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Introduction
Drug development is a complex progress involving long research cycles, high costs, and 
low success rates, which could take several decades and 400–900 million dollars for a 
new drug from screening small molecules to market approval [1]. In the past few years, 
the information technology has been widely applied in computer-aided drug design 
(CADD) methods to accelerate the speed of drug development [2]. The prediction of 
drug–target binding affinity (DTA) is an important step in drug discovery, which pro-
vides information on the strength of interaction between drug molecules and target pro-
teins. Therefore, the development of efficient and accurate algorithm of DTA prediction 
is of great significance in CADD.

Abstract 

Background: Drug–target affinity (DTA) prediction is a critical step in the field of drug 
discovery. In recent years, deep learning-based methods have emerged for DTA 
prediction. In order to solve the problem of fusion of substructure information of drug 
molecular graphs and utilize multi-scale information of protein, a self-supervised pre-
training model based on substructure extraction and multi-scale features is proposed 
in this paper.

Results: For drug molecules, the model obtains substructure information 
through the method of probability matrix, and the contrastive learning method 
is implemented on the graph-level representation and subgraph-level representation 
to pre-train the graph encoder for downstream tasks. For targets, a BiLSTM method 
that integrates multi-scale features is used to capture long-distance relationships 
in the amino acid sequence. The experimental results showed that our model achieved 
better performance for DTA prediction.

Conclusions: The proposed model improves the performance of the DTA prediction, 
which provides a novel strategy based on substructure extraction and multi-scale 
features.

Keywords: Drug–target binding affinity, Self-supervised learning, Mutual information, 
Multi-scale features

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Pan et al. BMC Bioinformatics          (2023) 24:334  
https://doi.org/10.1186/s12859‑023‑05460‑4

BMC Bioinformatics

*Correspondence:   
lizhen0130@gmail.com

1 College of Computer Science 
and Technology, Qingdao 
University, Qingdao, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05460-4&domain=pdf


Page 2 of 18Pan et al. BMC Bioinformatics          (2023) 24:334 

Early computer virtual screening mainly focused on two types of methods: molecu-
lar docking [3–5] and ligand-based similarity [6, 7]. The molecular docking technique 
utilized the three-dimensional structure of protein targets and drug molecules, and the 
affinity can be predicted by simulating the docking process of proteins and molecules 
[8, 9]. However, the acquisition of three-dimensional structures is difficult, and large-
scale molecular docking process is time-consuming. In contrast to molecular docking, 
ligand-based methods do not rely on the three-dimensional structure of molecules, 
which predict DTA by comparing new ligands with known ligands. However, when the 
number of known ligands is insufficient, the ability of ligand-based approach is limited. 
In response to these challenges, machine learning methods for DTA prediction [10–12] 
have been gradually introduced in the virtual screening and improved the performance 
of DTA prediction. Wang et al. [10] treated the interaction between drugs and targets 
as a binary classification problem. After extracting chemical descriptors of drugs and 
protein sequence information, an SVM model was used for prediction. KronRLS [11] 
used PubChem structure clustering tool [13] and Smith Waterman algorithm [14] to 
obtain similarity matrices for drugs and proteins, and the Kronecker product of similar-
ity matrices was used to define similarity scores for drug–target pairs. To alleviate the 
limitation of linear dependence in KronRLS, SimBoost [12] constructed a drug–target 
similarity network and established a gradient boosting regression tree model for predic-
tion. However, these machine learning methods rely on carefully designed handcrafted 
features, and the selection of these features depends on specific domain knowledge and 
experience [15] As deep learning (DL) methods have demonstrated superior learning 
capabilities over traditional machine learning methods in multiple fields, they have grad-
ually been applied to solve problems in bioinformatics, including the DTA prediction 
[16–22]. DeepDTA [16] used protein sequence and molecular sequence information in 
two separate CNN networks. The output feature vectors were concatenated and fed into 
three fully connected layers to predict binding affinity. DeepCDA [17] combined CNN 
and LSTM to encode protein sequence and molecular sequence and proposed a bidirec-
tional attention mechanism to predict DTA. FusionDTA [18] replaced the coarse pooling 
method with a novel multi-head linear attention mechanism to aggregate global infor-
mation to address the issue of information loss. Additionally, the knowledge distillation 
was applied to transfer learnable information from a teacher model to a student model 
to solve the problem of parameter redundancy. As molecule could be represented as a 
graph, in which chemical atoms and bonds can be represented by nodes and edges. With 
the rapid development of graph neural networks (GNN), researchers have applied GNN 
models to DTA prediction. GraphDTA [19] used the topological structure information 
of molecular graphs and different GNN models for drug representation, while CNN was 
used to learn protein representation which is similar with DeepDTA. DGraphDTA [20] 
constructed protein graphs based on protein contact maps for the first time, then the 
GNN was used to predict DTA through molecular graphs and protein graphs. MGraph-
DTA [21] constructed a super-deep GNN with 27 graph convolution layers by introduc-
ing dense connections to capture both local and global structures of molecules. These 
methods indicate that deep learning networks can better capture the features of drugs 
and proteins. Due to the high cost and time consumption of laboratory experiments, 
the size of training dataset for drug discovery is limited, which may cause overfitting 
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problems for machine learning methods and affect the generalization of learned features. 
Self-supervised learning can use unlabeled data for pre-training and transfer the learned 
model to downstream tasks, which can alleviate the requirement for labeled data. There 
are also self-supervised learning methods used in drug discovery [23]. InfoGraph [24] 
maximized the mutual information between graph embedding and substructure embed-
ding at different scales to learn graph representations. MPG [25] compared two half-
graphs and distinguished whether they come from the same source as a self-supervised 
learning strategy. GROVER [26] proposed two pre-training tasks: for the node/edge 
level task, it randomly masked a local subgraph of the target node/edge and predicted 
the contextual property; for the graph level task, it extracted the semantic motifs exist-
ing in molecular graphs (such as functional groups) and predicted whether these motifs 
existed for a molecule. However, most existing research integrated all structural features 
and node attributes of the graph to provide an overview of the graph, ignoring more 
fine-grained substructure semantics. Proteins are macromolecules composed of amino 
acids. There are 22 amino acids that make up an organism, which are represented by 
22 letters and can be naturally represented as a sequence of letters. Sequence-based DL 
models can effectively consider the contextual relationships of the sequences. MATT-
DTI [27] utilized three convolutional layers as the feature extractor, followed by a max 
pooling layer. A multi-head attention block was built to model the similarity of drug–
target pairs as the interaction information for DTA prediction. TransformerCPI [28] 
used a one-dimensional convolutional gated convolutional network and gated linear unit 
instead of the self-attention layer in the Transformer encoder. However, current stud-
ies focus only on the single scale of protein sequences, and traditional sequence-based 
approaches process the whole sequence at once may lead to the loss of local informa-
tion and neglect multi-scale features of proteins, so how to combine multi-scale infor-
mation to improve the robust of protein representation is also an open issue. In order 
to overcome the limitations of existing methods, we propose a novel framework, Sub-
MDTA, a drug target affinity prediction method based on substructure extraction and 
multi-scale features. For molecules, inspired by Wang et al. [29], a self-supervised learn-
ing method based on molecular substructure is proposed for molecular representation. 
During the pre-training phase, subgraphs are generated to obtain substructure informa-
tion, and subgraphs are replaced according to their similarity relationships to generate 
reconstructed graphs. We simultaneously maximize the mutual information between 
the subgraph and the original graph, as well as between the reconstructed graph and 
the original graph, to improve the correlation between subgraph-level and graph-level 
representations. After pre-training, the trained model is fine-tuned in downstream 
tasks. For proteins, a BiLSTM method that integrates multi-scale information based on 
n-gram method is proposed for feature extraction. Finally, the drug and protein features 
are concatenated and fed into a Multilayer Perceptron (MLP) for DTA prediction. We 
compared our proposed method with several state-of-the-art methods and the experi-
mental results demonstrate that our method significantly outperforms other methods on 
the Davis [30] and KIBA [31] datasets.
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Materials and methods
The SubMDTA performs DTA prediction by integrating structural information of 
drug molecules and sequence features of targets, and the general architecture of 
SubMDTA is shown in Fig.  1. It consists of a pre-training part and a DTA predic-
tion part. In the pre-training part, the drug SMILES (Simplified Molecular Input Line 
Entry System) [32] strings in the pre-training dataset are first converted into molecu-
lar graphs, followed by encoding the graph representations using the GIN [33] net-
work. Then the substructural and reconstruct graphs are extracted. After obtaining 
two types of features, the mutual information between them and the original graph 
are maximized. The DTA prediction part uses the trained GIN encoder for molecular 
representation. For protein sequences, they are firstly embedded by n-gram coding, 
and fed into BiLSTM to obtain their representations. Finally, the drug representation 
and the protein representation are concatenated and fed into the fully connected layer 
to predict the binding affinity.

Datasets

The Davis and KIBA datasets were used to evaluate the performance of the proposed 
model. The Davis dataset was obtained by selecting certain kinase proteins and their 
corresponding inhibitors, with binding affinity represented by the dissociation con-
stant Kd , and affinity was processed using Eq. 1. It contains 442 proteins, 68 drugs, 
and 30,056 drug–target interactions. The average length of the drug SMILES strings is 
64, and the average length of the protein sequences is 788. The KIBA dataset includes 
combined kinase inhibitor biological activities from various sources, such as inhibi-
tion constant ( Ki ), dissociation constant ( Kd ), or the half-maximal inhibitory concen-
tration ( IC50 ), and predicts biological activity using the KIBA score. It consists of 229 

Fig. 1 Overview of SubMDTA
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proteins, 2111 drugs, and 118,254 drug–target interactions. The average length of the 
drug SMILES strings is 58, and the average length of the protein sequences is 728, the 
detail information of these two datasets is shown in Table 1.

Molecular encoder

For each drug molecule in the experimental dataset, it is represented by its correspond-
ing SMILES. The open source cheminformatics software RDKit [34] is used to convert 
SMILES string into its corresponding molecular graph. For the node features, we use 
a set of atomic feature representations adopted from DeepChem [35]. In order to bet-
ter explore the features of molecule, Graph Isomorphism Network (GIN) is used as the 
graph encoder in this paper. GIN provides better inductive bias for graph representation 
learning, which generates node representations by repeatedly aggregating information 
from the local neighborhood nodes. After each GIN layer, there is a batch normalization 
layer activated by the ReLU function. Specifically, GIN uses a MLP model to update the 
node features and its update process can be written as:

where ε is either a learnable parameter or fixed scalar, xli denotes the node feature of the 
i-th node in the l-th layer, Ni are neighborhoods to node i, and xlj denotes the node fea-
tures of the j-th node in the l-th layer.

Multiple GIN layers could aggregate information of node from its multi-hop neigh-
bors, and the information embedded in the representations of different hops will gradu-
ally change from local information to global information. After L layers of GIN, a list of 
node representations x0i , x

1
i , . . . , x

L
i  is generated. To avoid loss of node information, a 

convolution kernel of size (L, 1) called Conv is used to aggregate node representations at 
different layers as Eq. 3, thus local and global information can be combined.

After obtaining the final node embeddings containing information at different levels of 
the graph, the obtained embeddings are aggregated into fixed-length graph-level repre-
sentations using a read-out function. In this paper, we use a global summation pooling 
function which we called as GlobalAddPool to read out the representation h(G) of the 
nodes as Eq. 4:

(1)pKd = −log10
Kd

109

(2)xl+1
i = MLP



(1+ ε)xli +
�

j∈Ni

xlj





(3)xGi = Conv
([

x0i , x
1
i , . . . , x

L
i

])

Table 1 Summary of the benchmark datasets

Dataset Proteins Compounds Interactions Train Test

Davis 442 68 30,056 25,046 5010

KIBA 229 2111 118,254 98,545 19,709
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where the XG represent the node feature matrix. It returns batched graph-level output 
by aggregating node features across the node dimension, thus ensuring that the global 
representation of graph is more comprehensive.

Contrastive learning method for molecular representation

Inspired by the mutual information-based contrastive learning algorithm [36, 37], maxi-
mizing the mutual information of molecular graphs can obtain more feature representa-
tions. The overall framework of our approach is shown in Fig. 2. The drug molecule graph 
acquires the original features after GIN encoding, followed by substructure extraction. For 
the original graph, its original feature is selected to form a positive sample pair with each 
subgraph representations, and the subgraphs of other graphs in the same batch form nega-
tive sample pairs. In order to capture the inherent relations between graphs, subgraphs are 
ranked according to similarity and half of them are replaced to obtain the reconstructed 
graph. The original graph with its reconstructed graph constitutes a positive sample, and 
with the reconstructed graph within the same batch constitutes a negative sample.

Subgraph‑level contrastive learning

In this paper, a subgraph’s generation method [29] is utilized in contrastive learning. After 
obtaining the node feature matrix XG , it is transformed by linearly function with the learn-
able matrix W and the row-by-row Softmax function is used to obtain a probability matrix 
A as Eq. 5. Aij denotes the probability of the i-th node in the j-th subgraph. The Softmax 
function exponentiates the input vectors and sums them to obtain a scalar. The exponent 
value of each element is then divided by this scalar to obtain the normalized probability 
value.

Based on the probability matrix A, we can divide the original graph into two subgraphs 
by a pre-defined probability 0.5. After T rounds of splitting, we obtain S = 2T subgraphs. 

(4)h(G) = GlobalAddPool
(

XG
)

(5)A = Softmax
(

XG ·W
)

Fig. 2 Contrastive learning method for molecular representation
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The node representations of each subgraph are denoted as XGi , i = 1, 2, . . . , S . Here, 
we adopt the same pooling function as Eq. 4 to obtain the graph-level representation. 
After the reading out function, we can obtain the subgraph representation h(Gi) as Eq. 6:

Mutual information (MI) is an indicator to quantify the relationship between two ran-
dom variables. Let φ represent the parameters of the graph neural network, and a dis-
criminator Tω : hφ(G)×hφ(Gi) which takes as input a subgraph/graph embedding pair 
and determines whether they come from the same graph is used:

where Iφ,ω
(

hφ(G); hφ(Gi) is a mutual information estimator modeled by the discrimina-
tor and parameterized by the neural network.

We use the Jensen–Shannon (JS) mutual information estimator [38] on local/global 
pairs to maximize the mutual information on a given subgraph/graph embedding as 
Eq. 8. The JS mutual information estimator is approximately monotonic with respect to 
the KL scatter (the traditional definition of mutual information), but it is more stable 
and can provide better results [39].

where P = p
(

hφ(G), hφ(Gi)
)

 is the joint distribution of the global graph representa-
tion and the subgraph representation, and Q = p

(

hφ(G)
)

p
(

hφ(Gi)
)

 denotes the prod-
uct of marginal distributions of two embeddings. In contrastive learning, Q denotes 
the distribution of positive pairs, P denotes the distribution of negative pairs, and 
sp(x) = log

(

1+ ex
)

 is the softplus function.

Graph‑level contrastive learning

The reconstructed graph generation method is based on the strategy of similar subgraph 
substitution. To better capture the structural information of the graph, given the gener-
ated subgraph of a certain original graph Gi , we compute its cosine similarity to the gen-
erated subgraphs of other original graphs Gi in the same batch as Eq. 9:

After ranking, half of the original subgraphs are replaced according to the similarity val-
ues, and finally aggregated and assembled into a reconstructed graph using a convolu-
tion kernel of size (S, 1).

For the reconstructed representation h(Ĝ) , the global feature h(G) of its original graph 
is selected to form a positive sample pair, and the negative sample pair constitute the 
reconstructed graph h(Ĝ′) of other graphs in the same batch. We use the same mutual 

(6)h(Gi) = GlobalAddPool
(

XGi

)

, i = 1, 2, . . . , S

(7)
ˆ
φ,

ˆ
ω = argmax

φ,ω

∑

G∈G

1

|G|
Iφ,ω

(

hφ(G); hφ(Gi)
)

(8)
I
JSD
φ,ω

(

hφ(G); hφ(Gi)
)

=

EP(−sp(−Tω(hφ(G), hφ(Gi))))−EP(sp(Tω(hφ(G), hφ(G
′

i))))

(9)similarity = cos(θ) =
h(Gi) · h(G

′

i)
∥

∥h(Gi)
∥

∥

∥

∥h(G
′

i)
∥

∥
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information calculation method to maximize the mutual information between the origi-
nal and reconstructed graphs, denoted as I JSDφ,ω (hφ(G); hφ(Ĝ)) as Eqs. 10 and 11:

The final loss is the sum of two mutual information losses:

To enhance the generalization of the self-supervised learning features, 50,000 molecules 
are randomly selected from the ZINC database for pre-training the self-supervised 
model, and a high-quality molecular encoder is obtained from learning rich molecular 
structure and semantic information in unlabeled molecular data.

Protein representation

For each protein in the experimental dataset, the protein sequence is obtained from the 
UniProt database through its gene name. The sequence is a string of ASCII characters 
representing amino acids. The n-gram [40] is used to define the “words” in the amino 
acid sequence, and the protein sequence is split into multiple overlapping n-gram amino 
acid word. Depending on the permutations and combinations, there are 22n n-gram 
words. However, if the n-gram syntax number is too large, the word frequency may be 
too low. Taking n = 3 as an example, given a protein sequence S = s1s2s3 . . . s|s| , |S| rep-
resents the length of protein sequence, we divide it into n-gram words:

We use the symbol si:i+2 to represent the protein word [si; si+1; si+2] , and then encode 
the word using the Eq. 14.

where the Embedding function initializes the weight from the standard normal distri-
bution according to the input vocabulary size and embedding dimension, and outputs 
the word vector corresponding to the vocabulary index in the weight.

In this work, inspired by MGraphDTA [21], we set n = 2, 3, 4 to encode protein 
respectively in order to detect the local residue patterns of proteins at different scales. 
Finally we get three types of embedding c2i , c

3
i , c

4
i  . For protein sequence, sequence-

based models are the optimal choice for feature extraction. Long short-term memory 
network (LSTM) [41] is a DL model to overcome the gradient disappearance problem 
to process sequence data. The main idea is to introduce an adaptive gating mechanism 
which determines the extent to which the LSTM unit maintains its previous state and 
remembers the extracted features of the current data input.

(10)
ˆ
φ,

ˆ
ω = argmax

φ,ω

∑

G∈G

1

|G|
Iφ,ω(hφ(G); hφ(Ĝ))

(11)
I
JSD
φ,ω (hφ(G); hφ(Ĝ)) =

EP(−sp(−Tω(hφ(G), hφ(Ĝ))))−EP(sp(Tω(hφ(G), hφ(Ĝ
′
))))

(12)Lossφ,ω = I
JSD
φ,ω

(

hφ(G); hφ(Gi)
)

+ I
JSD
φ,ω (hφ(G); hφ(Ĝ))

(13)[s1; s2; s3], [s2; s3; s4], . . . ,
[

s|S|−2; s|S|−1; s|S|
]

(14)ci = Embedding(si:i+2)
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Bi-directional LSTM (BiLSTM) [42] is a variant of LSTM that combines the outputs of 
two LSTMs, one processing sequences from left to right and the other from right to left, to 
capture long-term dependencies and contextual relationships. Since each amino acid resi-
due in the sequence information of the protein has interrelationship with residues in the 
both directions, the BiLSTM is more suitable to process protein sequence, which is defined 
as Eq. 15:

where 
→

hi and 
←

hi denote the hidden states of the time step computed from left-to-right 
and right-to-left, respectively, and hi denotes the global representation of the t-th time 
step stitched together by them.

The word vector c2i , c
3
i , c

4
i  are fed into the BiLSTM layer to capture the dependencies 

between characters in the sequence. After the max-pooling layer, the three features are 
concatenated together to obtain the final protein representation. The BiLSTM frame-
work is shown in Fig. 3.

DTA prediction

In this paper, we treat the drug–target binding affinity prediction task as a regression 
task. With the representation learned from the previous sections, we can integrate all 
the information from the drug and target to predict the DTA value. As shown in Fig. 4, 
drug representation and protein representation are concatenated together, which is fed 
into two dense fully connected layers to predict the DTA value. Besides, the ReLU is 
used as the activation function for increasing the nonlinear relationship. Given the set of 
drug–target pairs and the ground-truth labels, we use the mean squared error (MSE) as 
the loss function.

Results and discussion
Metrics

The DTA prediction is regarded as a regression problem and our model was evaluated 
using three metrics including mean squared error (MSE), concordance index (CI), and 
regression toward the mean ( r2m index). MSE calculates difference between the predicted 
and actual values through the function of squared loss as follows:

where ŷi is the predicted value, yi is the true value, and n is the number of drug–target 
pairs. CI is used to measure whether the predicted DTA values of two random drug–tar-
get pairs are predicted in the same order as their true values:

(15)

→

hi=
→

LSTM(ci, hi−1)

←

hi=
←

LSTM(ci, hi+1)

hi=
→

hi �
←

hi

(16)MSE =
1

n

n
∑

i=1

(

ŷi − yi
)2

(17)CI =
1

Z

∑

dx>dy

h
(

bx − by
)
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Fig. 3 Multi-scale protein representation method

Fig. 4 The prediction part of the model
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where bx is the predicted value of the larger affinity dx , by is the predicted value of the 
smaller affinity dy , h(x) is the step function. Z is the normalization constant which indi-
cates the number of drug–target pairs.
r2m is used to evaluate the external predictive performance of the model as follows:

where r2 and r20 are the squared correlation coefficients between the true and predicted 
values with and without intercepts, respectively.

Comparison with existing methods

To evaluate the performance of our model, we compared the model with other methods 
for DTA prediction, including KronRLS [11], SimBoost [12], DeepDTA [16], WideDTA 
[43], MATT-DTI [26], DeepGS [44], AttentionDTA [45], GraphDTA [18], and DeepGL-
STM [46]. Table 2 shows the performance of different models based on MSE, CI, and 
r2m metrics on the Davis dataset. On the Davis dataset, our method significantly outper-
formed the other methods in terms of MSE (0.218) and r2m (0.719), which are 4.8% and 
4.8% better than the previous optimal method, respectively. The CI of SubMDTA was 
very close to the best method DeepGLSTM by 0.001.

Moreover, we evaluated our model on KIBA dataset. As shown in Table 2, SubMDTA 
achieved the best performance among existing methods with MSE of 0.129, CI of 0.898, 
and r2m of 0.793, where the MSE was 3% higher than the previous best method. The above 
results show that the proposed method can be considered as an accurate and effective 
tool for DTA prediction. Compared with other models, the superiority of our model can 
be summarized for two reasons: (i) to obtain more discriminative molecular representa-
tions, we utilized the local and global information of molecule through a pre-training 
task, which can focus on the structural features of molecular graph; (ii) compared with 
the conventional embedding method of protein sequence, our method used multiple 

(18)h(x) =







1, if x > 0
0.5, if x = 0
0, if x < 0

(19)r2m = r2 ×

(

1−

√

r2 − r20

)

Table 2 Prediction performance on Davis dataset

Model MSE CI r
2
m

KronRLS 0.379 0.871 0.407

SimBoost 0.282 0.872 0.644

DeepDTA 0.261 0.878 0.630

WideDTA 0.262 0.886 0.633

MATT_DTI 0.229 0.890 0.682

DeepGS 0.252 0.882 0.686

AttentionDTA 0.245 0.887 0.657

GraphDTA 0.229 0.893 0.649

DeepGLSTM 0.232 0.895 0.680

SubMDTA 0.218 0.894 0.719
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n-gram sequence representations containing multi-level information. Thus, our model 
can integrate the intrinsic information of compounds and protein sequences into a more 
comprehensive representation, which is helpful to improve the accuracy and robustness 
of the model.

In addition, we evaluated our model on KIBA dataset. As shown in Table 3, SubMDTA 
achieved the best performance among existing methods with MSE of 0.129, CI of 0.898, 
and r2m of 0.793, where the MSE was 3% higher than the previous best method.

The above results show that the proposed method can be considered as an accurate 
and effective tool for DTA prediction. Compared with other models, the superiority of 
our model can be summarized for two reasons: (i) to obtain more discriminative molec-
ular representations, we utilized the local and global information of molecule through 
a pre-training task, which can focus on the structural features of molecular graph; (ii) 
compared with the conventional embedding method of protein sequence, our method 
used multiple n-gram sequence representations containing multi-level information. 
Thus, our model can integrate the intrinsic information of compounds and protein 
sequences into a more comprehensive representation, which is helpful to improve the 
accuracy and robustness of the model.

Comparison with different drug molecular representations

The complex structure of drug molecules is difficult to directly obtain its features, so 
special representation methods are required. We validated graph-based representa-
tion methods and molecular fingerprint methods. SubMDTA first converts the smiles 
string of the drug molecule into a molecular graph, and then uses one-hot encoding to 
obtain the features of the drug molecule according to the atomic attributes. Molecular 
fingerprint is a method of converting a molecular structure into a binary or sparse vector 
representation, where each bit or feature represents a specific substructure or chemical 
property of the molecule. In this section, the Morgan fingerprint [47] and the MACCS 
fingerprint [48] were used for comparison. SubMDTA, Morgan, and MACCS achieved 
MSE of 0.218, 0.221, and 0.222, respectively. It can be seen from Fig. 5 that SubMDTA 
finally obtained the best results among three, which may be related to the fact that the 
graph-based method can better capture the detailed structure of molecules.

Table 3 Prediction performance on KIBA dataset

Model MSE CI r
2
m

KronRLS 0.411 0.782 0.342

SimBoost 0.222 0.836 0.629

DeepDTA 0.194 0.863 0.673

WideDTA 0.179 0.875 0.675

MATT_DTI 0.150 0.889 0.756

DeepGS 0.193 0.860 0.684

AttentionDTA 0.162 0.882 0.735

GraphDTA 0.147 0.889 0.674

DeepGLSTM 0.133 0.897 0.792

SubMDTA 0.129 0.898 0.793
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The construction of effective GNN networks for extracting discriminative features of 
drugs is essential to improve the prediction accuracy of DTA. Empirically, it is often dif-
ficult to obtain sufficient information from single-layer networks compared with mul-
tilayer networks, and too many layers may result in the problem of over-smoothing. 
Therefore, a four-layer GNN network was used in the proposed method. We tried three 
types of GNN architectures (GCN, GAT, and GIN) for performance comparison. It is 
obvious from the Fig. 6a and the Fig. 6c that the GIN model achieves an MSE of 0.218 
and fran r2m of 0.719, which is the best performance. As shown in Fig. 6b, the CI of the 
GAT model achieves 0.897, which is higher than 0.894 of GIN, but the difference is not 
obvious. This may be because that GIN can capture local features in the graph while 
retaining global information, thus improving its characterization ability.

Comparison with different protein representations

For protein feature representation, we propose a method based on n-gram multi-scale 
features fusion. Thus, we explored the effects of different protein sequence embedding 
methods, which are one-hot coding, 2-gram, 3-gram, 4-gram coding and n-gram fusion 
coding methods, and the experimental results are shown in Fig.  7. One-hot coding 
achieved an MSE of 0.234, CI of 0.892, and r2m of 0.695. Compared with one-hot encod-
ing, n-gram encoding provided better representations by capturing multiple characters 
in the sequence, and the MSE reached 0.226, 0.225, and 0.223 using 2-gram, 3-gram, and 
4-gram, respectively.

Fig. 5 Performances of different molecular representation methods

Fig. 6 Performances of different GNNs
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The performance of multi-scale representations was the best among them. This is 
because that the whole protein sequence contains many subsequences or structural 
domains, and the introduction of multi-scale features could capture more amino acid 
combinations and result in a better performance.

For protein feature extraction methods, we choose convolutional neural network 
(CNN) and bidirectional gated recurrent unit (BiGRU) as comparison methods. CNN 
extracts features from input data through convolution operations. BiGRU is a variant of 
recurrent neural network which consists of two GRUs for forward and backward pro-
cessing. CNN and BiGRU achieved MSE of 0.225, and 0.232, respectively. SubMDTA 
achieved MSE of 0.219, which increased by 3.1% and 6.0%. As can be seen from Fig. 8, 
SubMDTA obtained the best MSE result, which proves the superiority of SubMDTA in 
processing protein sequence data.

Ablation study

To verify the effectiveness of the proposed model, we designed and conducted ablation 
experiments to determine the contributions of different factors of the model.

In the proposed model, maximizing the mutual information between the graph and 
the subgraph representations in the SSL task is helpful to preserve substructure informa-
tion. In order to demonstrate the advantages of substructures, we designed three variants 

Fig. 7 Performances of different protein feature extraction methods

Fig. 8 Performances of different protein feature extraction methods



Page 15 of 18Pan et al. BMC Bioinformatics          (2023) 24:334  

SubMDTA-a, SubMDTA-b and SubMDTA-c to evaluate the importance of the pre-training 
task module. As shown in Table 4, SubMDTA-a obtained an MSE of 0.224. The introduc-
tion of contrastive learning improved the MSE to 0.225 and 0.230 by SubMDTA-b and 
SubMDTA-c, respectively. The MSE of SubMDTA which combined these two methods 
reached 0.218. This may be related to the fact that using one type of mutual information 
alone cannot obtain the comprehensive features. Meanwhile, maximizing the mutual infor-
mation between the graph representation and the reconstructed graph representation can 
enable the embedding to focus on the global features of the graph.

Case study

In order to verify the robustness of proposed method, we applied approved drugs target-
ing the Type-1 angiotensin II receptor in DrugBank for a case study. According to similar 
steps to MSF-DTA [49], after training SubMDTA on the Davis dataset, we predicted the 
affinities between the receptor and 1781 available small molecule drugs. Among them, 9 
out of 1781 drugs are known to bind this receptor. To ensure a fair comparison, this recep-
tor never appeared in the Davis dataset. The predicted affinities between the nine drugs and 
the receptor are listed in descending order, as shown in Table 5. It can be seen that accord-
ing to the sorting results of SubMDTA, 8 drugs are ranked in the top 13 % of 1781 drugs, 
and 7 drugs appear in the top 4 %. These results suggest that SubMDTA can identify novel 
target-protein interacting drugs well and has the potential to be developed as a predictive 
tool.

Table 4 Performances of different molecular training tasks

Model MSE CI r
2
m

SubMDTA-a(no pretraining) 0.224 0.894 0.714

SubMDTA-b (only subgraph-level pretraining) 0.225 0.897 0.703

SubMDTA-c (only graph-level pretraining) 0.230 0.895 0.697

SubMDTA (both subgraph-level and graph-level pretraining) 0.218 0.894 0.719

Table 5 Compound ranking based on the predicted affinities of SubMDTA

DrugBank ID Rank

DB00678 21

DB01029 24

DB00275 28

DB00966 30

DB00177 42

DB00796 51

DB08822 74

DB00876 224

DB11842 1130
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Conclusion
In this paper, we present a new model SubMDTA using self-supervised learning and 
multi-scale features for DTA prediction. The drug representations are extracted by 
contrastive learning methods between graph-level and subgraph representations and 
between graph-level and reconstructed graph representations, which is refined by 
downstream task. In addition, multi-scale sequence features were fused to learn pro-
tein representations, which captured long distance and multiple relationships in amino 
acid sequences. The experimental results proved that our method outperformed existing 
methods. In our future work, we will take account into the progresses made in heteroge-
neous information networks [50] and incorporate them to enhance the prediction ability 
of our models.
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