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Introduction
Diabetes is a chronic disease resulting from insufficient insulin production by the pan-
creas or ineffective insulin use by the body [1]. Without enough insulin, glucose absorp-
tion is hindered, resulting in increased blood glucose levels that can damage various 
organs over time. While diabetes cannot be cured, it can be managed through careful 
diet, physical activity, medication, and regular screening for complications. Failure to 
treat diabetes can result in severe complications such as cardiovascular disease, diabetic 
ketoacidosis, chronic kidney disease, and foot ulcers, among others [2]. Shockingly, the 
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number of people with diabetes has risen from 108 million in 1980 to 422 million in 
2014, with an estimated 700 million people projected to have diabetes by 2045 [3]. Thus, 
developing an intelligent diagnostic framework for diabetes is crucial, given the disease’s 
significant impact.

The disease has three types: type 1 diabetes, type 2 diabetes, and gestational diabetes 
[4]. Type 2 diabetes, affecting over 95% of diabetic patients, results from the body’s ina-
bility to use insulin efficiently, typically caused by being overweight and lacking physical 
activity. In contrast, type 1 diabetes results from insufficient insulin secretion, requiring 
insulin injections, and its cause remains unknown. Polyuria, thirst, hunger, weight loss, 
and vision loss are specific symptoms of type 1 diabetes. Finally, gestational diabetes, a 
hyperglycemic condition, occurs during pregnancy when blood glucose levels are higher 
than usual average but not high enough for a diabetes diagnosis.

In recent years, machine learning has received increasing attention in medicine, par-
ticularly for intelligent disease diagnosis. Consequently, machine learning techniques 
have been widely applied to the intelligent diagnosis of diabetes [5]. By analyzing and 
mining data from diabetic patients, machine learning models can help with early diag-
nosis, classification, prediction, and treatment planning. With the promise of improv-
ing diabetes management and treatment, researchers are exploring the application of 
machine learning technology in diabetes diagnosis.

However, despite recent advances, several challenges remain. Data acquisition and 
processing challenges plague many disease diagnosis areas, including small, unbalanced, 
or low-quality data, which can impact algorithm performance.

The PIMA dataset presents several challenges of complexity, including class imbal-
ance, a significant number of missing values, and low data quality. Previous studies uti-
lizing simple machine learning techniques have yielded subpar model performance and 
unsatisfactory results on the PIMA dataset. Similarly, attempts by researchers to employ 
complex deep learning models have not proven effective in addressing these challenges, 
despite their intricacy.

To address these challenges, this paper proposes a machine learning-based framework.
The major contributions of this study summarized as follows: Firstly, a novel imputa-

tion technique combining mean and median values is employed to address missing data. 
This imputation method not only fills in the missing values but also helps in making the 
data distribution more normal. And outliers were effectively handled using a capping 
method. These strategies ensured the integrity and accuracy of the dataset, enhancing its 
reliability for subsequent analyses.

Secondly, the SMOTEENN algorithm was utilized to mitigate the issue of data imbal-
ance. By integrating the Synthetic Minority Over-sampling Technique (SMOTE) with 
the Edited Nearest Neighbors (ENN) approach, the SMOTEENN method successfully 
balanced the representation of minority and majority classes. This alleviated the inher-
ent bias arising from imbalanced data and subsequently enhanced the performance of 
the classification model.

Furthermore, the research introduces the DCSGAN model, which has shown prom-
ising results in achieving high accuracy in diabetes diagnosis. The DCSGAN leverages 
the power of generative adversarial networks to continuously generate synthetic samples 
during training. This augmentation of the training process enhances the discriminative 
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capability of the model, enabling it to capture intricate patterns and features that are 
essential for accurate diabetes classification. The high accuracy achieved by the DCS-
GAN model contributes to the reliability and effectiveness of diabetes diagnosis using 
machine learning technology. The DCSGAN model proposed in our study demonstrates 
outstanding performance not only in the PIMA dataset but also surpasses the perfor-
mance of other models in the GEO database. This highlights the superiority and effec-
tiveness of our proposed model in accurately predicting and classifying diabetes cases in 
diverse datasets.

The paper is organized as follows: The Related Work section discusses current research 
in diabetes classification and the challenges that scholars face. The Materials and Meth-
ods section describes the dataset, data preprocessing techniques, and the diabetes clas-
sification model (DCSGAN). The Results section presents the framework’s results, 
including comparisons to other classifiers, different classification tasks, and results on 
different datasets. Figure 1 shows the flow chart of our MOG framework.

Related work
In recent years, the advancement of computer technology has led to the flourishing of 
machine learning. As a result, an increasing number of scholars are applying machine 
learning techniques to improve the diagnosis and treatment of diabetes.

Several studies have employed traditional machine learning classifiers for diabetes 
prediction and classification. Saxena et  al. [6] used the K-nearest neighbor algorithm 
and achieved a 79.8% accuracy rate, whereas Krishnamoorthi et al. [7] proposed logistic 
regression for data classification. Butt et al. [8] conducted an extensive study with three 
classifiers: random forest, multilayer perceptron, and logistic regression. Their study 
demonstrated the superior performance of the multilayer perceptron classifier, achiev-
ing an accuracy of 86.06%. Another study by Zou et al. [9] also implemented decision 
trees, random forests, and neural networks for diabetes prediction and found that ran-
dom forest had the highest accuracy of 80.84% when all features were employed.

Maniruzzaman et  al. [10] applied an ensemble of ten different classifiers, and their 
highest accuracy rate was a significant 92.26%. Similarly, Maniruzzaman et al. [11] uti-
lized Gaussian Process-based classification technology, with an accuracy rate of 81.97%. 

Fig. 1  The MOG framework
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Joshi and Dhakal [12] used logistic regression models and decision tree algorithms, 
achieving a prediction accuracy of 78.26%.

Deep learning has been increasingly employed in recent years due to its superior 
capacity to handle complex data. Garcia-Ordas et  al. [13] utilized a variational self-
encoder for data augmentation and a sparse self-encoder for feature augmentation. Their 
joint training of a convolutional neural network and a sparse self-encoder achieved an 
impressive 92.31% accuracy. Hasan et al. [14] used ensemble classifiers such as AdaBoost 
and Gradient Boost, and Bukhari et  al. [15] proposed an improved ANN model, both 
without any data preprocessing. Rahman et  al. [16] developed a novel diabetes classi-
fication model based on Convolutional Long Short-term Memory (Conv-LSTM), with 
the highest accuracy of 91.38%. And not only that Rehman et al. [17] proposed a deep 
extreme learning machine (DELM) prediction model, which achieved a reliability and 
accuracy rate of 92.8%.

Several studies have emphasized the importance of data preprocessing techniques and 
feature selection in improving prediction accuracy. A study by [18] tackled the issue of 
missing data by filling in the mean of each column. They trained six different models, 
with the XGBoost model achieving the highest accuracy rate of 77.54%. Hayashi and 
Yukita [19] proposed to use a rule extraction algorithm Re-RX with J48 graft, com-
bined with a sampling selection technique to achieve an accuracy of 83.83%. Alneamy 
et al. [20] proposed an algorithm based on The Teaching Learning-Based Optimization 
(TLBO) algorithm and a new classification technique. Chang et al. [21] employed three 
interpretable supervised machine learning models and concluded that the Naive Bayes 
model is suitable for more refined binary feature selection.

Ejiyi et  al. [22] proposed robust frameworks for predictive diabetes diagnosis using 
limited medical data. They identified glucose, age, and BMI as the most important fea-
tures for prediction using SHAP, with XGBoost and Adaboost performing best. Lastly, 
Johora et al. [23] proposed a method involving image preprocessing and feature extrac-
tion for diabetic retinopathy detection. The results demonstrated superior performance, 
even for the noisy dataset. Jadhav et al. [24] automated the detection of diabetic retin-
opathy by analyzing retinal abnormalities, achieving significantly higher accuracy.

Studies such as Alam Miah et al. [25] focused on identifying risk factors for Type 2 
diabetes. They collected data from patients and categorized the risk factors into soci-
oeconomic conditions, habits, family history, and hard diseases. The study revealed 
significant factors affecting the quality of life in Type 2 diabetes patients. The relevant 
literature discussed above has been organized and presented in Table 1 for easy refer-
ence and comparison.

While the aforementioned investigations have made notable contributions to the 
domain of diabetes prediction and classification, it is imperative to discern certain 
potential drawbacks or limitations. These limitations encompass:

•	 Data Preprocessing Several studies have employed elementary data preprocessing 
techniques or complex algorithms which may have substantially modified the under-
lying data distribution. In contrast, our study employed the mean and median joint 
filling method to address missing values and implemented mean and median joint 
filling method to handle outliers. These meticulously chosen approaches aimed to 
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uphold the data’s integrity while facilitating a transition towards a more Gaussian or 
normal distribution.

•	 Data Imbalance Handling It is noteworthy that a limited number of studies have spe-
cifically addressed the issue of data imbalance within the PIMA dataset, while the 
majority of researchers have overlooked this aspect altogether. In the present study, 
we have employed the SMOTEENN algorithm as a means to effectively mitigate the 
problem of imbalanced samples in the PIMA dataset.

•	 Classification Model The majority of the existing research in the field has predomi-
nantly relied on simple machine learning algorithms, which may not yield satisfac-
tory levels of accuracy and reliability. Conversely, a subset of researchers has delved 
into the utilization of more sophisticated models. However, there remains ample 
room for advancement in terms of enhancing model performance. Additionally, the 
generalizability of these models may be subject to question, as their validation has 
been limited to specific datasets and their performance on other datasets remains 
unexplored. Consequently, there is a need for further research to validate and assess 
the robustness of these models across diverse datasets to establish their applicability 
and effectiveness in real-world scenarios.

Table 1  Classification accuracy of different methods with literature

Authors Preprocessing techniques Models Accuracy (%)

Saxena et al. [6] Feature selection outlier rejection 
missing value padding

K-nearest neighbor, Random 
forest

79.80

Krishnamoorthi et al. [7] Missing value processing, outlier 
removal, normalization

Logistic regression 83.00

Butt et al. [8] Various classifiers and models Random forest, multilayer percep-
tron, LSTM

86

Garcia-Ordas et al. [13] Variational self-encoder, sparse 
self-encoder

Convolutional neural network, 
sparse self-encoder

92.31

Bukhari et al. [15] No data preprocessing Artificial back propagation 
proportional conjugate gradient 
neural network (ABP-SCGNN)

93

Gnanadass [18] Missing data filling (mean) Naive Bayes, linear regression, 
random forest, AdaBoost gradient 
boosting machine, extreme gradi-
ent boosting

78

Maniruzzaman et al. [10] Missing data and outlier handling 
feature extraction and optimiza-
tion

Ten different classifiers 92.26

Zou et al. [9] Dimensionality reduction (PCA, 
mRMR)

Decision trees, random forests, 
neural networks

80.84

Hayashi and Yukita [19] Rule extraction algorithm, sam-
pling selection technique

J48 graft, rule extraction 83.83

Alneamy et al. [20] TLBO algorithm, hybrid fuzzy 
wavelet neural network

Functional fuzzy wavelet neural 
network (FFWNN)

88.67

Maniruzzaman et al. [11] Gaussian Process-based classifica-
tion, three kernel functions

Gaussian process, LDA, QDA, NB 81.97

Joshi and Dhakal [12] Logistic regression, decision tree Logistic regression, decision tree 78.26

Ejiyi et al. [22] Data augmentation, attribute 
analysis missing data imputations

XGBoost, adaboost 94.67

Rahman et al. [16] Convolutional long short-term 
memory

Conv-LSTM, CNN, T-LSTM, CNN-
LSTM

91.38

Rehman et al. [17] Handling Miss values, moving 
average normalization

Deep extreme learning machine 
(DELM)

92.80
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In response to the limitations observed in the aforementioned studies, we have devised 
the MOG framework as a means to overcome these deficiencies. Within this framework, 
we have employed an exhaustive and precise array of data preprocessing techniques, and 
introduced the DCSGAN model to augment the accuracy of diabetes classification.

Materials and methods
Dataset

This study utilized the PIMA Indian Diabetes Dataset, a publicly accessible dataset col-
lected and compiled by the National Institute of Diabetes and Digestive and Kidney 
Diseases (NIDDK). The database comprises data from 768 patients, including 268 indi-
viduals with diabetes and 500 individuals without. For each patient, eight physiological 
indicators were recorded, namely Pregnancies, Glucose, Blood Pressure, Skin Thickness, 
Insulin, BMI, Diabetes Pedigree Function, and Age. These parameters were utilized to 
predict the presence of diabetes in each individual. Table 2 provides a detailed descrip-
tion of each characteristic.

The Gene Expression Omnibus (GEO) is an open-access repository designed for the 
preservation and dissemination of gene expression data. Maintained by the National 
Center for Biotechnology Information (NCBI), this vast database houses diverse genom-
ics datasets, encompassing gene microarray data, RNA-Seq data, and miRNA data, 
among others. To evaluate the generalizability of our model, we selected 13 diabetes-
related datasets from the GPL570 platform of GEO. A comprehensive overview of the 
chosen datasets is provided in Table 3.

Data preprocessing

Missing value imputation

Missing values are a common challenge in data analysis and machine learning, which 
occur when certain variables or attributes lack values during data collection or process-
ing [26]. Missing values can cause problems such as reduced sample size, information 
loss, and biased analysis results, potentially compromising the accuracy and reliabil-
ity of data analysis and models. Therefore, this paper addresses this issue by perform-
ing missing value processing on the data. Specifically, we identified 0 values in Glucose, 
Blood Pressure, Skin Thickness, Insulin, and BMI features in the PIMA dataset, which 
do not align with typical human indices, and treated them as missing values. To fill in 

Table 2  Description of PIMA dataset

S/N Features Description

1 Pregnancies Number of times pregnant

2 Glucose Plasma glucose concentration 2 h in an oral 
glucose tolerance test

3 Blood pressure Diastolic blood pressure (mm Hg)

4 Skin thickness Triceps skin fold thickness (mm)

5 Insulin 2-Hour serum insulin (mu U/ml)

6 BMI Body mass index (weight in kg/(height in m)^2)

7 Diabetes pedigree function Diabetes pedigree function

8 Age Age (years)
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the missing values, we utilized a combined mean and median filling approach to ensure 
the data distribution remains consistent with the normal distribution while minimizing 
any potential data bias. Figure 2 illustrates the schematic representation of our proposed 
technique for handling missing values.

Outlier detection

Outliers, which are values in a dataset that are significantly different from other data values 
and can adversely affect the distribution, relationships, and statistical analysis of the data 

Table 3  Description of GEO dataset

ID Dataset Samples Features

1 GSE76894 103 29,530

2 GSE76895 103 29,612

3 GSE23343 17 54,613

4 GSE161355 33 54,675

5 GSE71416 20 54,675

6 GSE55650 23 54,613

7 GSE55100 44 54,675

8 GSE55098 22 54,675

9 GSE55099 22 847

10 GSE15932 32 54,675

11 GSE19420 42 54,675

12 GSE66738 14 45,101

13 GSE25462 50 54,675

Fig. 2  Mean and median joint filling method



Page 8 of 20Feng et al. BMC Bioinformatics          (2023) 24:428 

[27], must be identified and processed to obtain accurate data analysis results. As shown in 
Fig. 3, the box plot of the data indicates that the Insulin feature in the original data contains 
a large number of outliers that persist even after filling in missing values. As such, outlier 
processing is required for this feature to improve the quality of the analysis.

The direct removal of outliers is a frequently employed technique to handle these values. 
The basic principle involves the elimination of the outlier data points from the dataset. This 
method is straightforward and practical, particularly in cases where the dataset is large and 
the number of outliers is minimal. However, it is not without its drawbacks. Firstly, if the 
size of the sample after outlier removal is too small, the analysis results may be unreliable. 
Secondly, the deletion of outliers may result in a loss of valuable information, which can 
compromise the thoroughness and precision of the data analysis. Finally, as outliers in the 
data are often a mix of real occurrences and noise, the removal of outliers may incorrectly 
assess genuine data, consequently impacting the data analysis outcomes.

The capping method is a data preprocessing technique that mitigates the effect of outliers 
by transforming extreme values into more reasonable ones. This is achieved by computing 
the quartiles Q1 , Q2 , and Q3 of the data, where Q1 denotes the value below which 25% of 
the data lies and Q3 denotes the value above which 75% of the data lies. The formula for 
calculating IQR is shown in Eq. 1, the formula for upper and lower is shown in Eqs. 2 and 3.

(1)IQR = Q3− Q1

(2)upper = Q3+ 1.5× IQR

(3)lower = Q1− 1.5× IQR

Fig. 3  a–d Box plots of outliers of features. a Box plot of raw data. b Box plot of data after filling in missing 
values. c Box plot of data after removal of insulin outliers. d Box plot of the data processed by the capping 
method
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The capping method offers several advantages for dealing with outliers. Firstly, it is 
straightforward and does not require any assumptions about the data distribution. Sec-
ondly, it can prevent outliers from exerting a significant impact on data conclusions. 
Additionally, compared to directly removing outliers, the capping method can prevent 
excessive reduction in the sample size, thereby preserving the integrity of the data for 
subsequent analytical processing.

Relabeling based on glucose

In machine learning, relabeling involves updating the labeling or classification of sam-
ples in a dataset to improve model performance and accuracy by correcting mislabeled 
or inaccurate labels. Table  3 demonstrates the diagnostic criteria for diabetes. Olisah 
et al. [28] relabeled the PIMA dataset by labeling samples with Glucose greater than 125 
as diabetes, those with Glucose greater than 99 and less than or equal to 125 as pre-
diabetes, and the remaining samples as normal based on Fasting Plasma Glucose show 
in Table 4. This transformed the PIMA dataset from a dichotomous to a trichotomous 
task. In this paper, to explore the model’s generalization, the PIMA dataset is also trans-
formed into a triple classification task based on Glucose.

Data imbalance handling with SMOTEENN

Data imbalance, characterized by significant variations in sample sizes among differ-
ent categories in a classification problem, poses several challenges for machine learning 
models. Primarily, it introduces bias into the decision boundaries, leading to decreased 
accuracy when classifying minority categories. Additionally, model evaluation is dis-
torted as the performance of minority categories is overshadowed by dominant catego-
ries in overall metrics like accuracy. The generalization ability of models is compromised, 
impairing their capacity to accurately classify unseen samples. Moreover, data imbalance 
can lead to erroneous predictions, where minority instances are misclassified as majority 
categories and vice versa. To address these challenges, various techniques such as resam-
pling, ensemble methods, and cost-sensitive learning are employed to rebalance the data 
distribution and enhance the performance of models.

SMOTEENN is a hybrid sampling technique commonly employed to address the chal-
lenge of data imbalance encountered in classification tasks. This approach integrates the 
Synthetic Minority Over-sampling Technique (SMOTE) and Edited Nearest Neighbors 
(ENN) methodologies to rebalance the dataset and enhance the performance of machine 
learning models.

Table 4  Criteria of diagnosing diabetes

Diagnosis A1C Fasting plasma glucose Oral glucose tolerance test Random 
plasma 
glucose 
test

Normal below 5.7% 99 mg/dL or below 139 mg/dL or below N/A

Prediabetes 5.7–6.4% 100 to 125 mg/dL 140 to 199 mg/dL N/A

Diabetes 6.5% or above 126 mg/dL or above 200 mg/dL or above 200 mg/
dL or 
above
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The SMOTEENN procedure consists of two main steps. Firstly, the SMOTE algorithm 
is applied, which generates synthetic samples for the minority class by interpolating fea-
ture vectors between neighboring instances. This augmentation process aims to improve 
the representation of the minority class and alleviate the class distribution imbalance.

Subsequently, the ENN technique is employed on the combined dataset, involving the 
identification and removal of noisy and ambiguous instances from both the majority 
and minority classes. ENN focuses on eliminating samples that are misclassified by their 
nearest neighbors, thereby enhancing the overall quality and separability of the dataset.

By leveraging the strengths of SMOTE and ENN, SMOTEENN effectively tackles the 
challenges posed by data imbalance. It addresses the underrepresentation of the minor-
ity class by synthesizing new samples, while simultaneously reducing noise and enhanc-
ing the discrimination between classes through the ENN step.

Correlation analysis

Pearson correlation coefficient

Pearson’s correlation coefficient is a valuable tool for assessing the strength of the linear 
relationship between two variables. This statistic ranges from -1 to 1, with 0 indicating 
no correlation, 1 indicating a perfectly positive correlation, and -1 indicating a per-
fectly negative correlation. The calculation formula for Pearson’s correlation coefficient 
involves dividing the covariance of the two variables by the product of their standard 
deviations and is expressed as Eq. 4:

The variables σX , σY  represent the sample standard deviation, while µX ,µY  represent 
the sample mean in the calculation formula.

Logistic regression

Logistic regression is a popular machine learning algorithm for binary classification, 
which is often used to analyze the impact of one or more independent variables on the 
dependent variable. The formula for logistic regression is as Eq. 5:

The logistic regression model employs a formula that includes an upper exact bound L 
and a logistic growth rate k . Although it is commonly used as a classification algorithm, 
it is also valuable for correlation analysis, enabling the determination of whether two 
variables are correlated. One key advantage of using logistic regression for correlation 
analysis is its ability to accurately quantify the correlation between two variables, as well 
as analyze the correlation between multiple independent variables.

DCSGAN: optimized for diabetes classification

Generative Adversarial Networks [29] consist of two neural networks, namely the Gen-
erator and the Discriminator. The Generator is responsible for generating synthetic sam-
ples by learning from the real data, with the objective of deceiving the Discriminator. 

(4)ρX ,Y =
cov(X ,Y )
σXσY

=
E[(X−µX )(Y−µY )]

σXσY

(5)f (x) = L

1+e−k(x−x0)
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On the other hand, the Discriminator learns to differentiate between real and generated 
samples.

The training process of GANs involves the Generator maximizing the probability of 
the Discriminator making mistakes, while the Discriminator aims to minimize the prob-
ability of misclassification. The core idea behind GAN is to generate synthetic data that 
closely resemble the distribution of real data. In the traditional GAN framework, the 
Discriminator outputs two categories (true and false) through a softmax output layer, 
indicating the likelihood of a sample belonging to the Generator’s distribution. The 
objective function of GAN is shown in Eq. 6:

where E represents the expectation of the training data distribution, x denotes the 
genuine sample, and z denotes the input noise distribution, the objective function can 
be decomposed into two terms. The first term, E[log(D(x))] , incentivizes the discrimi-
nator to accurately classify the genuine samples as 1. Conversely, the second term, 
E[log(1− D(G(z)))] , encourages the generator to generate synthetic samples capable of 
misleading the discriminator.

In a modified version called SGAN [30], the Discriminator has N + 1 output units, 
including additional labels that can be utilized for classification tasks.

In this paper, we propose the DCSGAN, which leverages the principles of adversarial 
neural networks for diabetes classification. Figure 4 illustrates the architectural design of 
our proposed model. Initially, the Generator learns from the real data and generates syn-
thetic data to deceive the Discriminator, which in turn attempts to distinguish between 
real and fabricated data through continuous training. As the Generator’s performance 
improves and reaches a certain threshold, the synthetic data generated becomes indis-
tinguishable from the authentic data. The objective function of DCSGAN is shown in 
Eq. 7:

(6)minG maxD V (D,G) = E[logD(x)]+ E[log (1− D(G(z)))]

(7)
minG maxD maxC V (D,G,C) = E[logD(x)]+ E[log (1− D(G(z)))]+ �LC C(x), y

Fig. 4  The architecture of DCSGAN
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where LC denotes the loss function of classifier C, C(x) denotes the classification result 
of the classifier on the real sample, and y denotes the label of the real sample. The for-
mula for LC is shown in Eq. 8:

Through the optimization of the objective function V (D,G,C) during the training 
process, the DCSGAN model incrementally enhances both the quality and classification 
performance of the generated samples. This iterative refinement allows the generated 
samples to closely approximate the real data distributions, thereby leveraging the avail-
able data to effectively improve overall performance.

In DCSGAN, the interplay between the Generator and Discriminator contributes to 
its powerful classification capabilities. With the increased output units in the Discrim-
inator for finer classification, the Discriminator is compelled to learn effective feature 
representations during the classification task. Through the discrimination between real 
and generated samples, the Discriminator acquires discriminative feature representa-
tions, thereby enhancing the classification performance. Additionally, the Generator’s 
generation of a large number of samples serves as a form of data augmentation and sam-
ple expansion, effectively enhancing the diversity and quantity of the original data. This 
augmentation contributes to improved diabetes classification performance by provid-
ing the model with more comprehensive and representative training samples. Figure 5 
shows how our proposed model optimizes diabetes classification.

Result and discussion
Result of data preprocessing

By counting the number of missing values, the results are shown in Table 5, which shows 
that Glucose, BloodPressure, SkinThickness, Insulin, and BMI contain missing values, 
among which SkinThickness and Insulin contain more missing values. The attribute 
Pregnancies represents the number of pregnancies, and it is reasonable for a value of 0 
to exist in the dataset, indicating that some individuals have never been pregnant. Thus, 
it is considered appropriate and consistent with the nature of the attribute to refrain 
from filling in missing values for Pregnancies.

After performing the mean median joint filling to handle missing values in the PIMA 
dataset, the distribution of the dataset is visualized in Fig. 6. The visualization provides 
insights into the distributions of different attributes. Specifically, it is observed that t 

(8)LC = − 1
N

∑
[
∑

(

y log (p)
)]

Fig. 5  The working principle of DCSGAN
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after performing missing value imputation on the features Glucose, BloodPressure, Skin-
Thickness, Insulin, and BMI, it is observed that the data distribution of these features 
tends to align more closely with a normal distribution. This indicates that the imputation 
process has effectively addressed the missing values, resulting in a more representative 
and reliable data distribution for these features.

To compare the efficacy of two outlier processing methods, the present study exam-
ines the results of utilizing the two methods with four machine learning models SVM, 
NB, KNN, and DT. Figure 7 illustrates the discernible trends across four models (SVM, 
NB, DT, KNN), wherein datasets treated with the capping method for outliers exhib-
ited superior accuracy in comparison to datasets with directly removed outliers. Nota-
bly, the accuracy of capped datasets consistently surpassed the 70% threshold across all 
models. Conversely, the accuracy of datasets with directly removed outliers reached or 
exceeded 70% solely in the NB and SVM models. Based on these results, the present 
paper employs the capping method for outlier processing.

To address the issue of sample imbalance in the PIMA dataset, we employed the 
SMOTEENN hybrid sampling technique. Figure 8 showcases the result obtained after 
the application of this sampling method.

Table 5  Number of missing values

Features Number 
of missing 
values

Pregnancies 111

Glucose 5

Blood Pressure 35

Skin Thickness 227

Insulin 374

BMI 11

Diabetes Pedigree Function 0

Age 0

Fig. 6  a is the data before missing value imputation, b is the data after value imputation
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Figure 8 provides a detailed visualization of the significant improvements achieved 
by the SMOTEENN algorithm in addressing the issue of sample imbalance. The 
results presented in Fig.  8 clearly demonstrate a substantial reduction in the dis-
parity of data labels after employing the SMOTEENN algorithm. Initially, the data 
suffered from a pronounced imbalance, with the "1" labeled samples being only half 
the number of the "0" labeled samples. However, through the implementation of the 
SMOTEENN mixed sampling technique, a significant decrease in label frequency var-
iation was observed, effectively alleviating the previously observed data imbalance.

Result of correlation analysis

Upon exploring the correlation of features in the PIMA dataset, we generated a cor-
relation coefficient heat map as illustrated in Fig.  9. The results indicated that Glu-
cose exhibited a stronger correlation with the outcome compared to other features. 
To delve deeper into the impact of the features on the outcome, we further utilized 
logistic regression for conducting a correlation analysis.

Given the limited interpretability of deep learning models, we have employed logis-
tic regression to conduct correlation analysis. This approach enables us to quantify 
the specific degree of influence that features have on the results. By leveraging logistic 

Fig. 7  Bar diagram of accuracy comparison

Fig. 8  a Labels for raw data, b Labels after SMOTEENN
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regression, we aim to gain deeper insights into the impact of individual features on 
the outcomes, facilitating further investigations into their influence in subsequent 
analyses.

Table 6 presents the results of the logistic regression, revealing insightful findings on 
the relationship between the features and Outcome in the PIMA dataset. The results 
indicate that Pregnancies and Glucose have a significant effect on Outcome, while 
BloodPressure, SkinThickness, and Insulin do not. Specifically, for each unit increase in 
Pregnancies, the probability of Outcome being 0 decreases by 11.767%, and for each unit 
increase in Glucose, the probability of Outcome being 0 decreases by 3.633%. Similarly, 
BMI and DiabetesPedigreeFunction also have a significant effect on Outcome, with each 
unit increase in BMI leading to an 8.867% decrease in the probability of Outcome being 
0, and each unit increase in DiabetesPedigreeFunction resulting in a 58.112% decrease 
in the probability of Outcome being 0. On the other hand, Age does not have a signifi-
cant effect on Outcome as the significance p-value is 0.175, indicating that the original 
hypothesis cannot be rejected.

Comparison with other models

Convolutional neural networks, deep neural networks, support vector machines, 
plain Bayesian, K-nearest neighbor algorithm, and decision trees were compared with 
our proposed DCSGAN using tenfold cross-validation, a commonly used method for 

Fig. 9  Correlation matrix
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machine learning model evaluation that assesses the generalization ability of the model. 
The original dataset was divided into 10 disjoint subsets, with one used as the validation 
dataset and the remaining nine used for training. The model was trained on the nine 
training datasets and evaluated on the validation dataset, and this process was repeated 
10 times using different validation datasets. The final evaluation results were obtained 
by averaging the 10 evaluations, thus avoiding evaluation errors caused by inappropriate 
data partitioning.

According to the observations from Table 7, The DSGAN model demonstrated excep-
tional performance in both binary and tertiary classification tasks, achieving the high-
est accuracy rates of 96.27% and 99.31% respectively. Furthermore, the model exhibited 
impressive results across multiple evaluation metrics including precision, F1_score, 
recall, and AUC. Specifically, the precision, F1_score, recall, and AUC values were 
observed to be 0.9698, 0.9698, 0.9698, and 0.9702 respectively. These outstanding perfor-
mance indicators affirm the effectiveness and robustness of the DSGAN model in accu-
rately classifying the given data samples. And a comparative analysis with recent studies 
was conducted, as presented in Table 8. The findings reveal that our results yielded the 
highest accuracy rate, demonstrating the superior performance of our approach.

In Fig. 10, we present a detailed depiction of the training process and the final con-
fusion matrix achieved by the DCSGAN model. The visual representation clearly 

Table 6  Result of logistic regression for correlation analysis

Dependent variable: Outcome

***, **, * represent 1%, 5%, 10% significance levels, respectively

Regression 
coefficients

Standard error Wald P OR OR 95% confidence 
interval

Upper limit Lower limit

Pregnancies − 0.125 0.032 14.953 0.000*** 0.882 0.828 0.94

Glucose − 0.037 0.004 90.025 0.000*** 0.964 0.956 0.971

BloodPressure 0.009 0.009 1.021 0.312 1.009 0.992 1.026

SkinThickness − 0.003 0.013 0.062 0.803 0.997 0.971 1.023

Insulin 0.001 0.002 0.164 0.686 1.001 0.997 1.004

BMI − 0.093 0.018 27.028 0.000*** 0.911 0.88 0.944

DiabetesPedigreeFunc-
tion

− 0.87 0.297 8.56 0.003*** 0.419 0.234 0.75

Age − 0.013 0.01 1.838 0.175 0.987 0.969 1.006

Table 7  Result of DCSGAN compare to other models

Binary accuracy Trinary accuracy Precision F1_score Recall Auc

DCSGAN 0.9627 0.9931 0.9698 0.9698 0.9698 0.9702

CNN 0.8271 0.8229 0.6981 0.6930 0.6952 0.6930

DNN 0.7357 0.6095 0.7089 0.7078 0.7084 0.7809

SVM 0.8827 0.7978 0.8893 0.9494 0.9176 0.8984

NB 0.8590 0.8321 0.8749 0.8860 0.8794 0.8607

KNN 0.9501 0.8811 0.9312 0.9778 0.9529 0.9407

DT 0.9224 0.8469 0.9222 0.9468 0.9354 0.9225
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illustrates the exceptional classification ability demonstrated by our proposed model. 
The confusion matrix showcases the accurate assignment of samples to their respective 
classes, underscoring the model’s robustness and effectiveness in accurately classifying 
the dataset. These findings provide compelling evidence of the outstanding performance 
exhibited by the DCSGAN model in the realm of classification.

Result on other data set

To assess the generalizability of our model, we validated it on 13 datasets obtained from 
the GEO database. As shown in Table 9, DCSGAN was found to be inferior only to the 
Convolutional Neural Network (CNN) and Naive Bayes in the GSE15932 dataset and 
inferior to the Convolutional Neural Network in the GSE71416 dataset. However, it out-
performed other models in terms of accuracy across the remaining 11 datasets.

Conclusion
Diabetes, a condition lacking effective treatment, necessitates preventive measures to 
halt its progression. In this regard, we propose a machine learning-based framework, 
MOG, for accurate and reliable diabetes diagnosis. The framework integrates essential 
components, including data preprocessing, SMOTEENN, and classification model devel-
opment, to achieve precise diagnostic outcomes. To enhance the integrity and quality 

Table 8  Comparison with state-of-the-art methods

Authors Models Classification 
accuracy (%)

Krishnamoorthi et al. [7] LR, KNN, SVM, RF 83

Saxena et al. [6] KNN, RF, DT, MLP 79

Garcia-Ordas et al. [13] VAE, SAE, CNN 92.31

Bukhari et al. [15] ABP-SCGNN 93

Gnanadass [18] NB, LR, RF, AB, GBM, XGB 77.54

Maniruzzaman et al. [10] LDA, QDA, NB, GPC, SVM, ANN, AB, LR, DT, RF 92.26

Hayashi and Yukita [19] Re-RX with J 48 graft 83.83

Alneamy et al. [20] TLBO, FWNN, FLNN, FFWNN 88.67

Chang et al. [21] NB, RF, J48 79.57

Ours DCSGAN 96.27

Fig. 10  Result of DCSGAN
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of the dataset, comprehensive data preprocessing techniques, encompassing missing 
value imputation and outlier handling using the capping method, are employed. Addi-
tionally, by relabeling the PIMA dataset based on glucose levels, effective categorization 
into three distinct classes—diabetes, prediabetes, and non-diabetes—is achieved. This 
classification scheme offers valuable insights into the dynamics of disease progression. 
Furthermore, the imbalance in the PIMA dataset is addressed using the SMOTEENN 
technique.

The primary contribution of this study lies in the development of the DCSGAN 
model, which leverages adversarial neural networks for classification tasks. The model 
exhibits exceptional performance, achieving impressive accuracy rates of 96.27% and 
99.31% for dichotomous and trichotomous tasks, respectively. Furthermore, the DCS-
GAN model demonstrates its ability to generalize well across diverse scenarios by sur-
passing other models across all 12 datasets in the GEO dataset. Additionally, a logistic 
regression-based correlation analysis reveals significant biomarkers, including Pregnan-
cies, Glucose, BMI, and Diabetes Pedigree Function, which play a crucial role in diabetes 
diagnosis. These findings shed light on the factors influencing accurate identification of 
diabetes cases.

For future research directions, several avenues can be explored. Firstly, the integra-
tion of additional biomarkers and clinical variables can be investigated to enhance the 
accuracy and reliability of diabetes diagnosis. Secondly, extending the MOG framework 
to encompass longitudinal data analysis and predictive modeling can enable proactive 
management of diabetes by capturing disease progression patterns over time. Lastly, 
comprehensive validation and optimization of the proposed framework through exten-
sive clinical trials will ensure its applicability and effectiveness in real-world healthcare 
settings.

Abbreviations
SVM	� Support vector machines
NB	� Naive Bayes
DT	� Decision tree

Table 9  Result of GEO dataset

Bold numbers represent the highest accuracy among all the models

SVM NB DT NN CNN DNN DCSGAN

GSE76894 0.8157 0.7667 0.7952 0.8524 0.8352 0.8145 0.9079
GSE76895 0.6895 0.7290 0.6600 0.7200 0.8239 0.6881 0.8436
GSE23343 0.5333 0.6500 0.4500 0.4667 0.6424 0.5870 0.9992
GSE161355 0.5429 0.5667 0.7286 0.4524 0.7921 0.4849 0.8844
GSE71416 0.7000 0.7000 0.9000 0.7000 0.9549 0.7000 0.9179

GSE55650 0.6400 0.7900 0.6400 0.7400 0.8705 0.4783 0.9491
GSE55100 0.5400 0.8600 0.7300 0.8200 0.8289 0.5454 0.9799
GSE55098 0.5400 0.8600 0.5400 0.8200 0.8289 0.5454 0.9102
GSE55099 0.5400 0.7700 0.5999 0.7800 0.8583 0.5460 0.8657
GSE15932 0.6714 0.7524 0.6238 0.5429 0.8451 0.5313 0.7500

GSE19420 0.7167 0.7167 0.7389 0.5667 0.8451 0.7143 0.8570
GSE66738 0.5000 0.5999 0.5071 0.5036 0.6239 0.5263 0.9548
GSE25462 0.8000 0.8000 0.8400 0.8400 0.8767 0.6800 0.8999
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KNN	� K nearest neighbors
GAN	� Generative adversarial networks
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