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Abstract 

Background:  The human gut microbiome (HGM), consisting of trillions of microor-
ganisms, is crucial to human health. Adverse drug use is one of the most important 
causes of HGM disorder. Thus, it is necessary to identify drugs or compounds with anti-
commensal effects on HGM in the early drug discovery stage. This study proposes 
a novel anti-commensal effects classification using a machine learning method 
and optimal molecular features. To improve the prediction performance, we explored 
combinations of six fingerprints and three descriptors to filter the best characterization 
as molecular features.

Results:  The final consensus model based on optimal features yielded the F1-score 
of 0.725 ± 0.014, ACC of 82.9 ± 0.7%, and AUC of 0.791 ± 0.009 for five-fold cross-valida-
tion. In addition, this novel model outperformed the prior studies by using the same 
algorithm. Furthermore, the important chemical descriptors and misclassified anti-
commensal compounds are analyzed to better understand and interpret the model. 
Finally, seven structural alerts responsible for the chemical anti-commensal effect are 
identified, implying valuable information for drug design.

Conclusion:  Our study would be a promising tool for screening anti-commensal com-
pounds in the early stage of drug discovery and assessing the potential risks of these 
drugs in vivo.

Keywords:  Human gut microbiome, Anti-commensal effect, Machine learning, 
Molecular features, Consensus model

Introduction
The human gut microbiota (HGM) consists of trillions of bacteria, archaea, phages, 
eukaryotic viruses, and fungi [1–3]. Through co-evolution, gut microbes have formed 
a good symbiotic relationship with humans. HGM uses the host environment and 
nutrition, but in return, provides many key functions to the body, such as synthesis of 
essential vitamins, removal of toxins, digestion of food, protection of intestinal mucosa, 
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and immune regulation [3–6]. HGM is symbiotic with the host and maintains normal 
physiological processes in a state of dynamic equilibrium. There is growing evidence 
that the mechanisms of various diseases are associated with dysbiosis of HGM, includ-
ing cardiovascular diseases, metabolic diseases, neurodegenerative diseases, and gas-
trointestinal diseases [7–9]. Thus, maintaining the ecological balance of HGM is crucial 
to human health. The function and composition of HGM can be influenced by various 
factors, including age, diet, host genetics, and medications [10]. Among these factors, 
medication drugs are considered one of the most important factors affecting the intes-
tinal microbiota. Not only antibiotics targeting microorganisms, but also non-antibiotic 
drugs can have an impact on the composition and function of HGM [11, 12]. To sys-
tematically map interactions between drugs and HGM, high throughput in vitro study 
of more than 1000 drugs by Maier et  al. revealed that one-quarter of drugs analyzed 
inhibited the growth of at least one of 40 representative intestinal bacterial strains [13]. 
The anti-commensal effect of such drugs can cause dysbiosis, which not only endangers 
human health but also reduces drug efficacy. However, as a new toxicity endpoint, the 
anti-commensal effects of drugs are not routinely tested in the current drug develop-
ment process. Hence, paying more attention to the discrimination of the potential com-
pounds with anti-commensal effects in the early stages of drug development is required.

Traditionally, the gut microbiome effects of drugs are detected experimentally. The anti-
commensal or commensal effect of a drug is generally monitored by culturing the strain 
in vitro and measuring the change in optical density over time to monitor the effect of the 
drug on the growth of the colony [13–15]. However, the current experimental assays of 
the anti-commensal effect are time-consuming and labor-intensive, implying that testing 
all the chemicals on experimental platforms is impossible. In addition, the preconditions 
for the use of these experimental techniques are that the chemical compounds have been 
synthesized and are available in hand, which are not suitable for the fast development 
of virtual high-throughput screening nowadays. An alternative strategy is to use in silico 
methods to predict the anti-commensal effect of chemicals. Compared to detecting anti-
commensal effect by laboratory tests, predicting this risk by in silico models is more time-
saving and low-cost. Also, it does not involve any of the aforementioned preconditions.

To date, there are merely two computation prediction models for identifying the effect 
of drugs on HGM. In 2018, Zheng and coworkers established the first machine learning-
based consensus classification model for the prediction of anti-commensal compounds, 
and their model provided an F1-score of 0.687 ± 0.023 on the test set [16]. In 2021, 
McCoubrey et al. [17] developed a machine learning model to predict whether drugs will 
impair the growth of 40 gut bacterial strains. Their best model gave AUC and F1-score of 
0.857 ± 0.014 and 0.666 ± 0.042, respectively. Apparently, the machine learning models 
for predicting the effect of drugs on HGM are still rare, and their predictive performance 
in discriminating anti-commensal compounds from commensal compounds is limited. 
A gap remains for improving the predictive models of anti-commensal compounds.

In this study, we investigated a novel classification model for the prediction of com-
mensal or anti-commensal compounds impacting HGM using six machine learning 
methods with an optimal set of molecular features. We applied six fingerprints, three 
sets of descriptors, and their combinations to extract the optimal set of molecular fea-
tures for modeling to improve the prediction performance. The optimal novel consensus 
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model was established and evaluated by internal and external validation. Furthermore, 
the important chemical descriptors, misclassified compounds, and the applicability 
domain (AD) of the best model were investigated to understand and interpret the model. 
Finally, structural alerts (SAs) of anti-commensal toxicity were carefully analyzed. The 
experimental procedure is shown in Fig. 1.

Materials and methods
Data preparation

To build different classification models and compare their performance, the same data-
set used by Zhang’s group was adopted in this study [16]. All compounds in the dataset 
were collected from the single work of Maier et al. [13]. A compound is defined as an 
anti-commensal compound if it inhibits at least one of the bacteria in the human gut, 
while a compound is considered a commensal if it fails to inhibit any of the 40 typical 
bacteria in the experimental assay. The raw data were preprocessed through the follow-
ing steps. First, for disconnected structures, only the organic fragments will be retained; 
Second, only compounds with common elements will be considered. The detailed pro-
cess can be found in Zhang et al.’s research. After data cleaning, the dataset containing 
1,181 diverse chemicals included 391 anti-commensal and 790 commensal compounds. 
We then randomly divided the entire dataset into a training set and external validation 
set according to the ratio of 8:2. To reduce the bias from the random splitting of the 
dataset, the entire set was randomly split 18 times. As a result, we obtained 18 randomly 
distributed data subsets consisting of training and external validation sets. The details of 
each data set are shown in Additional file 1: Table S1.

Generation of molecular features

Algorithms are often thought of as the most important component of predictive model 
in drug discovery research. However, a dataset with a set of comprehensive, clean infor-
mation for the structural, biological, and physical properties can drive an algorithmic 
approach to assessing potential drug candidates. Previous studies demonstrated that 

Fig. 1  Flow chart for the development of consensus model for predicting commensal or anti-commensal 
compounds
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additional accuracy gains can be achieved when researchers customize the suitable fea-
tures for each individual algorithmic application [18–21]. In order to obtain accurate 
features for the molecular structures, six types of molecular fingerprints were employed: 
MDL Molecular Access fingerprint (MACCS), PubChem fingerprint (PubChem), and 
four extended-connectivity fingerprints (ECFP4-1, ECFP4-2, ECFP6-1, ECFP6-2). These 
chosen fingerprints have been widely used to represent structural features of molecules 
for developing various classification model in drug discovery and yielde excellent predic-
tion performances [22–25]. The names and dimensions of these fingerprints are summa-
rized in Additional file 1: Table S2. MACCS and PubChem fingerprints were calculated 
using PaDEL-Descriptor software (version 2.21) [26]. ECFP was calculated by Python 
RDKit package version 2017.09. Moreover, to characterize molecules more accurately, 
three sets of molecular descriptors (MD), including 13MD, RDKit MD (RDMD) and 
Chemical Checker (CCMD), were calculated to describe the biological and physical 
properties of the chemicals. The detailed descriptions of these descriptors can be found 
in the corresponding literature [27–29]. The 13MD was calculated by Discovery Studio 
3.1. The RDMD and CCMD were calculated using Descriptors module of Python RDKit 
package version 2017.09 (https://​github.​com/​rdkit/​rdkit) and Signaturizer package ver-
sion 1.1.10 in Python (http://​gitla​bsbnb.​irbba​rcelo​na.​org/​packa​ges/​signa​turiz​er), respec-
tively. Since the values of different descriptors significantly span different ranges of 
values, their values were scaled to the same range (0, 1) by using the following formula:

where x is the original value, x* is the normalized value, and xmax and xmin are the max-
imum and minimum values of a descriptor, respectively. The min–max scaler is com-
monly used for data scaling in many classification problems [30–32]. For the datasets 
in this work, this method achieved better or comparable performance to the standard 
scaler (Additional file 1: Table S3).

Prediction models based on six machine learning algorithms

In the present study, six classical machine learning algorithms, including support vec-
tor machine (SVM) [33], k-nearest neighbor (k‑NN) [34], random forest (RF) [35], naive 
Bayes (NB) [36], Gradient boosting machine (GBM) [37], and extreme gradient boosting 
(XGBoost) [38] were used to construct the prediction models for the anti-commensal 
effects. Detailed descriptions of these methods can be found in the Additional file  1: 
Supporting Method. Six types of molecular fingerprints and their combination with 
three sets of descriptors, a total of 24 molecular characterization sets were obtained 
to represent the structural information of the compounds. Each algorithm was mod-
eled with the 24 sets of molecular features, followed by a hyperparameterization. SVM 
models were built by the radial basis kernel (RBF) function. The regularization param-
eter C and the kernel parameter gamma were also optimized. k-NN used the weighting 
schemes and the number of neighbors for the optimization parameters. For RF, the best 
split was calculated based on the number of trees in the forest. GBM was tuned using 
the learning rate parameters and the number of decision trees. For XGB, the parameter 
of the maximum depth of a tree and the minimum sum of the instance weight needed in 

x
∗ =

x − xmin

xmax − xmin

https://github.com/rdkit/rdkit
http://gitlabsbnb.irbbarcelona.org/packages/signaturizer
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a child were optimized. All the key parameters for each method were listed in Additional 
file 1: Table S4, and the default values were used in other parameters not mentioned. In 
order to obtain the best model for the 24 molecular features with the best parameters, 
these parameters were fine-tuned using a five-fold cross-validation method and repeated 
ten times to reduce random variance and for robust performance. SVM, k-NN, RF, NB, 
GBM, and XGB models were implemented in the scikit-learn package of Python (version 
0.23.2) [39]. The XGB model was built using XGBoost package version 1.4.2 in Python 
(https://​github.​com/​dmlc/​xgboo​st).

Finally, we obtained the most optimal model for predicting the anti-commensal com-
pounds from the six algorithms via a voting method. That is, the machine learning 
algorithm that produces the largest ratio of the best models based on the 24 molecular 
features for the 18 datasets is considered the best one.

Consensus modeling

Consensus modeling is the combination of predictions from multiple member models to 
form a consensus result [40]. Compared with an individual model, the consensus model 
can benefit from various representations of the chemical structures and fits more molec-
ular features [40–42]. In the process of predicting the ADMET (absorption, distribution, 
metabolism, excretion, and toxicity) properties of compounds, the consensus model 
tends to have higher predictive accuracy, is more reliable, and is more generalizable. 
Meanwhile, to make a parallel comparison with the reported HGM model, a consensus 
model is established based on the methodology of this study. On the basis of the machine 
learning algorithm selected in Sect.  “Prediction models based on six machine learning 
algorithms”, this machine learning algorithm was applied with the 24 features to build the 
model. The optimal molecular features were also selected by using the voting method. 
Finally, we obtained the best combination of the machine learning method and molecular 
features. For each of the 18 datasets, the best model based on the optimal combination 
of the machine learning method and molecular features was established. Ultimately, the 
consensus model establishes by simply averaging the values of the 18 single models.

Performance evaluation

The following six indicators were used to estimate the predictive performance of all the 
models: sensitivity (SE), specificity (SP), accuracy (ACC), Matthew’s correlation coeffi-
cient (MCC), F1-score and area under the curve (AUC). These indicators detailed for-
mulas are shown below:

ACC =
TP + TN

TP + FP + TN + FN

SE =
TP

TP + FP

SP =
TN

TN + FN

https://github.com/dmlc/xgboost
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where TP is the number of anti-commensal compounds that are predicted correctly, TN 
is the number of commensal compounds that are predicted correctly, FP is the count of 
commensal compounds that are incorrectly predicted as anti-commensal compounds, 
and FN is the count of anti-commensal compounds that are incorrectly predicted as 
commensal compounds.

SE and SP, indicate the predictive ability of the model for anti-commensal drugs and 
commensal drugs, respectively. ACC illustrates the model’s ability to predict the over-
all data. AUC denotes the area under the receiver operating characteristic (ROC) curve, 
which is a comprehensive evaluation index for the overall predictive performance of the 
model. F1-score is the harmonic mean of recall and precision. Even when the data set 
was extremely unbalanced, F1-score could still indicate the overall classification perfor-
mance of the model. It is worth mentioning that the AUC value is often used to evaluate 
the predictive ability of ADMET classifiers. Therefore, we employed F1-score as well as 
AUC value to measure the quality of the binary classification and adopted them as the 
criteria to select the best model.

Applicability domain analysis

The definition of AD is an important consideration for structure‐activity relationship 
(SAR) modeling according to the OECD guidelines [23]. The AD of the prediction mod-
els means that the model prediction is reliable in this chemical space region. For classi-
fication models, the distance-based method is commonly used to define AD [43]. In this 
study, the Euclidean distance method was applied to identify the AD of the prediction 
models. The method is to compare the Euclidean distances between the compounds and 
the dataset with a predefined threshold. In the present study, the structures of the com-
pounds were characterized by the optimal molecular features, and then the Euclidean 
distance between the test set and the training set was calculated. This analysis was con-
ducted by the AMBIT Discovery software (version 0.04) (http://​ambit.​sourc​eforge.​net) 
with the threshold set at 99%. A more detailed description of the Euclidean distance-
based approach can be found in the literature [43].

Structural alerts analysis

The structural alerts (SAs) refer to the key substructures that cause the toxicity of com-
pounds. In order to better evaluate typical structural fragment related to anti-com-
mensal effects, SAs were analyzed by the information gain (IG) method coupled with 
structural fragments frequency analysis. The detailed definitions of IG and the frequency 
of a fragment are listed in the Additional file 1: Supplementary Formula. In the present 
study, the substructure fragments of all compounds were derived from Klekota–Roth 
fingerprints (KRFP) [44]. If a substructure with a high IG value were to be presented 
more frequently in anti-commensal compounds than commensal compounds, this sub-
structure would be regarded as an SA for the anti-commensal effects [45].

MCC =
TP × TN − FP × FN

√
(FP + TN )(FP + TP)(FN + TN )(FN + TP)

F1− score =
2TP

(2TP + FN + FN )

http://ambit.sourceforge.net
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Results and discussion
Optimal machine learning algorithm selection

To rigorously select the suitable machine learning algorithm for predicting the anti-
commensal effect of drugs, six classical and commonly used machine learning algo-
rithms (SVM, k-NN, RF, NB, GBM, and XGB) were employed and compared directly. 
Twenty-four sets of different molecular features were generated for all 391 anti-com-
mensal compounds and 790 commensal compounds in the dataset. The performance of 
each model for predicting the anti-commensal chemicals was assessed by five-fold cross-
validation on 18 groups of training datasets. The F1-score and AUC values of the best 
models developed by each machine learning algorithm integrating with 24 sets of molec-
ular features were summarized in Additional file 2: Tables S5 and S6, respectively. We 
found that the trend of AUC was in accordance with that of F1 score, thus the F1 values 
of each model were mainly analyzed in the following work. The XGB algorithm provided 
the best performance in most cases, either on different molecular characterization sets 
or different data groups. Table 1 lists the ratio of each algorithm that achieved the best 
predictive result by using 24 sets of molecular features. For the 24 molecular features, 
the XGB algorithm gave the largest ratio of the highest F1-scores (larger than 11/24) 
on each group of the training dataset. Moreover, we performed a statistical analysis of 
the optimal F1-score of the XGB models with the of other models (SVM, k-NN, RF, NB 
and GBM), and p-value were 3.44 × 10−13, 2.31 × 10−16, 3.03 × 10−4, ok3.94 × 10−18 and 
7.53 × 10−6, respectively. It is indicated that the results differed in significance. These 
results suggest that the XGB algorithm has a better ability to discriminate positives from 
negatives than other algorithms. Thus, we selected the XGB algorithm as the optimal 
one for further analysis.

Table 1  The ratio of each algorithm achieving the best performance based on the 24 sets of 
molecular features

XGB SVM k-NN RF NB GBM

1 14/24 7/24 2/24 0/24 0/24 1/24

2 11/24 8/24 1/24 0/24 0/24 4/24

3 14/24 7/24 0/24 1/24 0/24 2/24

4 13/24 7/24 2/24 1/24 0/24 1/24

5 14/24 7/24 0/24 0/24 0/24 3/24

6 15/24 8/24 0/24 0/24 0/24 1/24

7 16/24 5/24 1/24 0/24 0/24 2/24

8 14/24 9/24 0/24 0/24 0/24 1/24

9 12/24 8/24 0/24 0/24 2/24 2/24

10 15/24 4/24 1/24 1/24 0/24 3/24

11 15/24 8/24 1/24 0/24 0/24 0/24

12 15/24 5/24 1/24 0/24 0/24 3/24

13 12/24 7/24 0/24 2/24 0/24 3/24

14 16/24 4/24 2/24 1/24 0/24 1/24

15 16/24 6/24 1/24 1/24 0/24 0/24

16 11/24 10/24 0/24 2/24 0/24 1/24

17 13/24 8/24 1/24 0/24 0/24 2/24

18 14/24 6/24 0/24 1/24 0/24 3/24
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Molecular descriptors optimization

To obtain the optimal molecular features for characterizing the structure and properties 
of the anti-commensal/commensal compounds, 24 sets of molecular features, includ-
ing six types of fingerprints and 18 combinations of molecular fingerprints and descrip-
tors, were used to establish a model based on the XGB algorithm. The detailed predictive 
results of the top XGB models with 24 sets of molecular features on each training set 
by five-fold cross-validation are presented in Table  2. From Table  2, the mean values 
of F1-score, ACC, and AUC for the top XGB models were in the range of 0.696–0.742, 
81.7–80.4%, and 0.779–0.806, respectively. It indicated that all the top XGB models had 
a high prediction precision and recall rate. Table 2 clearly shows that all the top XGB 
models were described by the combinations of molecular fingerprints and descriptors. 
Meanwhile, we found that the models using the MACCS + 13MD feature set occupied 
16 of the 18 sets of optimal models based on the XGB algorithm. Therefore, the XGB 
models using the combinations of MACCS molecular fingerprints with 13MD had bet-
ter performance than models using the other 23 sets of molecular features.

The three sets of molecular descriptors were used to generate models to further deter-
mine whether the models based on the combination of molecular representations and 
the optimal XGB algorithm are advantageous. Additional File 1: Table S7 displayed the 
F1-score values of the optimal XGB models for each training set based on the com-
bined features (fingerprints integrated with descriptors), fingerprints, and descriptors, 
respectively. As shown in Additional file 1: Table S7, the mean F1-score value of all the 
top XGB models developed by the combined features was in the range of 0.696 ~ 0.747, 
and the corresponding training set described by fingerprints or molecular descriptors 
ranged from 0.648 to 0.720, suggesting that the models based on the combination fea-
tures yielded better performance than other models based on fingerprints or molecular 

Table 2  Five-fold cross-validation results of the top classification model from each training set 
based on XGB

Group Features SE (%) SP (%) ACC (%) MCC AUC​ F1-score

1 13MD + MACCS 68.2 ± 1.4 91.7 ± 0.6 84.1 ± 0.7 0.627 ± 0.019 0.800 ± 0.009 0.734 ± 0.014

2 13MD + MACCS 63.9 ± 0.9 91.9 ± 0.5 83.0 ± 0.4 0.594 ± 0.010 0.779 ± 0.005 0.703 ± 0.008

3 13MD + MACCS 68.5 ± 1.1 89.4 ± 0.4 82.0 ± 0.5 0.598 ± 0.012 0.789 ± 0.006 0.727 ± 0.009

4 13MD + MACCS 63.8 ± 0.9 90.8 ± 0.7 82.0 ± 0.6 0.576 ± 0.014 0.773 ± 0.006 0.696 ± 0.009

5 13MD + MACCS 68.5 ± 1.8 91.0 ± 0.4 82.9 ± 0.7 0.620 ± 0.017 0.797 ± 0.010 0.739 ± 0.013

6 13MD + MACCS 66.1 ± 1.1 91.6 ± 0.8 83.0 ± 0.6 0.607 ± 0.014 0.788 ± 0.007 0.721 ± 0.010

7 13MD + MACCS 66.2 ± 1.3 90.2 ± 0.8 82.1 ± 0.9 0.588 ± 0.020 0.782 ± 0.010 0.712 ± 0.014

8 13MD + MACCS 69.0 ± 1.4 92.2 ± 0.7 84.3 ± 0.8 0.641 ± 0.018 0.806 ± 0.007 0.747 ± 0.013

9 13MD + MACCS 66.1 ± 1.5 89.7 ± 0.7 81.7 ± 0.5 0.581 ± 0.013 0.779 ± 0.007 0.708 ± 0.009

10 13MD + MACCS 69.2 ± 1.2 90.0 ± 0.7 82.5 ± 0.7 0.613 ± 0.017 0.796 ± 0.008 0.739 ± 0.011

11 13MD + PubChem 69.3 ± 1.7 91.1 ± 0.4 83.8 ± 0.6 0.628 ± 0.013 0.802 ± 0.008 0.738 ± 0.012

12 13MD + MACCS 68.4 ± 0.8 90.9 ± 0.6 83.2 ± 0.4 0.617 ± 0.009 0.797 ± 0.004 0.734 ± 0.006

13 13MD + MACCS 69.6 ± 1.8 90.5 ± 0.6 83.2 ± 0.7 0.622 ± 0.015 0.801 ± 0.009 0.742 ± 0.012

14 13MD + MACCS 67.6 ± 0.9 91.3 ± 0.7 83.2 ± 0.5 0.616 ± 0.010 0.794 ± 0.007 0.732 ± 0.005

15 13MD + MACCS 68.3 ± 1.2 90.5 ± 0.6 83.0 ± 0.5 0.611 ± 0.011 0.794 ± 0.006 0.729 ± 0.009

16 13MD + MACCS 68.7 ± 1.0 90.0 ± 0.8 82.8 ± 0.5 0.607 ± 0.010 0.793 ± 0.004 0.728 ± 0.006

17 13MD + MACCS 66.7 ± 0.9 90.9 ± 0.6 82.9 ± 0.4 0.601 ± 0.010 0.788 ± 0.005 0.716 ± 0.007

18 RDMD + PubChem 69.0 ± 1.5 91.6 ± 0.5 84.0 ± 0.7 0.631 ± 0.016 0.803 ± 0.009 0.741 ± 0.013
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descriptors alone. In addition, we found that all the evaluation metrics of models using 
a combination of molecular features are higher than those of the models based on only 
descriptors for each training set. These results clearly demonstrate that the XGB models 
with a combination of optimal molecular fingerprints and descriptors provide a substan-
tially improved predictive ability.

In general, the combination of MACCS and 13MD is the most optimal feature set to 
develop the prediction models for anti-commensal compounds. MACCS fingerprint is a 
substructure-based fingerprint that contains most atomic properties, topologies proper-
ties of chemical bonds, and atomic neighborhoods. 13MD contains 13 commonly used 
molecular properties such as molecular solubility and polarity. Thus, the essential infor-
mation about molecular structure and molecular properties contained in the optimal 
features are closely related to the anti-commensal effect.

Predictive performance of consensus model

The consensus modeling is to integrate several weak learners into one strong learner, 
which can improve the robustness and generalization capability of the SAR model. To 
further obtain the excellent consensus model, we used the XGB algorithm integrating 
with the optimal set of combination features (MACCS + 13MD) to train the 18 groups 
of training datasets by five-fold cross-validation. The detail predictive results of the top 
model for each group are outlined in Additional file 1: Table S8. From Additional file 1: 
Table S8, the mean value of the F1-score was in the range of 0.696–0.742. And the aver-
age value of ACC, the average value of SE, the average value of SP, the average value of 
MCC, and the average value of AUC ranged from 81.7 to 84. 3%, 63.8 to 69.6%, 89.4 to 
91.9%, 0.576 to 0.641, and 0.773 to 0.806, respectively.

Based on the 18 individual models, a consensus model named 13MD-CM was estab-
lished by simply averaging the values of the single models. As shown in Table 3, the con-
sensus model provided relatively optimal results with an average SE of 67.4%, an average 
SP of 90.8%, an average ACC of 82.9%, an average MCC of 0.608, the average AUC of 
0.791 and an average F1-score of 0.725 in internal validation. Furthermore, external 
validation was used to assess the capability of our consensus model. The consensus 
model yielded an ACC of 82.2 ± 2.6%, F1-score of 0.669 ± 0.05, SE of 60.7 ± 6.7%, SP of 
91.1 ± 3.3%, MCC of 0.554 ± 0.058 and AUC of 0.759 ± 0.03 on the external validation 
dataset. From these results, it can be seen that the consensus model provides high pre-
diction accuracy. In addition, we explored the reliability of the 13MD-CM, and the AD 
of the 18 individual models for building the 13MD-CM was defined. The defined AD 
covered all 18 training datasets with a value of 99.0%, and the average value covering the 
18 external validation sets was 98.9% (Table 4). The majority of compounds in the data-
set were in the AD, indicating that the predictive performance of the consensus model 
was quite plausible for the external validation sets.

Table 3  Results from the five-fold cross-validation and external validation of the 13MD-CM

SE (%) SP (%) ACC (%) MCC AUC​ F1-scorce

Five-fold cross-validation 67.4 ± 1.8 90.8 ± 0.8 82.9 ± 0.7 0.608 ± 0.017 0.791 ± 0.009 0.725 ± 0.014

External validation 60.7 ± 6.7 91.7 ± 3.3 82.2 ± 2.6 0.554 ± 0.058 0.759 ± 0.03 0.669 ± 0.05
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Misclassified anti‑commensal compounds analysis

Although our consensus model achieved favorable results in overall accuracy on the exter-
nal validation sets, the SE values were comparatively low. We analyzed the 20 anti-com-
mensal compounds misclassified five times or more for the external validation set. The 
structures of all anti-commensal compounds that were misclassified more than five times 
are listed in Additional file 1: Fig. S1. As shown in Additional file 1: Fig. S1, seven out of 
20 misclassified anti-commensal compounds contain stereospecific structures that can 
lead to compounds with radically different pharmacological properties. But the molecular 
fingerprints used in our study are impossible to accurately describe the entire structure 

Table 4  The number of drugs inside and outside of the AD

Inside Outside AD 
coverage 
(%)P N P N

1 Training set 301 637 4 5 99.0

External validation set 86 148 0 2 99.2

2 Training set 297 639 4 5 99.0

External validation set 90 144 0 2 99.2

3 Training set 329 607 4 5 99.0

External validation set 58 177 0 1 99.6

4 Training set 304 632 4 5 99.0

External validation set 82 153 1 0 99.6

5 Training set 333 603 4 5 99.0

External validation set 54 181 0 1 99.6

6 Training set 311 625 4 5 99.0

External validation set 76 159 0 1 99.6

7 Training set 315 621 2 7 99.0

External validation set 72 159 2 3 97.9

8 Training set 316 620 3 6 99.0

External validation set 69 159 3 5 96.6

9 Training set 315 621 5 4 99.0

External validation set 71 164 0 1 99.6

10 Training set 337 599 3 6 99.0

External validation set 50 183 1 2 98.7

11 Training set 311 625 4 5 99.0

External validation set 75 156 1 4 97.9

12 Training set 305 631 3 6 99.0

External validation set 81 152 2 1 98.7

13 Training set 319 617 3 6 99.0

External validation set 68 165 1 2 98.7

14 Training set 325 611 4 5 99.0

External validation set 62 174 0 0 100

15 Training set 319 617 3 6 99.0

External validation set 68 167 1 0 99.6

16 Training set 315 621 3 6 99.0

External validation set 72 160 1 3 98.3

17 Training set 316 620 3 6 99.0

External validation set 72 162 0 2 99.2

18 Training set 312 624 4 5 99.0

External validation set 74 159 1 2 98.7
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of the compounds, especially the stereoisomers. Most misclassified compounds contain 
long carbon chains, and carbon chain isomers may exist in the gut microbial environment 
in vivo, resulting in different properties. However, the in vivo variation of agents was not 
considered in this research, so this could be the reason for the misclassification of these 
compounds. In addition, seven out of the 20 misclassified anti-commensal compounds, 
comprising more than three paracyclic and sulfamide were misclassified commensal 
agents. A careful analysis of these substructures revealed the presence of misclassified 
anti-commensal compounds and commensal compounds (Fig. 2), suggesting that chemi-
cals with similar structures have completely opposite activities, leading to the misidenti-
fication of the model. It is also possible to reason that the dataset is unbalanced, with less 
than 50% of anti-commensal compounds, which may lead to biased predictions in favor 
of the larger-sized categories (SP of 91.1 ± 3.3%, SE of 60.7 ± 6.7%). More accurate molec-
ular descriptors representing the structure and activity of agents, richer data, and more 
advanced algorithms should be applied in SAR modeling to address the above issues.

Important descriptors analysis

Individual descriptors from 13MD were used to establish the XGB model for each train-
ing dataset to investigate the important descriptors driving the performance of the 
models. The prediction models based on individual descriptors were evaluated by the 
five-fold cross-validation. Because the SE value is considered an essential indicator for 
assessing the ability of the model to identify positive compounds, the SE value was cho-
sen as the criterion for selecting key descriptors. Figure 3 shows the average predictive 
ability of each descriptor from 13MD used for assessing the proposed XGB model. The 
summary plot indicates the relationship between the descriptor value and its impact 
on the model prediction. The importance order ranking of the models based on SE val-
ues is AlogP, logD, S, MW, MSA, n-AR, MFPSA, n-R, n-AR, n-HBA, NplusO, PSA, and 
n-HBD descriptor. We can obtain the contribution of each descriptor to the model pre-
diction based on the order ranking. It is evident that the model based on AlogP offered 

Fig. 2  Structures of the six misclassified compounds in the external validation set
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the highest SE value of 65.6%, which was equal to the average SE values of the models 
with full descriptors. Based on the result, the AlogP descriptor may serve as the pri-
mary feature for anti-commensal compounds. Therefore, more attention to AlogP and 
its related properties is warranted to avoid the anti-commensal effects of the drugs.

Comparison with previous predictors

We further carefully compared our model with various models reported in the literature. 
In 2018, Zhang’s group applied four machine learning methods (k-NN, SVM, GBM, and 
RF) with four types of ECFP to establish the first consensus model named CM for pre-
dicting anti-commensal effects [16]. In order to make a reasonable comparison with the 
model of Zhang et al., we adopted the same machine learning methods with our optimal 
molecular feature (13MD + MACCS) to develop a consensus model. Because detailed 
data groupings for Zhang were not available, we only compared the results of five-fold 
cross-validation on the training set for the sake of fairness. The statistical results for 
the 18 groups of datasets given by best models based on four machine learning meth-
ods with 13MD + MACCS are listed in Additional file 1: Table S9. As seen from Addi-
tional file 1: Table S9, the consensus model with 13MD + MACCS provided an F1-score 
of 0.716 ± 0.013, which was relatively higher than that of Zhang’s work (0.681 ± 0.037). 
It suggested that the optimal molecular feature combination of MACCS and 13MD is 
more suitable for characterizing anti-commensal compounds than ECFP and further 
illustrated that molecular descriptors can improve the model’s prediction ability.

Identification of structural alerts

To define structural fragments of compounds relevant to the anti-commensal effects, we 
analyzed the structural fragments of anti-commensal compounds which appeared more 

Fig. 3  SE values of the single descriptor and full descriptors models

Fig. 4  IG value distributions of the KRFP fragments
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than ten times in the dataset. The distribution of IG values for each fragment is shown 
in Fig. 4. From the results, it can be concluded that the IG values of all the 4,860 frag-
ments ranging from 0 to 0.027, and the IG values of very few fragments were above 0.01. 
According to the values of IG and frequencies of fragments, seven SAs and representa-
tive anti-commensal compounds were achieved. As shown in Table 5, the No.1 and No.3 
structures are commonly found in amide and quinolone antibiotics, respectively. And 
the threat of antibiotics to human gut microbes has been extensively described in the 

Table 5  Seven SAs of anti-commensal effect and their representative structures

No Structure IG Freq_P Freq_N Representative structure

1 0.0199 2.52 0.25

2 0.0152 3.02 0

3 0.0132 3.02 0

4 0.0114 2.40 0.31

5 0.0097 2.67 0.18

6 0.0094 2.16 0.43

7 0.0087 2.79 0.11



Page 14 of 16Wang et al. BMC Bioinformatics          (2023) 24:338 

literature. Among these seven substructures, both phenothiazine (No.6) and imidazole 
ring (No.8) are essential nitrogen-containing heterocyclic structures widely used in anti-
psychotic and antifungal drugs, respectively. Therefore, the anti-commensal effect of 
these three classes of drugs should be of concern in clinical applications. Generally, these 
substructures of high IG values appeared far more frequently in anti-commensal com-
pounds than non-anti-commensal compounds. A compound containing one or more 
such substructures tend to possess a higher percentage of the anti-commensal property.

Conclusion
This study established a novel and powerful consensus model (13MD-CM) for predicting 
the anti-commensal effect by the optimal set of molecular features (MACCS + 13MD). 
A series of cross-validation and external validations corroborated our model’s signifi-
cant effectiveness and promising performance, especially in correctly identifying anti-
commensal compounds. The interpretability of the 13MD-CM model was analyzed 
by important descriptors and misclassified compounds. AlogP was deemed the most 
important descriptor for the model’s performance. Finally, seven SAs about the anti-
commensal effect were obtained. In summary, our research has uncovered a reliable and 
robust classification consensus model for predicting the chemical anti-commensal effect 
and provided key substructures for risk assessment of the anti-commensal property. 
These results would be helpful for effectively assessing the anti-commensal effect during 
the early drug development stage.
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