1695 ≤ 0.66 AND 0.52 < feature 431 ≤ 
1.00 THEN PREDICT Additive THAN Synergy; IF feature 1604 ≤ 0.37 AND feature 404 
≤ 0.71 THEN PREDICT Additive THAN Antagonism”, which means features 1695 and 
431 distinguish the sample as the additive instead of the synergy and features 1604 and 
404 distinguish it as the additive instead of the antagonism. Finally, we rank all the rules 
using Eq. 8 and select the top to analyze their biological significance.

For example, in A375 melanoma cell line, the most important rule extracted for 
classifying synergy and other classes is “IF 0.2088 < feature 1237 ≤ 0.3578 AND 
0.3618 < feature 142 ≤ 0.6430 THEN PREDICT Synergy THAN Additive; IF 1.0 < fea-
ture 1850 THEN PREDICT Synergy THAN Antagonism”. It is observed that the dif-
ferential expression of features 1237, 142, and 1850 is crucial in the A375 cell line. 
The features 1237, 142 and 1850 represent the expression value of gene KIT, STX1A, 
and UFM1, respectively. Among them, genes KIT functions in the regulation pro-
cesses of cell proliferation, migration, stem cell maintenance, differentiation and the 
occurrence of melanoma and some other cancers [35]. It is reported that KIT might 

(8)score =
2 ∗ Rcoverage ∗ Raccuracy

Rcoverage + Raccuracy
,

Fig. 6 The relationship between the number of features selected and the variance in the EDST algorithm on 
A375

Table 7 Size comparison of the two trees

Name Maximum depth of tree Number of leaf nodes

DS‑based tree Decision tree DS‑based tree Decision tree

HT29 4.4 16 78.6 185.6

A375 3.6 9.8 31.6 46.6
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be an important tumor-promoting factor that associated with metastasis and over-
all poor prognosis in the A375 cell line [36]. The differential expression rule of gene 
KIT extracted by EDST might be the key factor in the study of the A375 melanoma 
cell line. In HT29 colorectal cancer (CRC) cell line, the rule of “IF 0.6469 < feature 
1305 ≤ 0.7266 THEN PREDICT Synergy THAN Additive; IF 0.7260 < feature 1225 ≤ 
1.0 THEN PREDICT Synergy THAN Antagonism” is extracted as an important rule to 
the synergy prediction process. The features 1305 and 1225 represent the expression 
value of genes DDR1 and NFKB2. DDR1 has been shown to be highly expressed in 
most colon adenocarcinomas and appears as an indicator of worse event-free survival 
[37]. Arfi et al. suggested that the frequent high expression of DDR1 in colon cancer 
can be explored as a potential therapeutic target in this indication [37].

Gene ontology (GO) biological processes and KEGG pathway enrichment

To explore the influence of drug-induced gene expression on synergy, the key features 
affecting the prediction process are selected, and the genes involved in the key feature 
subsets are further investigated in this subsection. The importance of each feature for pre-
diction is determined by the selected frequency in the EDST. Based on the contribution 
value, the features ranked among the top 217 or 223 are selected on A375 or HT29 cell line 
respectively. The extracted features make about 90% contribution to the two cell lines. To 
summarize the characteristics of genes involved in these contributing features, the Gene 
Ontology biological processes and KEGG pathway enrichment among these features are 
investigated. The top 10 enrichment results are shown in Fig. 7 (adjusted P-value < 0.05 ). 
On the A375 cell line, the most enriched biological processes are response to nutrient lev-
els, axonogenesis and positive regulation of neurogenesis. The most enriched pathways are 
the Chemokine signaling pathway, Shigellosis and Focal adhesion. But on the HT29 cell 
line, the enrichment results are different. The most enriched biological processes are regu-
lation of cell cycle phase transition, positive regulation of cell cycle and cell cycle G2/M 
phase transition. The most enriched pathways are the PI3K-Akt signaling pathway, Epstein-
Barr virus infection and Human papillomavirus.

Leave drug combinations out

The leave drug combinations out method is a common cross-validation strategy in the field 
of bioinformatics [16]. In this method, the dataset is first divided into t groups according to 
drug types. Then, when dividing the training data and test data for each group, all samples 
containing the drugs in the group are used as the test data, and the others are used as the 
training data. In this way, we can evaluate the performance of the model in the presence 
of unknown drugs. In this experiment, we set t to 6. The results of our algorithm are com-
pared with those of other algorithms, which are shown in Tables 8 and 9. From these tables, 
we can see that our algorithm is comparable to or better than other algorithms in the AUC 
and F1 score and also ahead of other algorithms in the ranking of multiple indicators. This 
experiment illustrates from another perspective how our algorithm performance is due to 
other algorithms.  
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Conclusion
In this paper, we collected and constructed a combined drug dataset of colorectal 
cell lines and melanoma cell lines and proposed a novel stump-based decision tree 
ensemble algorithm for synergistic drug combination prediction. Extensive experi-
ments showed that the decision tree generated by our algorithm is more interpretable 
than the traditional decision trees, and the use of ensembles can effectively improve 
the identification accuracy of minority classes in drug combinations and reduce the 
interference of large classes on samples. Finally, we showed the analysis results of the 
algorithm in the field of bioinformatics.

Fig. 7 Gene Ontology (GO) biological processes and KEGG pathway enrichment on HT29 and A375
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