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Abstract 

Background: Tyrosinase is an enzyme involved in melanin production in the skin. Sev-
eral hyperpigmentation disorders involve the overproduction of melanin and instability 
of tyrosinase activity resulting in darker, discolored patches on the skin. Therefore, dis-
covering tyrosinase inhibitory peptides (TIPs) is of great significance for basic research 
and clinical treatments. However, the identification of TIPs using experimental methods 
is generally cost-ineffective and time-consuming.

Results: Herein, a stacked ensemble learning approach, called TIPred, is proposed 
for the accurate and quick identification of TIPs by using sequence information. TIPred 
explored a comprehensive set of various baseline models derived from well-known 
machine learning (ML) algorithms and heterogeneous feature encoding schemes 
from multiple perspectives, such as chemical structure properties, physicochemical 
properties, and composition information. Subsequently, 130 baseline models were 
trained and optimized to create new probabilistic features. Finally, the feature selection 
approach was utilized to determine the optimal feature vector for developing TIPred. 
Both tenfold cross-validation and independent test methods were employed to assess 
the predictive capability of TIPred by using the stacking strategy. Experimental results 
showed that TIPred significantly outperformed the state-of-the-art method in terms 
of the independent test, with an accuracy of 0.923, MCC of 0.757 and an AUC of 0.977.

Conclusions: The proposed TIPred approach could be a valuable tool for rapidly 
discovering novel TIPs and effectively identifying potential TIP candidates for follow-up 
experimental validation. Moreover, an online webserver of TIPred is publicly available 
at http:// pmlab stack. pytho nanyw here. com/ TIPred.
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Background
Tyrosinase is a metalloenzyme that possesses a copper binding domain which is con-
served across different organisms including fruits, vegetables, fungi, mammals, and 
insects that utilize it for cuticle sclerosis and wound healing [2, 3]. The enzyme catalyzes 
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the transformation of tyrosine, an amino acid, into DOPA (dihydroxyphenylalanine), 
which is subsequently converted into melanin—the pigment responsible for determin-
ing skin, hair, and eye color [1, 4]. Moreover, this enzyme also plays a role in the bio-
synthesis of other pigments such as dopamine and norepinephrine [2]. Overproduction 
of melanin and instability of tyrosinase activity could cause several hyperpigmentation 
disorders, which are the conditions that result in excessive skin pigmentation and cause 
darker, discolored patches on the skin [3]. These disorderes can be caused by a variety of 
factors, including sun exposure, hormonal changes, inflammation, genetics, and certain 
medications [4, 5]. Examples of common hyperpigmentation disorders include melasma, 
age spots, and post-inflammatory hyperpigmentation [4]. Treatment options for hyper-
pigmentation disorders include topical lightening agents, chemical peels, and laser ther-
apy. In some cases, reducing exposure to triggers and protecting the skin from further 
sun damage can also help reduce the appearance of hyperpigmentation [4–6].

Substances that can hinder the function of the enzyme tyrosinase are known as tyrosi-
nase inhibitors, and are frequently utilized in skin lightening products aimed at reduc-
ing the visibility of hyperpigmentation and dark spots on the skin [5]. Some natural 
tyrosinase inhibitors include kojic acid, arbutin, and licorice extract [7, 8]. On the other 
hand, chemical tyrosinase inhibitors include hydroquinone, azelaic acid, and glycolic 
acid [9, 10]. However, these chemical whitening agents may lead to various undesirable 
side effects such as skin irritation, allergic reactions, sensitivity to sunlight, discolora-
tion, and exogenous ochronosis [11–14]. Tyrosinase inhibitory peptides (TIPs) refer to 
short chains of amino acids, usually comprised of 3–20 units, that are capable of imped-
ing the activity of the tyrosinase enzyme. This enzyme is responsible for the synthesis of 
melanin, the pigment that determines skin color [17]. Recently, bioactive peptides have 
become an increasingly popular medicinal agent, and TIPs derived from food sources 
are highly favored due to their excellent biological safety and ease of absorption. These 
peptides are viewed as a promising alternative to chemical tyrosinase inhibitors like hyd-
roquinone [17–19]. In addition to TIPs, amino acids released during digestion in the 
gastrointestinal tract can also be completely absorbed even without ingestion [15]. The 
clinical trials for novel TIPs derived from various animal and plant sources are currently 
underway [16–18].

Therefore, the identification of TIPs through the use of sequence information is 
crucial to accelerate their implementation in clinical settings. In this regard, machine 
learning (ML) techniques have been explored to facilitate the high-throughput dis-
covery of new TIPs. Currently, only one computational method has been developed 
for the identification of TIPs. This method was introduced by Kongsompong et  al. 
[19]. Specifically, this group employed two popular ML methods (random forest (RF) 
and k-nearest neighbour (KNN)) trained with three interpretable feature descriptors 
(amino acid composition (AAC), physicochemical properties (PCP), and dipeptide 
composition (DPC)). These KNN and RF classifiers were trained and evaluated on 
the dataset consisting of 133 TIPs and 13 non-TIPs. The performance of KNN and 
RF classifiers were 0.97 and 0.99, respectively, in terms of accuracy (ACC) on the 
independent test dataset. Although Kongsompong’s method provides a high predic-
tion performance, their method has a few flaws and needs to be improved. Firstly, 
the method was developed using a small number of negative samples. Hence, their 
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performance in non-TIP identification might not be satisfactory. Secondly, this study 
did not offer a comparative analysis of the impact of well-known feature encodings 
and ML algorithms on TIP prediction. Thirdly, this study did not provide a web server.

Considering these limitations, we introduce TIPred for the large-scale identification 
of TIPs by using only peptide sequence information. The design and development of 
TIPred is summarized in Fig. 1. Major contributions of this study are listed as follows:

(i) To the best of our knowledge, TIPred is the first stacked ensemble approach devel-
oped for the identification and characterization of TIPs.

(ii) TIPred employed different feature encoding schemes from multiple aspects, 
including, amino acid composition, chemical structure properties, physicochemi-
cal properties and pseudo-amino acid composition, integrated state-of-the-art ML 
classifiers to develop a more stable meta-model. In addition, we investigated the 
contributions of different types of feature encodings in TIP prediction.

(iii) The independent test results indicated that TIPred achieved a better performance 
compared to the existing method and several conventional ML classifiers in terms 
of ACC (0.923), Matthew’s correlation coefficient (MCC) (0.744) and area under 
the receiver operating characteristics (ROC) curve (AUC) (0.964).

Fig. 1 System flowchart of the proposed TIPred. The overall workflow for the development of TIPred contains 
four major steps: dataset preparation, baseline model construction, TIPred optimization, and web server 
development
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(iv) In TIPred, we utilized an interpretable Shapley Additive exPlanation (SHAP) 
approach to provide a better understanding of the functional mechanisms of TIPs.

(v) TIPred-assisted virtual screening approach was introduced and used for the accel-
erated discovery of novel TIPs.

Materials and methods
Construction of training and independent datasets

In this study, the positive dataset containing 133 TIPs was derived from the study of 
Kongsompong et al. [19]. These TIPs are peptides that have been experimentally veri-
fied as having tyrosinase inhibitory properties. Until now, there has been no source of 
experimentally verified non-TIPs. Therefore, to establish a dependable dataset, the non-
antioxidative peptides obtained from Olsen et al. [20] were utilized to create the nega-
tive dataset in this study. TIPs usually exhibit dual activities, they can inhibit tyrosinase 
through the photoaging system by binding to the catalytic domain, as well as directly 
scavenge free radicals as antioxidants [15, 18, 21–23]. Thus, we selected peptides that 
were empirically confirmed as non-effective in both categories of antioxidant proper-
ties (i.e., free radical scavengers and iron chelators) as negative samples. After removal 
of duplicated sequences, 287 non-TIPs were obtained. Finally, the benchmark dataset 
contained 133 TIPs and 287 non-TIPs. Among these, 106 TIPs and 230 non-TIPs were 
randomly selected to construct the training dataset (called TIP-TRN), the remaining 
peptides were used to construct the independent test dataset (called TIP-IND).

Feature encoding methods

To encode the TIPs and non-TIPs, we utilized 10 different feature encoding schemes, 
which are categorized into multiple groups, namely amino acid composition (AAC, 
DPC, and DDE), pseudo-amino acid composition (APAAC and PAAC), physicochemi-
cal properties (PCP) and chemical structure properties (Estate, FP4, MACCS, and 
PubChem). Among these feature encoding schemes, AAC, APAAC, DDE, DPC, PAAC, 
and PCP, which are known as sequence-based feature descriptors, can be used to encode 
FASTA-formatted TIPs and non-TIPs into fixed-length feature vectors by considering 
the 20 standard amino acids along with the iFeature Python package [24–26]. By using 
the remaining feature encoding schemes, the FASTA-formatted TIPs and non-TIPs were 
converted into their corresponding chemical structures (SMILES format) by using the 
RDKit software [27]. Then, the Chemistry Development Kit (CDK) was used to encode 
SMILES-formatted TIPs and non-TIPs into fixed-length feature vectors [26, 28–31]. 
Details of all the 10 feature encodings are summarized in Table 1.

Feature selection technique

Training a prediction model with high-dimensional input feature vectors can cause over-
fitting and underfitting issues. In this context, the feature selection method is needed to 
enhance the prediction performance and optimize computational time [28–30, 32]. In 
this study, we used our proposed genetic algorithm (GA-SAR) for constructing an opti-
mal feature set containing m useful features [25, 26, 33]. In 2019, Charoenkwan et  al. 
initially introduced this method for the interpretable identification of quorum sensing 
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peptides [33]. Until now, the GA-SAR method has been applied for the prediction and 
characterization of many protein and peptide functions [25, 26, 34, 35]. In brief, the 
chromosomes of the GA-SAR consist of two main genes, namely binary gene and para-
metric gene. The chromosomes and gene of the GA-SAR are referred as GA-chrom and 
GA-gene herein, respectively. Herein, the parameters and their values for the GA-SAR 
consist of mstart = 5, mend = 20, Pm = 0.05, and Pop = 50. Detailed report regarding this 
algorithm is provided in our previous studies [25, 26, 33] along with the Additional file 1 
[25, 26, 33].

The architecture of the proposed model TIPred

Herein, TIPred was developed by using the stacking strategy. Stacking is well-known as 
a powerful ensemble learning approach that is able to automatically combine multiview 
information derived from different ML classifiers as means to create a more accurate 
and stable predictor [25, 26, 29, 30]. Thus, the development of our proposed TIPred 
involves two main steps, including (1) baseline model construction and (2) meta-model 
development.

In the first part, we encoded the TIP-TRN dataset using 10 types of feature encodings, 
including DPC, PAAC, PCP, AAC, DDE, APAAC, FP4, Estate, PubChem, and MACCS, 
in combination with 13 ML methods, including ADA, ET, MLP, PLS, DT, KNN, LGBM, 
LR, NB, RF, SVMLN, SVMRBF and XGB, for the baseline model development. Specifi-
cally, the baseline models were created based on a wide range of feature encodings from 
multiple perspectives, including amino acid composition, chemical structure proper-
ties, pseudo-amino acid composition, and physicochemical properties [36–40]. In total, 
130 baseline models were trained and constructed by using the scikit-learn package 
(Table 2). In addition, we conducted a comprehensive assessment of all the 130 baseline 
models in TIP prediction by performing both cross-validation and independent tests. 
Herein, the best-performing baseline model was indicated by using the Matthew’s Cor-
relation Coefficient (MCC) on the TIP-TRN dataset.

In the second part, we generated a new probabilistic feature vector (PFV) of 130 
dimension (130-D) by using 130 probabilistic features (PFs) derived from all the 

Table 1 Summary of ten different feature encodings along with their corresponding description 
and dimension

Order Descriptors Description Dimension References

1 AAC Frequency of 20 amino acids 20 [59, 60]

2 APAAC Amphiphilic pseudo-amino acid composition 22 [61]

3 DDE Dipeptide deviation from expected mean 400 [24]

4 DPC Frequency of 400 dipeptides 400 [59, 60]

5 PCP Different biochemical and biophysical properties extracted 
from the AAindex database

11 [59, 60]

6 PAAC Pseudo amino acid composition 21 [61]

7 Estate Electrotopological state atom types 79 [29, 30, 62]

8 FP4 Presence of SMARTS patterns for functional groups 307 [29, 30, 63]

9 MACCS Binary representation of chemical features defined by MACCS 
keys

166 [29, 30, 64]

10 Pubchem Binary representation of substructures defined by PubChem 881 [29, 30, 65]
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130 baseline models and tenfold cross-validation scheme, where PFs were the pre-
dicted confidence of TIPs. Then, the 130-D feature vector was used to develop the 
meta-model based on PLS (called mPLS) [25]. Although the 130-D feature vector 
contains only 130 PFs, some of these PFs involve redundant and noisy information. 
Thus, the GA-SAR was used to establish an optimal feature set containing m useful 
PFs. Specifically, the GA-SAR’s chromosome used herein involved n = 130 features. 
As a result, the GA-chrom contains 130 binary GA-genes ( fi ). If the ith PP is con-
sidered as a useful feature when fi = 1 ; otherwise, the ith feature is not considered. 
Finally, the feature set exhibiting the highest cross-validation MCC was deemed as 
the optimal one. Furthermore, additional evaluation metrics, including AUC, ACC, 
MCC, balanced accuracy (BACC), sensitivity (Sn), and specificity (Sp), were selected 
to evaluate the effectiveness of our proposed model. The descriptions of these evalu-
ation metrics can be found in the Additional file 1 [40, 41].

Screening novel TIPs

In this study, our proposed model was employed to perform a large-scale identifica-
tion of TIPs from the putative hempseed (Cannabis sativa) trypsinized peptidome 
derived from a previous study [42]. Only 73 unique peptides with the proper amino 
acid length (10–57) were consider for our analysis. The putative peptides from Can-
nabis sativa seed having the highest probabilistic scores were deemed as candidate 
TIPs. After that, the molecular docking approach was used to assess the ability of 
the selected TIPs to bind to the active site of the tyrosinase enzyme. Specifically, the 
molecular docking between the selected TIPs and the polyphenol oxidase domain 
(chains A–D) of the crystal structure of mushroom tyrosinase from Agaricus bispo-
rus (PDB: 2Y9X) was performed using two protein-peptide docking web servers, 
namely [43] GalaxyPepDock (http:// galaxy. seokl ab. org/ pepdo ck) and HPEPDOCK 
(http:// huang lab. phys. hust. edu. cn/ hpepd ock/). The GalaxyPepDock server was used 
to conduct the template-based molecular docking simulation, while the HPEPDOCK 
server was used to estimate the template-free (global) molecular docking scores.

Table 2 Parameter search details used for the construction of nine ML-based classifiers

a ADA: AdaBoost, DT: decision tree, ET: extremely randomized trees, KNN: k-nearest neighbor, LGBM: light gradient boosting 
machine, LR: logistic regression, MLP: multilayer perceptron, NB: naive Bayes, PLS: partial least squares, RF: random forest, 
SVMRBF: support vector machine with radial basis function, SVMLN: support vector machine with linear kernels, XGB: 
extreme gradient boosting

Methoda Parameters Range of parameters

ADA n_estimators [20, 50, 100, 200, 500]

ET n_estimators [20, 50, 100, 200, 500]

LGBM n_estimators [20, 50, 100, 200, 500]

LR Cost [0.001, 0.01, 0.1, 1, 10, 100]

MLP hidden_layer_sizes [20, 50, 100, 200, 500]

RF n_estimators [20, 50, 100, 200, 500]

SVMLN Cost [20 to  25] in  log2 steps

SVMRBF Cost [2−4 to  24] in  log2 steps

XGB n_estimators [20, 50, 100, 200, 500]

http://galaxy.seoklab.org/pepdock
http://huanglab.phys.hust.edu.cn/hpepdock/
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Results and discussion
Investigation of the contribution of different machine learning methods and feature 

encodings

In this section, we investigated the contribution of different types of feature encodings 
in TIP prediction. Thus, all the 10 feature encodings were assessed pairwise using all 
the 13 ML methods in terms of tenfold cross-validation and independent tests. Figure 2 
and Additional file 1: Tables S1-S3 detail the predictive performance of the 130 different 
ML classifiers. Additional file 1: Table S3 shows that the highest average MCC of 0.664 is 

Fig. 2 MCC values of 130 baseline models in terms of tenfold cross-validation (A) and independent (B) tests
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achieved by using PubChem, while the second and third highest average MCC of 0.661 
and 0.629 were achieved by using PAAC and APAAC, respectively. And, we noticed 
that there were ten PubChem-based (range 0.660–0.767), nine PAAC-based (range 
0.646–0.773), nine APAAC-based (range: 0.607–0.755) classifiers with MCC greater 
than 0.6 (see Fig. 2). Interestingly, all the top ten ML classifiers were developed based on 
PubChem, PAAC, and APAAC, including MLP-PAAC, SVMRBF-PubChem, SVMLN-
PubChem, SVMLN-APAAC, MLP-PubChem, SVMRBF-PAAC, ET-PAAC, LGBM-
PAAC, and SVMRBF-APAAC. This demonstrates that these feature encodings could be 
beneficial for TIP prediction. Although it could be noticed that MLP-PAAC attained the 
highest performance in terms of ACC (0.882) and MCC (0.767) on the TIP-TRN dataset, 
this classifier failed to achieve a better performance on the TIP-IND dataset, with ACC 
of 0.870, MCC of 0.636, and AUC of 0.960. This evidence indicates that the performance 
of a single feature-based models is not stable on the TIP-IND dataset. To address this 
issue, we were motivated to generate a more comprehensive and reliable model by using 
the stacking strategy.

Performance evaluation of TIPred

Herein, we utilized the stacked strategy to create a stacked model by using PLS method 
in conjunction with the 130-D feature vector generated from multiple baseline models. 
To maximize the utility of the 130-D feature vector, this feature vector was optimized by 
using the GA-SAR as means to determine the optimal number (m) of PFs. In this study, 
the optimal number of PFs was 11 (or the 11-D feature vector). Specifically, the 11-D 
feature vector was generated by the baseline models of ET-DDE, MLP-PubChem, XGB-
PubChem, SVMRBF-APAAC, NB-DDE, ADA-FP4, NB-Estate, LR-MACCS, SVMRBF-
FP4, MLP-FP4, and PLS-PubChem. The performance of the 130-D and 11-D feature 
vectors are recorded in Table 3. As seen in Table 3, MCC, ACC, Sn, and Sp of the 11-D 
feature vector are 0.920, 0.958, 0.945, and 0.973, which are 13.21, 6.58, 6.55, and 6.64%, 
respectively, higher than the 130-D feature vector in terms of the tenfold cross-valida-
tion test. Furthermore, in case of the independent test results, the 11-D feature vector 
still achieved the overall best performance compared to the 130-D feature vector. In this 
context, we utilized the 11-D feature vector to build our proposed model, TIPred.

The Stacking model is capable of improving the predictive performance

In this section, we aim to highlight the improved performance provided by the stack-
ing strategy, by comparing the performance of TIPred with BLAST-based predictors and 
the top five baseline models (i.e., MLP-PubChem, SVMLN-APAAC, SVMLN-PubChem, 

Table 3 Cross-validation and independent test results for the control and optimal model

Evaluation strategy Feature Number of 
feature

ACC BACC Sn Sp MCC AUC 

Cross-validation AFV 130 0.869 0.869 0.870 0.868 0.741 0.942

BFV 11 0.916 0.917 0.917 0.917 0.837 0.955

Independent test AFV 130 0.909 0.948 1.000 0.895 0.725 0.989

BFV 11 0.923 0.956 1.000 0.912 0.757 0.977
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SVMRBF-PubChem, and MLP-PAAC). Additional file  1: Table  S4 presents the inde-
pendent test results of BLAST-based predictors with various E-values. It is worth not-
ing that the highest MCC of 0.406 was achieved using an E-value cutoff value of 0.1. 
However, the Sn of this optimal cutoff value was unsatisfactory (Sn of 0.185), while Sn of 
other cutoff values were in the range of 0.037–0.111. This demonstrated that the BLAST-
based predictor was not capable of precisely identifying true TIPs. As can be seen from 
Fig.  3 and Table  4, TIPred outperformed the top five baseline models in terms of all 
performance metric on the TIP-IND dataset. Specifically, the BACC, Sn, Sp, and AUC 
of TIPred were 0.959, 1.000, 0.912, and 0.757, which were 4.61, 3.70, 5.52, and 12.06%, 

Fig. 3 Performance comparison of TIPred with related methods in terms of tenfold cross-validation (A, C) and 
independent (B, D) tests. (A, B) ROC curves of TIPred and top five baseline models. (C, D) ROC curves of TIPred 
and existing methods

Table 4 Performance comparison of TIPred and top five ML classifiers

Evaluation strategy Method ACC BACC Sn Sp MCC AUC 

Cross-validation MLP-PubChem 0.873 0.872 0.850 0.895 0.749 0.923

SVMLN-APAAC 0.873 0.874 0.916 0.831 0.755 0.891

SVMLN-PubChem 0.878 0.877 0.887 0.866 0.762 0.915

SVMRBF-PubChem 0.882 0.881 0.869 0.894 0.767 0.904

MLP-PAAC 0.882 0.884 0.871 0.897 0.773 0.914

TIPred 0.916 0.917 0.917 0.917 0.837 0.955

Independent test MLP-PubChem 0.889 0.921 0.963 0.878 0.671 0.957

SVMLN-APAAC 0.880 0.899 0.926 0.873 0.637 0.920

SVMLN-PubChem 0.875 0.928 1.000 0.856 0.660 0.965

SVMRBF-PubChem 0.880 0.931 1.000 0.862 0.669 0.946

MLP-PAAC 0.870 0.910 0.963 0.856 0.636 0.960

TIPred 0.923 0.956 1.000 0.912 0.757 0.977
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respectively, higher than that of the best-performing baseline model (MLP-PAAC). This 
indicates that the stacked ensemble learning approach is indeed effective in improving 
the performance of TIP prediction.

TIPred outperforms the existing method

To demonstrate the effectiveness of the model, it is necessary to compare the proposed 
model TIPred with the existing method [19]. As the existing method did not provide a 
webserver, we implemented KNN-based and RF-based classifiers by strictly utilizing the 
same procedure reported in the study of Kongsompong et al. [19] using the same train-
ing dataset. Table 5 illustrates that our proposed model, TIPred, achieved the best per-
formance as judged by five out of six evaluation metrics (i.e., ACC, BACC, Sn, Sp, MCC, 
and AUC) on both the TIP-TRN and TIP-IND datasets. Specifically, the BACC, Sn, and 
MCC values achieved by TIPred were 8.98, 18.52, and 11.33% higher than RF-based 
classifier in terms of the TIP-IND dataset. Altogether, based on both the cross-validation 
and independent test results, TIPred consistently demonstrated a stable performance, 
indicating its effectiveness and robustness. In addition, the higher values of Sp and MCC 
in terms of the TIP-IND dataset are sufficient to elucidate that TIPred could effectively 
reduce the number of false positives, which plays a crucial role for minimizing the 
experimental costs and burden.

Feature importance analysis

The SHAP framework is well-known as an interpretable and powerful framework used 
to provide information about how features can affect the output of the model. Therefore, 
we utilized this framework to analyze the prediction outputs of the proposed TIPred and 
its baseline models. Figure 4A and Additional file 1: Fig. S1A demonstrate the impact of 
the 11 PFs on the prediction of TIPred, where the positive and negative SHAP values 
indicate the probability that the prediction outputs are relatively positive and negative 
classes, respectively. We obtained the top-eight informative PFs with the highest SHAP 
values from eight baseline models of SVMLN-PubChem, ET-DDE, SVMRBF-APAAC, 
MLP-PubChem, LGBM-PubChem, XGB-MACCS, PLS-Estate, and PLS-APAAC (refer 
to Fig.  4A and Additional file  1: Table  S5). Taking SVMLN-PubChem as an example, 
peptide sequences with high PF values of SVMLN-PubChem have a high probabil-
ity of being TIPs. On the other hand, peptide sequences with high PF values of PLS-
Estate have a high possibility of being non-TIPs. Among the top-eight informative PFs, 
SVMRBF-APAAC was found to be the fourth-best informative PF. Figure 4B along with 

Table 5 Performance comparison of TIPred and the existing predictors

Evaluation strategy Method ACC BACC Sn Sp MCC AUC 

Cross-validation TIP-KNN 0.680 0.679 0.811 0.547 0.383 0.679

TIP-RF 0.845 0.845 0.821 0.869 0.695 0.919

TIPred 0.916 0.917 0.917 0.917 0.837 0.955

Independent test TIP-KNN 0.644 0.717 0.815 0.619 0.294 0.717

TIP-RF 0.904 0.866 0.815 0.917 0.643 0.958

TIPred 0.923 0.956 1.000 0.912 0.757 0.977
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Additional file 1: Fig. S1B and Table S6 display the impact of top 20 informative features 
on the prediction of SVMRBF-APAAC. Based on the SHAP values, we noticed that the 
ten top-ranked features consist of Cys, Tyr, Arg, Val, Ile, Asp, Phe, Leu, hydrophobicity, 

Fig. 4 Feature importance from TIPred (A) and SVMRBF-APAAC (B) as ranked by SHAP values based on the 
training dataset. Color indicates the magnitude and direction of the contribution of features to TIPred and 
SVMRBF-APAAC for TIP prediction, where positive and negative SHAP values indicate the probability that the 
prediction outputs are positive and negative samples, respectively
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and Pro. As shown in Fig. 4B, Cys, Tyr, Arg, Val, Ile, Phe, and hydrophobicity are abun-
dant in TIPs compared to non-TIPs, while Asp, Leu, and Pro are abundant in non-TIPs 
compared to TIPs.

The amino acid composition findings are consistent with previous reports, indicat-
ing that TIPs tend to contain higher levels of certain amino acids, including Cys, Tyr, 
Arg, Phe, and Met [44–49]. Some of the well-known TIPs were rich in Ser, Trp, Arg, 
and sulfur-containing amino acids (Cys and Met). These characteristics are typical of 
well-known peptides that inhibit tyrosinase and chelate metals. The sulfur-containing 
amino acids, Cys and Met, have been found to be associated with tyrosinase inhibition 
and copper chelation in natural TIPs derived from hydrolyzed rice-bran-derived albu-
min [47]. Schurink et al. [42] observed that peptides with polar, uncharged amino acids, 
particularly Cys, are effective tyrosinase inhibitors that have a high reductive effect 
on the melanin synthesis pathway. According to research, Cys plays a role in limiting 
tyrosinase activity by converting o-quinone intermediates into stable colorless cysteine-
quinone adducts, lowering polyphenol precursor levels and preventing the formation of 
polymeric melanin products. Cys-containing peptides can also compete with catalyti-
cally active copper ions, preventing them from binding to tyrosinase [48, 49].

Interestingly, hydrophobicity, a feature of physicochemical property has also been 
found in the ten top-ranked features together with other amino acids. There is also sup-
porting evidence suggesting that hydrophobic amino acid residues can enhance tyrosi-
nase inhibition. The hydrophobic nature of TIPs, including amino acids such as Phe, Trp, 
Met, and particularly Ala, has been found to play an important role in inhibiting mel-
anogenesis [45]. Furthermore, it was observed that the aromatic amino acid Phe has the 
ability to stabilize free radicals through electron donation and maintain its antioxidant 
stability through its resonant structure [46–48]. The peptides containing the cationic 
amino acid Arg have been found to possess remarkable activity in chelating copper ions 
and generally exhibit excellent tyrosinase binding properties, owing to the presence of 
the guanidine group [42]. Interestingly, the dipeptide Arg-Lys, which has been reported 
as the active composition in the TIPs fraction of hydrolyzed rice albumin [47], was not 
among the top ten SHAP values identified in this study.

TIPred‑assisted virtual screening for novel TIPs identification

Herein, we applied TIPred-assisted virtual screening approach for the identification of 
novel TIPs. To showcase TIPs prediction and screening, hempseed (Cannabis sativa) 
peptidome was the most suitable choice due to the fact that it is a high-protein plant 
source (20–25% content) that has been extensively utilized in the development of 
numerous products for the cosmetics, therapeutic, functional food, and nutraceutical 
industries [50, 51]. Hempseed protein hydrolysates have been recognized as a valuable 
source of bioactive peptides with various health-promoting effects [52]. As a result, 
hempseed peptides have garnered attention for their potential bioactive pharmaceu-
tical properties, including antioxidant and tyrosinase inhibitory abilities. Additional 
file 1: Table S7 lists the probabilistic scores of the 73 putative peptides from Cannabis 
sativa seed. As mentioned above, we selected the candidate TIPs in terms of the prob-
abilistic score and considered as potential TIPs. The top five TIPs with a probabil-
istic score of 1.000 were identified, including A-2 (ISSSTLALFAALMLVAHAVAFR), 
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E1–9 (YTIQQNGLHLPSYTNTPQLVYIVK), E2–12 (GLLLPSFLNAPMMFYVIQGR), 
E3–38 (NAMYAPQYTMNAHNIIYAIR), and E3–6 (LTIQPNGLHLPSYTNGPQLI-
HVIR). This suggests that these peptides are highly likely to have TIP activity and 
can be considered as potential TIPs for further validation. To further demonstrate 
the effectiveness of these top-five potential TIPs, we performed molecular docking 
between these TIPs and the polyphenol oxidase domain (chain A–D) of the crys-
tal structure of mushroom tyrosinase by using by GalaxyPepDock and HPEPDOCK 
(Fig. 5 and Additional file 1: Figures S2-S6). The calculated binding affinity between 
the TIP candidates and tyrosinase was represented by molar Gibbs free energy (ΔG) 
and the equilibrium dissociation constant (Kd). As shown in Table 6, the scores (ΔG, 
Kd, and molecular docking score) of the top-five potential TIPs were − 11.6 to − 
9.4 kcal/mol, 3.1E−09 to 1.6E−07, and − 201.2040 to 134.0631 kJ/mol, respectively. 
Among the top-five potential TIPs, E2–12 outperformed other peptides in terms of 
molecular docking score. To be specific, the ΔG, Kd, and molecular docking score of 
E2–12 were − 10.1, 4.0E−08, and − 201.2040, respectively.

Fig. 5 Molecular docking of E2–12 to the tyrosinase (PDB: 2Y9X) generated from GalaxyPepDock (A) and 
HPEPDOCK (B). The tyrosinase is shaded in gold, while the peptide sequences and hydrogen bonds are 
shown in pink and red, respectively
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To indicate the effectiveness of E2–12, we compared its performance with the com-
mercial TIP, i.e., P4 (YRSRKSSWP) or decapeptide-12. There have been multiple studies 
that indicate P4 as the most well-known peptide that is currently being used as the pri-
mary active component in the LumixylTM skin brightening product [17, 53]. The com-
mon binding position of the highest molecular docking scored csTIP candidate (E2–12) 
and the positive control peptide (P4) was revealed by the comparative molecular docking 
on the crystal structure of tyrosinase (Fig. 6). The molecular docking result could con-
firm the overlapped interacting regions on the active site of tyrosinase structure on both 
protein-peptide docking methods (GalaxyPepDock and HPEPDOCK). Table 6 indicates 
that E2–12 exhibited a better potential inhibition of tyrosinase as compared to the com-
mercial TIP P4 in terms of ΔG (− 10.1 versus − 9.3), Kd (4.0E−08 versus 1.6E−07), and 
molecular docking score (− 201.2040 versus − 19.5013). Furthermore, all the hydrogen 
bonds between peptides and tyrosinase proposed by the molecular docking simulation 
are listed in Additional file 1: Table S8. According to the molecular docking simulation 
experiments, the distance in the hydrogen bond between E2–12 and tyrosinase struc-
tures was 1.5–3.3 Å, implying that E2–12 could be deemed as a moderately strong cova-
lent interaction [54]. Similar to the analyzed results of abalone biomimetic peptides 
(hdTIPs) [43], the cationic amino acid residues (Arg20, 38, 95, 268, 321) of the catalytic 
domain on tyrosinase seems to be the key binding target of E2–12 and other hempseed 
TIPs. These results indicate that the peptide E2–12 as derived from this study could be a 
promising TIP. Altogether, the virtual screening result of TIPred is adequate to demon-
strate that TIPred has the potential to be a useful and efficient tool for quickly screening 
and identifying promising TIPs.

Conclusion
This study introduces a novel stacked ensemble approach (termed TIPred) for the accu-
rate and high-throughput identification of TIPs. TIPred combines a comprehensive set 
of feature encoding schemes from multiple aspects, such as chemical structure prop-
erties, physicochemical properties, and composition information, with 13 well-known 
ML methods to create a more stable model. The experimental results of both the tenfold 
cross-validation and independent tests indicate the effectiveness of our stacked model 
TIPred, outperforming the existing method and several conventional ML classifiers. The 
improved performance of TIPred can be attributed to several factors: (1) The integration 

Table 6 Calculated binding affinity (∆G), dissociation constant (Kd), and binding energy scores from 
the molecular docking results from HPEPDOCK of csTIPs and P4 to the tyrosinase (2Y9X chainD) 
based on the PROGIDY and PIMA web servers

Name ΔG (kcal/mol) Kd at 25.0 ℃ H‑bond ener. 
(kJ/mol)

Elec. ener. (kJ/
mol)

VDW. ener. (kJ/
mol)

Molecular 
docking score 
(kJ/mol)

A-2 − 9.4 1.4E−07 − 5.4749 − 5.7960 145.3340 134.0631

E1–9 − 11.6 3.1E−09 − 3.1403 1.8997 − 90.3478 − 91.5884

E2–12 − 10.1 4.0E−08 − 12.6447 − 6.7877 − 181.7720 − 201.2040

E3–6 − 11.0 8.3E−09 − 4.5694 4.2906 − 141.8230 − 142.1020

E3–38 − 10.8 1.2E−08 − 13.4909 0.0000 − 48.8050 − 62.2959

P4 − 9.3 1.6E−07 − 34.2300 24.0025 − 9.2737 − 19.5013
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of different feature encodings can provide more discriminative patterns; (2) The GA-SAR 
methods can determine the optimal number of features as a means of reducing the over-
fitting issue and improving the performance; and (3) The stacking strategy can effectively 
maximize the utilization of baseline models to obtain a more accurate TIP identification. 
Our new method is anticipated to contribute to community-wide efforts in screening 
and identifying potential TIP candidates for the treatment of skin pigmentation dis-
orders and other clinical applications. Although TIPred has achieved better and more 
robust performance, it still has some limitations, which can be addressed in future work. 
One possible extension is to collect additional TIPs to develop a more comprehensive 
prediction model. Another extension could be the employment of well-known feature 
extractors, such as a bidirectional recurrent neural network (RNN) [55] and ProtBERT 
[56], to effectively capture the key information of TIPs. For the last extension, we can 
try to incorporate TIPred with recent innovative computational frameworks, such as an 
iterative feature representation algorithm [57] and deep learning (DL)-based framework 
[39, 58].

Fig. 6 Comparative molecular docking of the highest molecular docking scored csTIP candidate (E2–12) 
and the positive control peptide (P4) on the crystal structure of tyrosinase (PDB: 2Y9X) from different 
protein-peptide docking tools: GalaxyPepDock (A) and HPEPDOCK (B). The structure of the tyrosinase is 
shaded in gold, while E2–12 and P4 are shown in pink and yellow, respectively



Page 16 of 19Charoenkwan et al. BMC Bioinformatics          (2023) 24:356 

Abbreviations
DOPA  Dihydroxyphenylalanine
TIPs  Tyrosinase inhibitory peptides
RF  Random forest
KNN  K-nearest neighbour
AAC   Amino acid composition
PCPs  Physicochemical properties
DPC  Dipeptide composition
MCC  Matthew’s correlation coefficient
ROC  Receiver operating characteristics
AUC   Area under the receiver operating characteristics curve
SHAP  Shapley Additive exPlanation
CDF  Chemistry development kit
ML  Machine learning
ET  Extremely randomized trees
SVM  Support vector machine
ACC   Accuracy
DT  Decision tree
LGBM  Light gradient boosting machine
LR  Logistic regression
MLP  Multilayer perceptron
NB  Naive Bayes
PLS  Partial least squares
SVMRBF  Support vector machine with radial basis function
SVMLN  Support vector machine with linear kernels
XGB  Extreme gradient boosting.
PF  Probabilistic feature
GA  Genetic algorithm
SAR  Self-assessment-report operation
Sp  Specificity
Sn  Sensitivity
TP  True positive
FP  False positive
TN  True negative
FN  False negative
APAAC   Amphiphilic pseudo-amino acid composition
DDE  Dipeptide deviation from expected mean
PAAC   Pseudo amino acid composition
ADA  AdaBoost
RNN  Recurrent neural network
DL  Deep learning

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05463-1.

Additional file 1. Supplementary Figures and Tables.

Acknowledgements
This study is supported by College of Arts, Media and Technology, Chiang Mai University and partially supported by 
Chiang Mai University. This study is also supported by International SciKU Branding (ISB), Faculty of Science, Kasetsart 
University. The authors thank the Information Technology Service Center (ITSC) of Chiang Mai University for supporting 
the computational resources.

Author contributions
PC: Designing the study, Methodology, Formal analysis, Software, Webserver development. SK: Formal analysis, Investiga-
tion, and Visualization. NS: Preparation of the manuscript. PM: Designing the study, Data curation, Formal analysis, Visuali-
zation, Investigation, Preparation of the manuscript, Revision of the manuscript. WS: Project administration, Supervision, 
Designing the study, Formal analysis, Visualization, Investigation, Preparation of the manuscript preparation, Revision of 
the manuscript.

Funding
This project is funded by National Research Council of Thailand (NRCT) and Mahidol University (N42A660380) and the 
Specific League Funds from Mahidol University.

Availability of data materials
All the data used in this study are available at http:// pmlab stack. pytho nanyw here. com/ TIPred.

https://doi.org/10.1186/s12859-023-05463-1
http://pmlabstack.pythonanywhere.com/TIPred


Page 17 of 19Charoenkwan et al. BMC Bioinformatics          (2023) 24:356  

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 30 March 2023   Accepted: 1 September 2023

References
 1. Casanola-Martin GM, et al. Tyrosinase enzyme: 1. An overview on a pharmacological target. Curr Top Med Chem. 

2014;14(12):1494–501.
 2. Kahn V. Effect of kojic acid on the oxidation of DL-DOPA, norepinephrine, and dopamine by mushroom tyrosinase. 

Pigment Cell Res. 1995;8(5):234–40.
 3. Panzella L, Napolitano A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of 

skin hyperpigmentation: recent advances. Cosmetics. 2019;6(4):57.
 4. Pandya AG, Guevara IL. Disorders of hyperpigmentation. Dermatol Clin. 2000;18(1):91–8.
 5. Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell 

Res. 2003;16(2):101–10.
 6. Perez-Bernal A, Munoz-Perez MA, Camacho F. Management of facial hyperpigmentation. Am J Clin Dermatol. 

2000;1:261–8.
 7. Leyden J, Shergill B, Micali G, Downie J, Wallo W. Natural options for the management of hyperpigmentation. J Eur 

Acad Dermatol Venereol. 2011;25(10):1140–5.
 8. Kim Y-J, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and 

perspective for the future. Cell Mol Life Sci CMLS. 2005;62:1707–23.
 9. Chang T-S. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10(6):2440–75.
 10. Zolghadri S, et al. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):279–309.
 11. Migas P, Krauze-Baranowska M. The significance of arbutin and its derivatives in therapy and cosmetics. Phytochem 

Lett. 2015;13:35–40.
 12. Hermawan M, Simbolon Sitohang I, Sirait SP. Exogenous ochronosis: Screening by dermoscopy and histopathologi-

cal confirmation. J Nat Sc Biol Med. 2019;10:163–5.
 13. Diven DG, Smith EB, Pupo RA, Lee M. Hydroquinone-induced localized exogenous ochronosis treated with derma-

brasion and  CO2 laser. J Dermatol Surg Oncol. 1990;16(11):1018–22.
 14. Arndt KA, Fitzpatrick TB. Topical use of hydroquinone as a depigmenting agent. JAMA. 1965;194(9):965–7.
 15. Song Y, Chen S, Li L, Zeng Y, Hu X. The hypopigmentation mechanism of tyrosinase inhibitory peptides derived from 

food proteins: an overview. Molecules. 2022;27(9):2710.
 16. Deng Y, et al. Skin-care functions of peptides prepared from Chinese quince seed protein: sequences analysis, tyrosi-

nase inhibition and molecular docking study. Ind Crops Prod. 2020;148:112331.
 17. Ochiai A, et al. New tyrosinase inhibitory decapeptide: molecular insights into the role of tyrosine residues. J Biosci 

Bioeng. 2016;121(6):607–13.
 18. Addar L, Bensouici C, Zennia SSA, Haroun SB, Mati A. Antioxidant, tyrosinase and urease inhibitory activities of camel 

αS-casein and its hydrolysate fractions. Small Rumin Res. 2019;173:30–5.
 19. Kongsompong S, E-kobon T, Chumnanpuen P. K-nearest neighbor and random forest-based prediction of putative 

tyrosinase inhibitory peptides of abalone Haliotis diversicolor. Molecules. 2021;26(12):3671.
 20. Olsen TH, et al. AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides. Sci Rep. 

2020;10(1):21471.
 21. Yang J-K, et al. β-Lactoglobulin peptide fragments conjugated with caffeic acid displaying dual activities for tyrosi-

nase inhibition and antioxidant effect. Bioconjug Chem. 2018;29(4):1000–5.
 22. Yap P-G, Gan C-Y. Multifunctional tyrosinase inhibitor peptides with copper chelating, UV-absorption and antioxi-

dant activities: kinetic and docking studies. Foods. 2021;10(3):675.
 23. Luisi G, Stefanucci A, Zengin G, Dimmito MP, Mollica A. Anti-oxidant and tyrosinase inhibitory in vitro activity of 

amino acids and small peptides: new hints for the multifaceted treatment of neurologic and metabolic disfunctions. 
Antioxidants. 2018;8(1):7.

 24. Chen Z, et al. iFeature: a python package and web server for features extraction and selection from protein and 
peptide sequences. Bioinformatics. 2018;34(14):2499–502.

 25. Charoenkwan P, Chiangjong W, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. StackIL6: a stacking 
ensemble model for improving the prediction of IL-6 inducing peptides. Brief Bioinform. 2021;22(6):bbab172.

 26. Charoenkwan P, Nantasenamat C, Hasan MM, Moni MA, Manavalan B, Shoombuatong W. StackDPPIV: a novel 
computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Methods. 
2022;204:189–98.

 27. Landrum G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Lon-
don: Academic Press; 2013.

 28. Willighagen EL, et al. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and 
substructure searching. J Cheminform. 2017;9(1):1–19.



Page 18 of 19Charoenkwan et al. BMC Bioinformatics          (2023) 24:356 

 29. Malik AA, Chotpatiwetchkul W, Phanus-Umporn C, Nantasenamat C, Charoenkwan P, Shoombuatong W. StackHCV: 
a web-based integrative machine-learning framework for large-scale identification of hepatitis C virus NS5B inhibi-
tors. J Comput Aided Mol Design. 2021;35(10):1037–53.

 30. Schaduangrat N, Anuwongcharoen N, Moni MA, Lio P, Charoenkwan P, Shoombuatong W. StackPR is a new compu-
tational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy. Sci 
Rep. 2022;12(1):1–16.

 31. Wei L, Ye X, Xue Y, Sakurai T, Wei L. ATSE: a peptide toxicity predictor by exploiting structural and evolutionary infor-
mation based on graph neural network and attention mechanism. Brief Bioinform. 2021;22(5):bbab041.

 32. Chen W, Lv H, Nie F, Lin H. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics. 
2019;35(16):2796–800.

 33. Charoenkwan P, Schaduangrat N, Nantasenamat C, Piacham T, Shoombuatong W. iQSP: a sequence-based tool for 
the prediction and analysis of quorum sensing peptides using informative physicochemical properties. Int J Mol Sci. 
2019;21(1):75.

 34. Charoenkwan P, et al. AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature 
representation learning. Sci Rep. 2022;12(1):1–14.

 35. Charoenkwan P, Schaduangrat N, Moni MA, Manavalan B, Shoombuatong W. SAPPHIRE: a stacking-based ensemble 
learning framework for accurate prediction of thermophilic proteins. Comput Biol Med. 2022;146:105704.

 36. Qiang X, Zhou C, Ye X, Du P-F, Su R, Wei L. CPPred-FL: a sequence-based predictor for large-scale identification of 
cell-penetrating peptides by feature representation learning. Brief Bioinform. 2020;21(1):11–23.

 37. Rao B, Zhou C, Zhang G, Su R, Wei L. ACPred-Fuse: fusing multi-view information improves the prediction of antican-
cer peptides. Brief Bioinform. 2020;21(5):1846–55.

 38. Zhu L, Wang X, Li F, Song J. PreAcrs: a machine learning framework for identifying anti-CRISPR proteins. BMC Bioin-
form. 2022;23(1):444.

 39. Xie R, et al. DeepVF: a deep learning-based hybrid framework for identifying virulence factors using the stacking 
strategy. Brief Bioinform. 2021;22(3):bbaa125.

 40. Hasan MM, Schaduangrat N, Basith S, Lee G, Shoombuatong W, Manavalan B. HLPpred-Fuse: improved and 
robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics. 
2020;36(11):3350–6.

 41. Basith S, Manavalan B, Hwan-Shin T, Lee G. Machine intelligence in peptide therapeutics: a next-generation tool for 
rapid disease screening. Med Res Rev. 2020;40(4):1276–314.

 42. Prasertsuk K, et al. Computer-aided screening for potential coronavirus 3-chymotrypsin-like protease (3CLpro) 
inhibitory peptides from putative hemp seed trypsinized peptidome. Molecules. 2022;28(1):50.

 43. Kongsompong S, E-kobon T, Taengphan W, Sangkhawasi M, Khongkow M, Chumnanpuen P. Computer-aided virtual 
screening and in vitro validation of biomimetic tyrosinase inhibitory peptides from abalone peptidome. Int J Mol 
Sci. 2023;24(4):3154.

 44. Schurink M, van Berkel WJ, Wichers HJ, Boeriu CG. Novel peptides with tyrosinase inhibitory activity. Peptides. 
2007;28(3):485–95.

 45. Ishikawa M, Kawase I, Ishii F. Combination of amino acids reduces pigmentation in B16F0 melanoma cells. Biol 
Pharm Bull. 2007;30(4):677–81.

 46. Rajapakse N, Mendis E, Byun H-G, Kim S-K. Purification and in vitro antioxidative effects of giant squid muscle pep-
tides on free radical-mediated oxidative systems. J Nutr Biochem. 2005;16(9):562–9.

 47. Rajapakse N, Mendis E, Jung W-K, Je J-Y, Kim S-K. Purification of a radical scavenging peptide from fermented mussel 
sauce and its antioxidant properties. Food Res Int. 2005;38(2):175–82.

 48. Zhou C, Yu X, Qin X, Ma H, Yagoub AEA, Hu J. Hydrolysis of rapeseed meal protein under simulated duodenum 
digestion: Kinetic modeling and antioxidant activity. LWT Food Sci Technol. 2016;68:523–31.

 49. Kubglomsong S, Theerakulkait C, Reed RL, Yang L, Maier CS, Stevens JF. Isolation and identification of tyrosinase-
inhibitory and copper-chelating peptides from hydrolyzed rice-bran-derived albumin. J Agric Food Chem. 
2018;66(31):8346–54.

 50. Oomah BD, Busson M, Godfrey DV, Drover JC. Characteristics of hemp (Cannabis sativa L.) seed oil. Food chemistry. 
2002;76(1):33–43.

 51. Girgih AT, Udenigwe CC, Aluko RE. In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydro-
lysate fractions. J Am Oil Chem Soc. 2011;88(3):381–9.

 52. Santos-Sánchez G, et al. Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides 
with pleiotropic health-promoting effects. Trends Food Sci Technol. 2022;127:303–18.

 53. Reddy B, Jow T, Hantash BM. Bioactive oligopeptides in dermatology: part I. Exp Dermatol. 2012;21(8):563–8.
 54. Jeffrey GA, Jeffrey GA. An introduction to hydrogen bonding. New York: Oxford University Press; 1997.
 55. Xuan W, Liu N, Huang N, Li Y, Wang J. Clpred: a sequence-based protein crystallization predictor using blstm neural 

network. Bioinformatics. 2020;36(Supplement_2):i709–17.
 56. Wang X, Han L, Wang R, Chen H. DaDL-SChlo: protein subchloroplast localization prediction based on generative 

adversarial networks and pre-trained protein language model. Brief Bioinform. 2023;24(3):bbad083.
 57. Wei L, et al. Iterative feature representations improve N4-methylcytosine site prediction. Bioinformatics. 

2019;35(23):4930–7.
 58. Li F, et al. Digerati—a multipath parallel hybrid deep learning framework for the identification of mycobacterial PE/

PPE proteins. Comput Biol Med. 2023;21:107155.
 59. Charoenkwan P, Nantasenamat C, Hasan MM, Moni MA, Manavalan B, Shoombuatong W. UMPred-FRL: a new 

approach for accurate prediction of umami peptides using feature representation learning. Int J Mol Sci. 
2021;22(23):13124.

 60. Charoenkwan P, Nantasenamat C, Hasan MM, Moni MA, Lio P, Shoombuatong W. iBitter-fuse: a novel sequence-
based bitter peptide predictor by fusing multi-view features. Int J Mol Sci. 2021;22(16):8958.

 61. Chou K-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 
2005;21(1):10–9.



Page 19 of 19Charoenkwan et al. BMC Bioinformatics          (2023) 24:356  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 62. Hall LH, Kier LB. Electrotopological state indices for atom types: a novel combination of electronic, topological, and 
valence state information. J Chem Inf Comput Sci. 1995;35(6):1039–45.

 63. Laggner C. SMARTS patterns for functional group classification. 2005.
 64. Durant JL, Leland BA, Henry DR, Nourse JG. Reoptimization of MDL keys for use in drug discovery. J Chem Inf Com-

put Sci. 2002;42(6):1273–80.
 65. Kim S, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	TIPred: a novel stacked ensemble approach for the accelerated discovery of tyrosinase inhibitory peptides
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Construction of training and independent datasets
	Feature encoding methods
	Feature selection technique
	The architecture of the proposed model TIPred
	Screening novel TIPs

	Results and discussion
	Investigation of the contribution of different machine learning methods and feature encodings
	Performance evaluation of TIPred
	The Stacking model is capable of improving the predictive performance
	TIPred outperforms the existing method
	Feature importance analysis
	TIPred-assisted virtual screening for novel TIPs identification

	Conclusion
	Anchor 21
	Acknowledgements
	References


