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Abstract 

Background: Plummeting DNA sequencing cost in recent years has enabled genome 
sequencing projects to scale up by several orders of magnitude, which is transform‑
ing genomics into a highly data‑intensive field of research. This development provides 
the much needed statistical power required for genotype–phenotype predictions 
in complex diseases.

Methods: In order to efficiently leverage the wealth of information, we here assessed 
several genomic data science tools. The rationale to focus on on‑premise installa‑
tions is to cope with situations where data confidentiality and compliance regula‑
tions etc. rule out cloud based solutions. We established a comprehensive qualitative 
and quantitative comparison between BCFtools, SnpSift, Hail, GEMINI, and OpenCGA. 
The tools were compared in terms of data storage technology, query speed, scal‑
ability, annotation, data manipulation, visualization, data output representation, 
and availability.

Results: Tools that leverage sophisticated data structures are noted as the most suit‑
able for large‑scale projects in varying degrees of scalability in comparison to flat‑file 
manipulation (e.g., BCFtools, and SnpSift). Remarkably, for small to mid‑size projects, 
even lightweight relational database.

Conclusion: The assessment criteria provide insights into the typical questions posed 
in scalable genomics and serve as guidance for the development of scalable computa‑
tional infrastructure in genomics.

Keywords: Genomic data science, Big data, Genomic databases, SQL, VCF, NoSQL, 
Horizontal scaling

Introduction
The past few years have witnessed a rapid progression in the study and understand-
ing of human genetic variations. This has resulted in an incredible wealth of informa-
tion that expanded the knowledge of interpreting genetic variations and emphasizing 
their diversity. The anticipated growth of genomic data considering 100s of millions of 
genomes sequenced by 2025 is estimated to reach data volumes in the order of Exa-
bytes [1]. Genetic variations may differ in their characteristics and the forms they take 
in the human genome [2]. These differences are the key factors to unravel underlying 
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phenotypes and define disease susceptibility in different individuals [3–6]. However, as 
many phenotypes are complex and polygenic, statistical power analysis has shown that 
huge sample sizes are required [7]. For example, a genome wide association study for 
human height variation has recently been conducted and involved 5.4 million samples 
[8]. While the actual DNA sequencing (and genotyping array) technology seems to scale 
with this demand, it is not clear how downstream Genomics analysis can keep up and 
leverage Big Data technologies of recent decades in the best possible way. The problem 
is exacerbated by a community that has built its foundation in flat-file based ecosystems, 
at a time when data volumes were orders of magnitudes smaller. The variant call format 
(VCF) file is a popular flat-file format that holds genetic variation information in a tabu-
lar form. VCF files feature metadata columns providing detailed information pertaining 
to a variant and the set of samples carrying that variant. In studies revolving around a 
cohort, the VCF file links together the variant information and the genotypes of the indi-
viduals in the study.

The tabular paradigm of the VCF conforms well to non-technical researchers, as it 
imitates a spreadsheet environment. The highly-exploited INFO column, a loosely struc-
tured data field into which variant annotations are stored, is one of the creature com-
forts of the VCF. Many annotation tools implement syntactic conventions, however, they 
are not enforced by the VCF specifications and different tools follow conflicting con-
ventions. As a result, processing and indexing all columns of VCF files and extracting 
the unstructured data into a digest becomes nontrivial, especially as the size of VCFs 
becomes a daunting task.

Many genomic tools provide variant analysis solutions using VCF files but lack func-
tionality when it comes to managing the variant data, let alone multiple projects and 
heavy data querying [9].

Genomic data science algorithms and databases are co-evolving with the abundance of 
data engendered by next-generation sequencing (NGS) as a means of performing clini-
cal studies. Bread-and-butter research like genome-wide association studies (GWAS) or 
personalized medicine relies on statistical measures that improve with larger cohorts. 
This is demonstrated in ongoing successes such as the 100,000 Genomes Project [10] or 
the BioBank Japan Project [11] but suffers from infrastructural challenges at scale. The 
100,000 Genomes Project recently introduced a sparse relational database Rareservoir, 
which focuses on large amounts of rare variants only [12]. The authors argue for the use 
of relational databases, but avoid horizontal scaling by variant reduction assuming that 
causative, contributing variants are rare and known in advance. Big data solutions seem-
ingly remedy these issues as evident in the growing adoption of distributed paradigms in 
recent releases of bioinformatics software (e.g., GATK [13], etc).

Presently, several studies have been steered towards presenting solutions for assess-
ing and processing variants. There are different genomic data science tools that exist to 
manipulate and extract genomic information for interpreting the relevance of identi-
fied variants. These tools range from simple flat-file-based solutions e.g (BCFtools [14], 
SnpSift [15], VCFtools [16]), slivar [17] to database-enabled platforms e.g. (GEMINI [4], 
Hail [18], OpenCGA [19] and VCF-Miner [20]).

A clear dichotomy in the toolbox is that flat-file manipulation programs are favored 
over managed platforms, as evident in the prevalence of such tools in the literature.
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Current solutions and processing pipelines are not all designed to work as standalone 
tools. This entails depending on external variant annotation sources and third-party 
annotation tools (e.g., ANNOVAR [21], VEP [22], VariantAnnotation [23]) to process 
a VCF file effectively. Among the current solutions and processing pipelines, several are 
structured for cloud-based models. While this is driven by the advantages of cloud infra-
structure, on-premises deployments are desirable to comply with legal restrictions; for 
example, a country’s ban on the movement of human genetic sequences outside digital 
borders. This work focused on on-premise solutions to explore areas of deployments as 
it is understudied, to the best of our knowledge. Interested readers can find more on 
cloud-based genomics solutions in a comprehensive review by Shi and Wang [24].

Another crucial attribute of a VCF processing platform is to what extent it enables a 
user to express complex queries. Undoubtedly, the expressive power of queries is directly 
linked to the wealth of information available in the VCF file, especially in the INFO col-
umn where annotations reside. It is worth noting that many annotations utilize hierar-
chical structures such as ontologies (e.g., Gene Ontology [25], SNPEff mutation ontology 
[15]) and taxonomies (e.g., metabolic pathway hierarchies [26], ClinVar [27], ICD [28]). 
A modern query system should be capable of harvesting semantic annotations that are 
intrinsically taxonomy-oriented. For instance, selecting variants for Parkinson’s disease 
which is a member of degenerative nervous system disorders, which is, in return, under 
the umbrella of neurological disorders. Algorithmically, this can then be used to explore 
hierarchical feature spaces to perform genotype-phenotype predictions, as for the exam-
ple done in [29].

In this work, we focused on evaluating and assessing the performance of different on-
premise genomic data science approaches for human genomics. We bring a comprehen-
sive comparison based on numerous feature categories such as storage, query speed, 
scalability, annotation, manipulating data (filtering, extracting), visualization method, 
data output representation, and the availability of these tools as open-source or peer-
reviewed articles. Addressing the query speed is essential as it is not often assessed in 
current reviews of the literature [30, 31]. A common metric of these tools is the ability 
to load and process a whole parsed VCF file. We have omitted tools like VCF-Miner as 
it handles each chunk of the VCF file separately; hence it doesn’t allow for a fair com-
parison with other analysis tools. This work intends to bring a solid foundation for bioin-
formaticians and other researchers interested in genomics applications to identify ideal 
solutions that match their purposes.

Methods
In this section, we address a common genomics data science workflow on which the 
tools are applied. We then explain the VCF file format and its contents. In particular, 
the INFO column of the VCF file format is elaborated as it is the most crucial part for 
variant annotation. We then introduce the five data science tools used for the compari-
son. Finally, we define each of the highlighted features and how each feature fits in the 
selected tools.
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General workflow

Existing data science genomics solutions follow a common workflow to some extent. The 
diagram in Fig. 1 shows the abstract illustration for the generalized approach followed by 
most VCF manipulation tools studied in this critical assessment.

A typical pipeline starts with a raw VCF after variant calling and consists of a sequence 
of four components: input, storage, annotation, and query. The input is the first step as 
the user provides the genomics data. In this context, it’s a VCF file in a human-readable 
format (uncompressed) or a binary/zipped memory-efficient format (compressed). The 
VCF file is then introduced to the tools to either be indexed or loaded into some form 
of storage. Some tools build upon the storage method by transferring the data from the 
VCF file into a designated data structure.

After the data is properly stored, the next stage is to augment the data with annota-
tions (further explained in depth in “Annotation availability” section). The ultimate out-
come following these steps is the ability to perform queries on variants and/or samples 
that take all sorts of associated information such as phenotype but also pathway mem-
bership between variants in the dataset. An example query would be to retrieve a set of 
variants based on the associated phenotypes and the sample genotypes. Other queries 
could be to find rare variants in a cohort, to perform a genome-wide association study, 
or PCA visualization of a cohort labeled by an annotation property.

VCF data format

The VCF is a file format used for storing information about variants which are called 
with respect to a reference. As the human genome is known to be highly conserved 
from one person to another, the VCF file has been developed to represent the different 
positions in the genome where nucleotides vary. This format specification reduces the 
number of redundant nucleotides that would otherwise be identical in many samples. A 

Fig. 1 The general workflow of a genomics data science solution. The input is a VCF file after a variant calling 
pipeline which could undergo transformation into a storage system. Variants are then annotated with a 
variety of sources and fed back into the storage. The contents of the VCF file can be queried via a client or a 
program for later analysis
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properly constructed VCF file contains a header block (lines starting with the ‘#’ char-
acter), metadata arranged into columns (CHROM, POS, ID, REF, ALT, QUAL, FILTER, 
INFO, FORMAT), and one or more sample columns.

Each line in the metadata block details a variant that was called based on the align-
ments of sequences against a reference. The INFO column has an unstructured format 
that often contains reserved sub-field key-value pairs but is not strictly imposed. Users 
may define their own sub-fields as long as it is delimited by a semicolon and is defined in 
the header. The FORMAT column defines the fields for describing the samples such as 
the genotype, the read depth, or haplotype quality, and is uniquely determined for each 
sample in the VCF file.

GVCF (Genomic VCF) is another file format used by several variant callers, including 
GATK. It is a modified version of the VCF format that contains more comprehensive 
information about genomic sites, including non-variable sites. Further, gVCF files can be 
helpful to disambiguate situations where a variant is not called, either because the base 
calls agree with the reference or there was not enough (unambiguous) high quality cov-
erage to make a call. Although gVCF files provide more extensive genomic information, 
they usually require conversion to VCF files before annotation and querying. The format 
is rather large and therefore often used only as a temporary file (e.g. during joint geno-
type calling in GATK). The additional storage, gVCF requires is another reason to have 
horizontal scaling designed into Genomic Data Science platforms.

Annotation

Annotations are additional information that can be embedded into a VCF file. This 
enrichment of the VCF file is optional but crucial to the description of variants that are 
present in a call. Examples of such information pertain to the type of mutation, its asso-
ciated phenotype, and cohort-related statistics (e.g. allele frequency in different world 
populations).

Annotations may be sourced in different ways: a common practice is to use publicly 
available annotation sources and copy over the information into the working VCF file. 
Annotation sources such as dbSNP [32] or gnomAD [33] contain annotations for vari-
ants that were previously explored for the association with a particular phenotype. 
Annotation transfer from such sources proposes the advantages of predicting whether 
a person is likely to have developed the phenotype. Mutation types—such as insertions, 
deletions, or single nucleotide polymorphisms (SNP)—can be inferred from the VCF 
file’s REF and ALT columns or from imported annotations [14]. These determine if the 
variant would have an impact on the overall expression of a protein. Another annota-
tion approach is to calculate the allele statistics based on the sample genotypes. Sample 
statistics can also be captured from other cohorts and imputed into the VCF file from 
sources such as the 1000 Genomes project [34] (for cohorts originating in East Asia, 
North America, etc.)

Tools

BCFtools

BCFtools (https:// github. com/ samto ols/ bcfto ols) was developed in 2009 as part of a con-
sortium of related tools such as SAMtools and HTSlib. BCFtools is written in C and has 

https://github.com/samtools/bcftools
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amassed a large community of users due to its early adoption when bioinformatics tools 
were scarce. It is operated as a command line interface (CLI) tool and works directly 
on the VCF file without any transformations. Functionalities that target region-specific 
queries require that the VCF file be block-compressed and indexed. The indexing is then 
stored in the filesystem as a separate CSI or TBI format file. Variants are indexed solely 
by genomic position or isolate variants by scanning the entire VCF file for desired values 
in the INFO field. In addition, users can opt for the conversion of VCF to BCF file before 
processing.

SnpSift

SnpSift (https:// github. com/ pcing ola/ SnpSi ft) is a toolbox developed over 8 years ago by 
Pablo Cingolani. The tool is designed for extracting genomics data via VCF file manip-
ulation and filtering. It is mainly written in Java, and the provided functionalities are 
aggregated in a Java Archive (JAR) file format and are run as a CLI program that oper-
ates on the VCF file directly. The community of users is fairly large which allows new 
users to familiarize themselves with the tool’s structure and syntax. Indexing variants 
and alternative storage options are not provisioned with this tool. SnpSift was also intro-
duced as a continuation project to the annotation tool SnpEff, as a technique to query 
and filter the variant annotation information. SnpEff is a variant annotation tool that 
provides additional predictions for the effects of variants on genes. The idea was to cre-
ate a two-step pipeline for users by using SnpEff to enrich the VCF file with annotations 
and then operate on the annotated file with SnpSift.

Hail

Hail (https:// github. com/ hail- is/ hail) is a newcomer (relative to the other tools presented 
here) to the VCF manipulation scene and is maintained by a team of people in the Neale 
lab at the Broad Institute. The first cited use of Hail was in 2016 and it has been gaining 
traction over the years.

Hail presents itself as a Python library and employs the Matrix Table data structure 
for handling the VCF file data. Querying the data is akin to manipulating a Pandas Data-
Frame: using logical operations and string pattern matching as a means of filtering. The 
Python library can be installed via the Python package manager or built from a source 
which is necessary for some deployments.

GEMINI

GEMINI (GEnome MINIng) (https:// github. com/ arq5x/ gemini) is a relatively modern 
framework designed in the Quinlan laboratory at the University of Virginia for human 
genome variations analysis and interpretations. GEMINI follows the workflow of a 
genomics data science approach like the one shown in Fig. 1. The VCF file is loaded into 
an integrated database where an automated process takes place by iterating over all the 
genetic variations and filling in the annotations for each variant. GEMINI utilizes a vari-
ety of annotation resources, which are listed in “Annotation availability” section. The 
tool employs an SQLite database to store variants’ information by mapping each field in 
the VCF file to a column in the database along with the newly added annotations. The 

https://github.com/pcingola/SnpSift
https://github.com/hail-is/hail
https://github.com/arq5x/gemini
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interaction with the database is achieved through the “gemini query” tool where a basic 
SQL-like syntax can be written to construct the final query.

OpenCGA 

OpenCGA (https:// github. com/ opencb/ openc ga) is the newest member of the genomic 
data science tools studied in this work. Developed by the Computational Biology Lab at 
the University of Cambridge, the big data platform aspires to solve major issues in scal-
ability and performance with respect to genomics. Despite being a new player in this 
domain, the technology is already powering high-profile projects such as the 100,000 
Genomes Project and is being used at Genomics England. OpenCGA is built in conjunc-
tion with a suite of tools known as OpenCB and includes a variant visualization tool 
(IVA) and an annotation server (CellBase).

In contrast to the other tools presented in this work, OpenCGA took the form of a 
solution platform. Genomic data is loaded into a management hierarchy of user-owned 
projects with multiple studies within a project; this enables access control to multiple 
users of the platform. OpenCGA leverages a networked object database to store all fac-
ets of information including sample identifiers, sample metadata, and variant informa-
tion. The loaded data is then thoroughly indexed to enable fast querying and retrieval.

OpenCGA is supplied as a RESTful web service with multiple client options in Python, 
R, Java, and JavaScript. Queries can be done through the REST API using the language 
clients but also directly through the provided CLI.

Installation

BCFtools version 1.13 (https:// github. com/ samto ols/ bcfto ols/ relea ses/ tag/1. 13) was 
installed into the working environment by downloading the release tarball from GitHub 
and compiled using Linux make tools. Likewise, SnpSift (https:// snpeff. blob. core. windo 
ws. net/ versi ons/ snpEff_ latest_ core. zip) was downloaded as part of the SnpEff release zip 
file. Although no installation was required of SnpSift, Java is required to be installed in 
the system to run the JAR file. The version of Java installed was 1.8.0_222-b10.

GEMINI and Hail provide overall good documentation for the usage of the tools. Spe-
cifically, both provide a comprehensive set of examples for defining the syntax parame-
ters. GEMINI is a standalone tool and Hail can be installed through the Python package 
manager.

GEMINI required an outdated version of Python (specifically 2.7.15) and a normalized 
VCF file. Python was used to run the GEMINI install script (https:// gemini. readt hedocs. 
io/ en/ lates t/# new- insta llati on) which was downloaded from the GEMINI website. Post-
installation, the VCF file is indexed using Tabix [35] and loaded into an SQLite database 
using GEMINI’s CLI. As GEMINI has constraints to be installed on Python version 2.7, 
it is not likely able to stand the test of time as other libraries might deprecate function-
alities that GEMINI depends on.

Hail (https:// pypi. org/ proje ct/ hail/0. 2. 105/) was installed using the Python package 
manager on Python 3.7.12. The raw VCF file was converted into a Matrix Table using a 
Python script featuring the Hail library functions. The Matrix Table is then saved onto 
the disk once converted for querying later.

https://github.com/opencb/opencga
https://github.com/samtools/bcftools/releases/tag/1.13
https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip
https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip
https://gemini.readthedocs.io/en/latest/#new-installation
https://gemini.readthedocs.io/en/latest/#new-installation
https://pypi.org/project/hail/0.2.105/
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OpenCGA is a relatively new tool; therefore the community of users is small and the 
documentation is limited to those found on the official documentation page. Further-
more, the tool can be installed in different configurations and could have many depend-
encies, increasing setup complexity. OpenCGA’s querying syntax is highly expressive but 
comes with a relatively steep learning curve. The tool’s initial challenge is compensated 
by the extra functionalities exclusive to OpenCGA. It is also well-supported for cloud 
deployment on Amazon Web Services and Microsoft Azure.

For our research setup, we endeavored to place each tool in a similar environment. 
To that end, we installed OpenCGA and its dependencies in separate virtual machines 
(VM): (1) a VM for MongoDB, (2) a VM for Solr as a secondary index, and (3) a VM for 
the OpenCGA tool in a Docker container. The version of OpenCGA installed was 2.1.0 
(https:// hub. docker. com/r/ opencb/ openc ga- base), MongoDB is version 4.2, and Solr is 
version 8.6.0. The raw VCF file was loaded and indexed into OpenCGA using the CLI in 
the OpenCGA VM.

Feature measures for comparison

A wide range of feature measures is covered to characterize various data science 
approaches. This in return brings a solid foundation for bioinformaticians and computer 
researchers interested in genomic analysis to identify different approaches that match 
their purposes. The feature measures with a brief description are listed below:

• Scalability This is one of the main standards that need to be considered highly in 
current genomic applications. In view of the fact that genomic data is consistently 
scaling, a compatible processing pipeline is necessary [9]. With this measure, we 
evaluated the scaling ability, and the type of scalability if applicable.

• Data management Here we identified the data storage options provided by each tool. 
We also distinguished between VCF flat-file-based, indexed files and database-based 
approaches and evaluated each option.

• Storage of the INFO column As mentioned in “VCF data format” section, the INFO 
column consists of numerous fields that describe the genetic variation in each row. 
Each field adds a different value to the overall understanding of a variant; hence, 
proper storage of the INFO column is desirable.

• Data retrieval

– Expressive power of queries All the tools perform queries on information stored 
in a VCF file. We focused on the expressive power of queries; particularly, on 
queries related to the annotation in the INFO column (e.g. queries based on 
metabolism, type of mutation, clinical relevance, allele frequency, homozygosity, 
etc.). Those types of queries are considered complex as they are extracted using 
several fields in the database or the VCF file. In addition to these “INFO-column 
queries”, another kind of complex query are those involving secondary knowl-
edge, for example: extract all variants for samples belonging to a cohort, which 
are associated with Cardiovascular Diseases (i.e. spanning more than one disease 
identifier related to cardiovascular diseases). A simple query on the other hand is 
a query that extracts information from the common fields of a VCF file, targeting 

https://hub.docker.com/r/opencb/opencga-base
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a single field and only referring to a single value. For instance, a simple query is to 
(e.g. find all variants with allele frequency > 5% ), or, (e.g. retrieve all variants with 
heterozygous genotype for all samples).

– Query speed This is another measure that is considered essential and most often 
overlooked in comparison to annotation speed. Complex queries, such as query-
ing for variants of polygenic diseases, can vary in response times due to varying 
indexing schemes. Measuring the query throughput will shed light on the effi-
ciency of the indexing deployed by the tool.

• Entry requirement and installation This measure tests the availability of documenta-
tion to aid in setting up and using the tool. Furthermore, it identifies the infrastruc-
tural requirements to get the tool operational. It also determines the tool’s learning 
curve and the complexity of navigating through the tool’s functionality.

• Annotation availability Typically, variant annotation is part of the process of gen-
otype data enrichment. Consequently, some VCFs have annotation information 
already present in the file. In this measure, we were particularly interested to show if 
the tools make use of the internal annotation in the file. Additionally, we indicated if 
the tool is capable of integrating external annotation sources. The relevance and the 
size of the sources are also evaluated.

• Customization (functionality and database) In addition to the measures defined 
above, we tested if the studied tools provide room for functionality and database 
extension. It is common to tailor a pipeline to meet different objectives after acquir-
ing a VCF file. Several applications claim to provide a customizable analysis platform, 
and this feature metric verifies that.

• Output The output content is formatted differently in each genomic application. We 
used this feature measure to inspect the readability, usability, and completeness of 
data portrayed in the different output formats.

Results
In this section, we explore the data preparation and system specifications to set up each 
tool. Furthermore, we provide a detailed evaluation for each of the feature measures 
mentioned in “Feature measures for comparison” section. All the findings are reflected 
in a detailed feature comparison Table 1 while considering the general analysis pipeline 
shown in “General workflow” section.

Data preparation and system specification

An in-house bioinformatics unit was built to develop a Genome Sequencing analy-
sis pipeline on High-Performance Computing and large servers. More details on the 
data can be found in an article by Daw Elbait et  al. [36]. Data sourced from the out-
put sequencing of machines in the bioinformatics unit (e.g., Illumina NovaSeq, NextSeq, 
and MiSeq) is streamlined securely into a variant calling pipeline that features industry-
standard tools.

The testament to this pipeline is a curated set of sequences from 153 (120 genomes 
and 33 exoms) UAE nationals. This data, consisting of over 25 million variants, was 
used as a standardized data input to analyze and compare the genomics data science 
approaches in this work. For one query scenario, we leveraged a data array of 805,426 
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variants sourced from the UK Biobank (UKB) [37]. This enabled us to evaluate the tools’ 
capabilities on a large scale in the dimension of sample size. We selected patients and 
cohorts based on ICD codes. This captured roughly 100,000 patients and controls which 
became our primary dataset. Through random subsampling, we built smaller cohorts of 
patients and controls of sizes 10,000 up to 100,000 in increments of 10,000.

We validated the performance of five data science solutions, namely BCFtools, SnpSift, 
Hail, GEMINI, and OpenCGA. The constant across all tools is the initial VCF file that is 
processed and queried by each tool. Different tools may require further processing of the 
VCF file into either a copy or into another structural format containing the data in the 
original VCF. A summary of each tool is reported in “Tools” section. All solutions were 
installed on a local Linux server with the following system specifications: Intel Xeon 
Gold 6130 32-core CPU @ 2.10 GHz and 64 GB RAM, running CentOS 7. All param-
eters, including the input file, were consistent across all running tools.

Evaluating feature measures

In Table 1, we showcase the findings of this comparative analysis. We have prepared and 
summarized the features of each tool according to a predefined set of feature measures 
(see “Feature measures for comparison” section). These measures described the tool’s 
performance and operation starting from the entry requirement phase, through to the 
downstream analysis. The purpose of this comparison is to create a benchmark for data 
science researchers to identify the optimal approach for their scope of work. It also 
works as a reference for designing new genomics data science applications. We took into 
consideration the overall flexibility of the analysis pipeline for each tool, the repeatability 
of the process steps, and the time it takes to execute various queries. In addition to the 
summary in Table 1, the following is a detailed description of the findings for each evalu-
ation measure.

Scalability

BCFtools and SnpSift are single programs that are built for manipulating flat VCF files. 
BCFtools additionally have the ability to manipulate flat BCF files. This means the limi-
tations of these tools are realized as the data size grows by samples or variants. Another 
drawback is the extra efforts brought by the need to provide the annotation sources and 
then reintroduce them to the expansive VCF/BCF file. These tools naturally have no net-
working capabilities.

Hail employs the Matrix Table which stores a data structure that references the actual 
data. Operations on the Matrix Table are planned out but deferred until users request 
the output. Although it may not always be fast, it scales well when used with large data-
sets. Downstream processing can be distributed via a Spark local instance or Hadoop 
cluster; however, Hail lacks data distribution in terms of networked storage. For larger-
scale projects, Hail will require much more time to construct the initial Matrix Table. 
Beyond that, Hail primarily relies on vertical scaling as larger projects require more stor-
age space and more CPU capability to perform as expected.

GEMINI is competent in small-scale situations when the number of variants is 
low. GEMINI lacks networking capabilities due to the design choice of SQLite as a 
database management system, despite the availability of other database alternatives 
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like MySQL, PostgreSQL, or Vertica [38]. This minimizes the amount of horizontal 
scaling as one can not provision more machines to increase throughput. Scalabil-
ity is achieved by installing better CPU, memory, or storage as a means of storage 
expansion or processing queries more rapidly.

OpenCGA is highly scalable as the storage is built with horizontal scaling in mind. 
Storage is supported by distributed database services such as MongoDB and HBase, 
thus allowing processing pipelines to exploit the networked nature of the platform 
to perform tasks in parallel. Samples and variants are stored in the distributed data-
base as documents containing the INFO column and other metadata. The modular 
design enables the further addition of samples and variants after data has already 
been loaded and established.

Data management

The data storage options provided by each tool are considerably diverse. BCFtools 
and SnpSift operate on the VCF flat file without any extract-transform-load (ETL) 
mechanism. Advanced uses of BCFtools require that the files be block gzipped 
which is doubly beneficial: it reduces overall disk storage and enables swift access to 
variant loci (assuming the VCF is sorted). BCFtools allows the user to transform the 
VCF file into BCF format which trades off a slight increase in disk space for faster 
processing. BCFtools and SnpSift rely on indexing, but the indices are stored in the 
filesystem. Operating directly on the VCF file will affect the speed as is discussed in 
“Query speed” section.

The rest of the tools follow an ETL procedure. Hail utilizes the Matrix Table; a 
distributed data structure that resembles matrices and Pandas DataFrames [18]. The 
original VCF file is transformed into a multidimensional Matrix Table which is saved 
as a set of files containing schema description in JavaScript Object Notation (JSON) 
and raw data in binary format.

GEMINI loads and stores the VCF file along with the variants’ annotations in an 
SQLite database. The database consists of seven tables, with the main one being the 
“Variant” table. The database schema is provided in the documentation available on 
the tool’s website. GEMINI stores genotype information as a binary blob especially 
for info that relates variants to samples. The variant table is indexed based on the 
locus, combining the chromosome number and position.

OpenCGA manages the VCF data and stores it in an object database. Sample infor-
mation and variant information are stored in different collections in the OpenCGA 
“Catalog”. There are two usable storage setups (i.e. MongoDB [39] and HBase [40]). 
Object databases store nested key-value pairs, allowing for unstructured informa-
tion to be stored efficiently. OpenCGA creates a unique identifier for variants and 
distinguishes between multi-allelic variants by creating a new record for each allele. 
An example of a variant identifier format is as follows: <chromosome>:<positio
n>:<reference allele>:<one alternative allele>

Applying these tools to our local genomic data composed of 150 Emirati genomes, 
we recorded the total storage utilization in Table 2.
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Storage of the INFO column

A common annotation practice following the GATK Best Practice Pipeline applies 
several annotation tools sequentially. From an information theoretic perspective, this 
practice is disadvantageous. Not only does it leave a trail of large, unindexed, and 
highly redundant files, but it also often leads to inconsistent INFO column formatting 
due to conflicting conventions. As a result, this practice does not lend itself to fast 
querying.

Some examples of the abuse of INFO columns include the interchanging of sepa-
rators, mixed word casing (snake case, camel case), and subfield annotations using 
period marks (e.g., mydb.annotation=...). Additionally, this information is 
stored as text as opposed to industry-grade data structures that accelerate querying 
retrieval. Therefore, it is preferable to normalize the extract-transform-load (ETL) 
process that standardizes information entry, especially with respect to the INFO col-
umn when the data scales up.

BCFtools and SnpSift do not have special indexing for the INFO column, rather 
they operate directly on the INFO column in the flat VCF file or BCF file in the case 
of BCFtools. However, they also allow users to query the INFO sub-fields in a con-
venient way through built-in subcommands. The query mechanics will be explained 
in a later section.

Hail stores the INFO column into typed columns as part of the Matrix Table. The 
INFO columns are identified based on the header of the loaded VCF file and the data 
type of the INFO sub-field is automatically inferred based on the available data. The 
INFO sub-fields are accessible through the Matrix Table loaded into memory when 
running in a Python environment.

GEMINI stores the INFO data under designated SQL table columns built into 
GEMINI. For the remainder of sub-fields in the INFO columns that do not match the 
GEMINI predefined table columns, a BLOB field is provided as general storage.

The INFO column is stored in OpenCGA as a collection of objects in the Catalog. 
Each INFO sub-field is stored takes up space in the flexible data schema, and inherits 
the exact formats as specified in the meta-information part of the VCF file.

Expressive power of queries

We recalled the query examples stated in “Feature measures for comparison” section 
in order to verify if each tool can execute various complex queries.

With BCFtools, users can build complex queries provided that the querying VCF/
BCF file has sufficient annotation and adheres to the assumed format conventions. 
BCFtools allow for numerical value filtering, and regular expression matching for 
multi-faceted INFO subfields and can combine queries through logical operators. 
Note that the multi-faceted INFO subfields are unindexed and therefore depend on 
the correctness of the regular expression. This is error-prone as similar fields such as 
AF and MAF can match the same query giving false positive results.

SnpSift does not facilitate the use of complex queries. The tool is more focused on 
VCF manipulation, such as calculating the concordance between two VCF files, join-
ing two VCF files, the intersection of variants sets in VCF files, and so forth.
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The Matrix Table designed by Hail is structured in a usable way for building com-
plex queries. Users are able to list all values of the INFO sub-fields in tabular format 
and inspect each INFO sub-field. Operations typical of a DataFrame can be con-
ducted on the Matrix Table to filter, sort, and aggregate data across the VCF.

With GEMINI, the complexity of the query is bounded by the limitations of SQL 
queries and the capacity of an SQLite database. Generally, SQL has an overall high 
expressive power and for the purposes of querying information in a VCF file, SQLite is 
sufficient to perform complex queries.

OpenCGA queries are executed on the object database storage of variants with multi-
ple techniques provided. The primary mode of querying is via the CLI, although alterna-
tive modes of querying are available through a REST API call, and Python or R wrapper 
library. Note that all the above-mentioned query mechanisms can be combined with 
GATK workflows, though with varying efforts: BCFtools and SnpSift operate on (posi-
tion-indexed) VCF files directly, whereas the latter three approaches require database 
population of GATK’s VCF files.

Query speed

We tested the query speed by running several scenarios using the same dataset across 
all tools. To make a fair comparison, we used the Linux time command to measure the 
response time of each query starting from user input to output. This includes the total 
amount of time for the tool to load the variant data from its respective storage type, exe-
cute the query and return the result. We recognize that some tools have a longer startup 
time but could return a query more quickly if the data was already loaded into memory 
(particularly for Hail).

In some cases, BCFtools query time was consistent and performed well in comparison 
to other tools due to optimizations in the implementation written in the C programming 
language, and chromosome region indexing. However, BCFtools operates line-by-line 
and still needs to go through the entire VCF/BCF to produce an output. The query time 
is notably reduced when an index is provided (e.g. chromosome region) since BCFtools 
has to go through the entire chromosome region instead of the whole VCF/BCF file. 
It was also notable that the query time would fluctuate proportionally to the chromo-
some region size. It is also notable that BCFtools queries faster with BCF files. However, 
the conversion time from VCF to BCF is about one hour for our dataset. Additionally, 
queries that are accelerated by region indexing require that the VCF file be compressed 
using bgzip and indexed.

SnpSift does not perform automated indexing; hence, the query speed is the slowest 
among the tools. For instance, that can be seen when two identical queries are executed 
on different chromosome regions. For example, a query that targets variants in chro-
mosome 1 takes much less time to display on the screen compared to a query target-
ing chromosome 13. This is because the VCF file is ordered by the chromosome loci 
in an ascending manner. However, in both cases, SnpSift would take similar amounts 
of time before stopping its execution (as it had to complete the entire VCF file). This is 
normally remedied by splitting the original VCF file into smaller VCF files consisting of 
each chromosome region but increases the difficulty in data management.
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It is noted that Hail’s indexing is considerably better than GEMINI’s. We speculate that 
Hail fully exploits its multi-threaded workload via Spark while GEMINI suffers from a 
lack of performance as the indexing is done on an SQLite DB which is not fully managed 
like MySQL or PostgreSQL. Another point to be addressed is that all Hail query speed 
results are inclusive of the initialization time of 6 s.

OpenCGA query speed is considered the highest among these tools on average. This 
is attributed to OpenCGA’s feature of indexing multiple fields when a VCF is loaded and 
annotated. It should be noted that OpenCGA’s query via the command line performs a 
REST API call which can introduce delays in the overall execution time.

Fig. 2 Query performance comparison for all studied tools to query for a unique variant by its identifier 
with and without providing the chromosome. Chromosome regions are shown as bands of dark and 
light rectangles. BCFtools and GEMINI results are presented in a log scale: as the query time between 
chromosome‑bound queries and regular queries differ by order of magnitude, the log scale is more favorable 
to display the intricate patterns when querying with region indexing
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Figures 2, 3, and 4 illustrate the query speed for Scenarios 1, 2, and 3 respectively.

(a) Scenario 1
Return all information for a variant given its unique rsID
We evaluated the five tools to query for a unique rsID throughout the whole genome. 
The query was performed in two different manners: including the chromosome region 
as a query parameter, and by querying solely with the rsID. As some tools index by chro-
mosome regions, it would be interesting to identify what performance gains can be 
realized by leveraging the indexing. We randomly sampled 50 rsIDs across the entire 

Fig. 3 Query performance comparison between all studied tools to query for all INDEL‑typed variants 
located in chromosome 5

Fig. 4 Query performance comparison between all studied tools to query for all variant sites where all 
samples in the study have homozygous genotype
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genome that are roughly equidistant. These rsIDs were sampled along with and without 
their respective chromosome region. Queries were run in the order that the selected var-
iants appear in the genome and each query is repeated 5 times to measure its statistics.

The general trend across all tools is that queries involving the chromosome region 
of the targeted rsID are faster than those without. The exception to this is SnpSift 
whereby the query with the chromosome region is about 20 s slower than the query 
without the chromosome region. We assume that this is due to the complexity intro-
duced into the query to not only check for the right rsID but also to check that the 
chromosome matches correctly.

It is evident in the first plot of Fig. 2 that BCFtools employs indexing when the chro-
mosome region is present in a query. Within a chromosome region, query run times 
plateau, suggesting that BCFtools explores the extent of the entire chromosome for 
each query. Naturally, smaller regions are much quicker to query compared to larger 
regions. Note that the size of the chromosome is not indicative of the query speed but 
rather the number of variants that were called in that region. As shown in Fig. 2, que-
rying VCF and BCF files result in a similar trend across the chromosomes. However, 
when it comes to query speed, BCF files outperform VCF files.

The difference in delay between the chromosome-bound query and regular query is 
noticeable across all tools except for Hail where the running times for each query are 
almost identical. Peaks can be seen at different positions across the genome but these 
values fall within the bounds of the standard deviation of the individual runs. This is 
possibly due to background processes occupying the CPU when the query is run.

Without the chromosome region available, GEMINI appears to scan through the 
entire SQLite database for the matching rsID, akin to BCFtools and SnpSift. How-
ever, an interesting fluctuation pattern appeared as queries were executed across the 
genome when the chromosome region is present. It is noticeable that these fluctua-
tions appear to be highest at the start of a new chromosome. That might be due to the 
way GEMINI stores information between queries. Queries are seemingly dependent 
on the last information kept in the cache. As long as the next targeted rsID belongs 
to the same chromosome as the previous query, the variant can be returned quickly. 
However, as noticed in Fig.  2, when the chromosomes changes, GEMINI requires 
time to load the new region into the cache and thus slowing down the query speed for 
the first retrieved rsID in the next chromosome.

OpenCGA is the fastest among all tools in this plot. The tool maintains its speed 
results in both types of queries (with and without chromosomes) under a total of 
2.5 s and there is a sustained 2-s delay between the two types of queries. OpenCGA 
retrieves the variants consistently across the whole genome as is evident by the 
straight line performance in Fig. 2.

(b) Scenario 2
Get all variants typed INDEL in chromosome 5
With this test, we evaluated the performance of retrieving indel-typed variants given 
that the original VCF did not contain that information. Querying for variants by their 
variant type (e.g. SNP, SV, INDEL, etc.) is a common analysis to identify potentially 
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harmful mutations when proteins are translated from the RNA sequence. We have 
arbitrarily chosen chromosome 5 to limit the search space of the query. This query is 
repeated 5 times to account for variability between runs.

Overall, BCFtools is the fastest despite the lack of well-defined variant type infor-
mation in the INFO column. As the tool streams over the VCF/BCF file, it determines 
the variant type by comparing the REF and ALT columns. This query is enabled by the 
powerful “expressions” functionality featured in the BCFtools documentation, which 
would have otherwise been unknown. BCFtools is likely fast due to its implementa-
tion in the C language and runtime optimizations. Again, we see that the BCF file 
responds faster to this query, compared to the VCF file.

SnpSift lacks the functionality to immediately compare the REF and ALT columns. 
Instead, one would need to annotate the VCF file using the VarType command to 
populate the variant type field in the INFO column. This step yields an annotated 
VCF file that is different from the original. This annotated VCF file is then queried 
for the variant type to find all variants which are INDEL. The time displayed in Fig. 3 
does not take into account the time to generate the annotated VCF file.

Hail provides a built-in function called is_indel to determine if the reference 
and alternative alleles are indels. This function is applied to the “alleles” column of the 
Matrix Table and is used to create a boolean value column that indicates whether a 
variant is an indel or not. The query is then executed on this new column to filter for 
indel-typed variant rows. Hail’s query time also includes the time taken to create the 
boolean column and the time query to query by that column; hence why it is slightly 
slower than BCFtools and GEMINI.

GEMINI’s database contains variant type information as a result of the initial anno-
tation when loading a VCF file. The query is executed against the “type” column in the 
“variants” table and the run time is not capturing the annotation step. GEMINI’s use 
of SQL tables is of notable value in this situation where there are few possible values 
for a single column.

Like GEMINI, OpenCGA creates the variant type as part of the initial annotation 
process. Although OpenCGA has extensively indexed the VCF information and anno-
tation, the query executed against the variant type field is surprisingly slower than 
BCFtools which operates on a flat file. Additional space requirements to store the var-
iant type for each tool are shown in Table 3.

(c) Scenario 3
Retrieve sites where all samples have the homozygous genotype
In this scenario, the query checks that all samples have the genotype 0/0 or 1/1. This 
tests the tools’ capability to handle queries spanning multiple, if not all, samples in a 
VCF file. This particular query is thought to be useful for determining if a cohort collec-
tively has a different genetic makeup compared to the reference and is useful for classify-
ing groups. To minimize variance in the results, the query is run 5 times.

BCFtools—querying a VCF file—and Hail demonstrate similar performance, with Hail 
having a 6-s advantage over BCFtools due to its start-up delay. However, when work-
ing with the corresponding BCF file, BCFtools exhibits faster processing compared 
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to Hail. SnpSift appears to have its worst performance over all queries studied in this 
benchmark.

GEMINI utilizes a Python indexing package called bcolz to speed up queries tar-
geting genotype fields. bcolz is based on columnar, compressible, chunked data con-
tainers. Genotype columns in the GEMINI database are indexed to accelerate querying 
using the argument “–use-bcolz” in the same genotype filtering query to get a quick 
query response. That is shown in Fig. 4 as GEMINI scores the highest speed among all 
tools. Skipping the indexing step, however, would increase GEMINI’s query time dra-
matically up to an average of 150 s.

OpenCGA is second to GEMINI in this test scenario. However, it is a considerably 
slight difference between the two tools.

(d) Scenario 4
Retrieve the variants where the allele frequency of patients is below or equal to 40% and 
the allele frequency of controls is above 40%

(i) Annotation time
In this scenario, prior to the query, a calculation is required to annotate each cohort 
(patient and control) by the allele frequency. The query then retrieves variants based on 
the annotation which is found in the INFO column of a VCF file. This tests the tools’ 
capability to handle queries spanning multiple, if not all, samples in a VCF file. The num-
ber of variants remained constant throughout all sample sizes. This particular query 
is thought to be helpful in determining if a cohort collectively has a different genetic 
makeup compared to the reference and is useful for classifying groups.

From a biological perspective, this query identifies variants that are not likely to 
appear in patients of a study. In our case, we investigated patients with circulatory 
system disorders in the UK Biobank dataset. We tested the tools’ capabilities in terms 
of two aspects: the annotation time and the query time as shown in Figs.  5 and 6, 
respectively.

Hail is the fastest among studied tools in terms of the time taken to process the 
annotation and save it into the Matrix Table format. BCFtools comes second, and the 
annotation is simply inserted into the INFO column of the VCF file. Both Hail and 
BCFtools have a linearly correlated annotation time which increases as the sample 
size grows.

SnpSift does not provide any command to annotate the variants based on the 
cohort’s allele frequency. However, we reused the annotations provided by BCFtools 
to measure the query time for SnpSift. As for GEMINI, we performed annotation 
for sample sizes 10k, 20k, and 30k and did not proceed further due to the prolonged 
annotation times. It took more than 2 h for 10k samples to be annotated and almost 
5 h for 30k samples. This annotation time combines the time taken to load the VCF 
file to an SQLite database, and the time it takes to update the database by inserting 
new columns for the control and patient allele frequencies.
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OpenCGA had the slowest annotation time due to the several steps involved to 
annotate the cohorts. The steps include linking the VCF file, the primary indexing of 
variants, cohort creation, and statistical calculations to generate the cohorts’ allele 
frequency. We also had to limit the annotation process for OpenCGA up to a 20k 
sample size. One reason is that the time taken to process a VCF file with 20k samples 
requires more than 24 h to complete. Another reason is the tremendous amount of 

Fig. 5 Time (in hours) taken by the studied tools to annotate the variants by patients and controls’ allele 
frequency. The annotation time is shown for a different number of samples

Fig. 6 Query performance comparison of studied tools for different numbers of samples to retrieve all 
variants that appear in more than 40% of control samples and less than or equal to 40% of patient samples
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Table 1 A summary matrix of the tools presented in this work along with the different feature 
measures on which the tools are evaluated

OpenCGA GEMINI Hail Bcftools SnpSift

Entry requirement 
and installation

Many dependen‑
cies

Python‑based 
install script

Python package 
installation

make compilation Java JAR down‑
load

Data managementMongoDB/HBase SQLite Matrix Table Flat‑file VCF Flat‑file VCF

Storage of the 
INFO column

Highly indexed, 
nested object 
structure

Partially indexed 
SQLite tabling

Stored as type‑
inferred columns

Unindexed VCF file 
INFO column

Unindexed VCF 
file INFO column

Annotation avail‑
ability

34 data sources, 
manual

18 data sources, 
automatic

13 data sources, 
manual (experi‑
mental)

N/A, manual dbNSFP, manual

Query complexity Multiple clients, 
unconventional 
syntax

SQL query‑like DataFrame‑like 
filtering

CLI, documented 
syntax

CLI, documented 
syntax

Query speed Fast, comprehen‑
sive indexing

Database index‑
ing, moderate 
speed

Fast, Spark‑back‑
end querying

Fast for flat‑file 
based query, 
indexes by chro‑
mosome

Slow, not indexed

Query ranking Best in rsID query 
(Scenario 1)

Best in homozy‑
gous genotype 
query (Scenario 3)

Best in complex 
query (Scenario 4)

Best in INDEL‑type 
query (Scenario 2)

Overall last place

Scalability Horizontally scal‑
able, managed 
platform

Limited vertical, 
monolithic

Efficient filesystem 
storage, Spark‑
based

N/A, monolithic N/A, monolithic

Customization 
(function and DB)

Java plugins Only DB is exten‑
sible

Python‑native C plugins Only built‑in 
commands

Output JSON, VCF‑like, 
Tabular text

Tabular text Matrix Table objectVCF file, Tabular 
text

VCF file

Table 2 Storage utilization of each tool after transformation

Storage use (GB) Annotations Notes

Original VCF 93.77 No –

BCFtools(VCF) 16.75 No bgzip + csi file

BCFtools(BCF) 19.60 No bgzip + csi file

SnpSift 16.75 No Same as BCFtools(VCF)

GEMINI 119.48 Yes SQLite file size

Hail 17.55 No Matrix table folder size

OpenCGA 103.27 Yes MongoDB collection size

Table 3 Additional space requirements to store the variant type for each tool

Additional space requirement Rating

BCFtools None Low

SnpSift Creates a new VCF file with INDEL boolean flag High

GEMINI None, pre‑annotated during initial load Low

Hail Creates a new column of boolean type in Matrix Table Med

OpenCGA None, pre‑annotated during initial load Low
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RAM that is required to run the indexing which is in excess of 32 GB. The true value 
of the memory that would be required is unknown as we did not have the capacity to 
provision more memory to the virtual machine.

(ii) Query time
Across the 5 repeated runs, all tools exhibit a linear increase in query time, except Hail, 
with respect to the number of samples. BCFtools query time ranged between 8 min up 
to 42 min across all sample sizes. SnpSift performed surprisingly well in comparison to 
its performance in all other scenarios presented in this work. The query time increased 
from 2 min to under 20 min between 10k to 100k samples. As the content of the VCF file 
increases between 10k samples and 100k samples, the number of bytes that needed to be 
processed by SnpSift and BCFtools increases; therefore leading to an increase in query 
time. This is one of the inherent weaknesses of using flat-file (e.g., VCF) storage for que-
rying data in the INFO column.

Hail is considerably fast among the studied tools and is consistent across all sample 
sizes. We attribute this to Hail’s ability to store allele frequencies as floating-point data in 
the Matrix Table once it has been annotated. Hail leverages Spark in the backend to par-
allelize queries and enable faster retrieval across all chromosomes. As all datasets con-
tained an identical number of variants, the small fluctuations in query time are visible 
artifacts of random CPU throughput during different runs.

The query time for GEMINI is measured for the previously annotated 10k, 20k, and 
30k sample size databases. The highest query time goes up to 6 s for the 30k sample size 
database which is considered very fast in comparison to the other tools. The way SQLite 
database stores floating-point data appears to have some benefits for quick retrieval of 
data.

OpenCGA query time results for 10k and 20k sample sizes seem consistent, though 
there is too little data to extrapolate further whether it would be linearly correlated with 
sample size or not. It is worth mentioning that OpenCGA introduced a timeout error 
when the query was set to retrieve all variants. To tackle this, we had to limit the number 
of variants in the query in order to include OpenCGA in this analysis. The same limit of 
the first 100 variants encountered was set for the queries in all other tools to ensure a 
fair comparison.

Entry requirements and installation complexity

In this feature measure, we mainly evaluated the availability of documentation for set-
ting up and using the tool. We found BCFtools and SnpSift to be the best among the five 
tools in providing detailed documentation for users. These two tools benefit from having 
a larger community of users as a result of being developed prior to the others. New users 
trying to get familiar with the syntax can easily find solutions to their problems through 
numerous results in search engines. In addition, these tools are standalone, command-
line interface (CLI) based programs and have few dependencies. Installation complexity 
as described in “Installation” section is summarized in row 1 of Table 1.
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Annotation availability

BCFtools have the functionality for annotating a VCF/BCF file but do not adhere to any 
specific annotation source. SnpSift is coupled with dbNSFP [41] and provides a subcom-
mand to annotate VCF files with the rich functional predictions found in dbNSFP. For 
both tools, users may employ any desired additional annotation source, with the condi-
tion that the source is formatted to the tools’ annotation format specifications.

Hail features a moderate set of annotation sources coupled with the library, but the 
functionality is currently in the experimental stage. The annotations are hosted online 
in the cloud and users must have a Google Cloud Platform (GCP) or Amazon Web Ser-
vices (AWS) account to operate the annotation database class. Annotations are applied 
to the Matrix Table and the information is saved into the filesystem as described earlier 
in “Data management” section.

GEMINI boasts a large set of annotation sources from notable public annotation 
archives such as ENCODE [42], UCSC [43], OMIM [44], dbSNP [32], KEGG [26], and 
HPRD [45]. Upon loading a VCF file, GEMINI automatically annotates the variants 
and stores the result in the internal SQLite database. However, GEMINI only supports 
human genome variants aligned to build 37 (hg19).

OpenCGA draws annotations from a comprehensive library via CellBase [46]: a 
NoSQL-based annotation database that compiles numerous annotation sources com-
parable to the popular Ensembl Variant Effect Predictor (VEP) tool [22]. Users must 
configure the CellBase server connection credentials if the users have a local CellBase 
installation. Otherwise, annotations are collected from a publicly available CellBase 
server hosted by OpenCB but the process risks delays due to connection latency. The set 
of common variant annotation sources present across each tool is listed in Table 4.

Customization (function and database)

BCFtools allow for functionality customization via the development of plugins in the C 
programming language. An API template is provided to standardize the structure of cus-
tom libraries. Users can use the internal functionality of other SAMtools-related librar-
ies such as HTSlib, SAMTools, and BCFtools. Currently, there are custom functionalities 
that are community-built and accepted into the BCFtools repository such as counts, 
indel-stats, and remove-overlaps to name a few.

Being a monolithic tool, SnpSift only provides built-in commands which are accessible 
to the users via the CLI. However, the developers have made a wealth of functionality 
available in SnpSift which users can leverage in scripts to compensate for the lack of 
customizability.

Since Hail is a Python-based data analysis library, there is the flexibility of using other 
libraries in conjunction with Hail. One example would be leveraging plotting and eager 
execution during the analysis of genomic data in the comfort of a Jupyter notebook envi-
ronment. The Matrix Table can be modified to include user-defined columns which pro-
vide the freedom to customize the INFO column sub-fields programmatically.

For researchers, the main customizable functionality in GEMINI is given by the option 
to include custom annotations via sub-commands. The tool also shows flexibility in 
terms of allowing users to extend the SQLite database by adding columns to any GEM-
INI pre-defined table or creating new tables to suit users’ personalized analysis.
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OpenCGA welcomes community-developed plugins as a way to extend the platform. 
Java plugins can be added to the internal processing pipeline, thus operations can be 
performed directly on the query iterators, increasing the efficiency of the novel func-
tionality that benefits from this access. Moreover, the Python and R wrappers give flex-
ibility to analysis options in the respective languages, although this would come at the 
cost of speed.

Output

BCFtools and SnpSift output the data in the same format as the input VCF file, in 
addition to tabular formats that are viewed with some query types. If BCFtools “view” 
is used, whole VCF/BCF files can be almost entirely regenerated creating redundancy 
in the storage as rows of the VCF/BCF are extracted.

Hail produces a structured tabular output format by default, where the nested INFO 
columns are also indicated. Users may also export the output as a Matrix Table or 
other genomics-specific file formats such as VCF, PLINK, and BGEN. Hail also pro-
vides some visualization functionalities that are featured through the Jupyter note-
book environment making it an additional output presentation. For example, Matrix 
Tables can be rendered as HTML tables which suits the conventions of a Jupyter 
notebook.

GEMINI’s output format is a typical SQLite tabular text output. Users need to spec-
ify the column fields that would appear in the output or choose to view all columns. 
OpenCGA provides many output format options for users. The default output is a 
VCF-like structure though this option lacks some genomics information such as the 
annotation and the variant unique ID. As an alternative, users may choose between 
JSON format or tabular text format to view the detailed data of variants. It is impor-
tant to highlight that OpenCGA holds all the information on gene-related traits but 
these annotations do not appear unless the user provides at least one of the traits in 
the query. For example, a user would provide at least one OMIM ID in the query in 
order to get all other related OMIM IDs.

Table 4 Common annotation sources available in each tool

OpenCGA GEMINI Hail BCFTools SnpSift

1kG � �

CADD � � �

ClinVar � � �

COSMIC � �

dbSNP � �

Ensembl � � �

ESP � �

GERP � � �

gnomAD � � �

Polyphen � �

Others � � � N/A dbNFSP
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Discussion
We note that the feature measures mentioned in this work are not exhaustive and 
there could be many other facets that put a tool in a different light. After considera-
tion of how the tools are deployed, we believe these metrics shed light on the typical 
questions posed in a modern Genomics Data Science project. We strived to deliver 
a fair comparison between all the tools to the best of our ability, though in certain 
situations we had to work within the constraints of the tools to achieve our results. 
Another promising tool, somewhat resembling the functionality of GEMINI, is sli-
var [17]. It has strong capabilities to query and filter variants and has a strong focus 
on rare diseases and facilitates analyses with filters provided by the hts-nim [47], a 
library accessing htslib. Slivar does not utilize state of the art database technology 
and doesn’t address population wide scalability and fast data retrieval, in particular, 
it does not focus on horizontal hardware scaling of genomic projects. As the tool 
requires a pedigree structure (and in particular, a pedigree file), slivar is not directly 
compatible with the structure of the population scale benchmark used here.

As for the future of large scale genomics projects, it is conceivable and—in our 
opinion—desirable that variant information including secondary annotations are 
stored, indexed and queried as database operations, thus leveraging the mature and 
scalable database technologies of recent decades. This process should start as early as 
variant calling in genome pipelines. For example, popular VCF generating tools like 
GATK can benefit from database operations during variant calibration, variant filtra-
tion, and annotation. The current best practices often involve recreation of new ver-
sions of VCF files that are largely redundant thus, not storage efficient.

Efforts to use database technology (GenomicsDB) have been made in GATK version 
4.0, but are currently not used to its full potential. The principle then transcends to 
downstream steps such as genotype phasing and cohort selection, all of which can be 
couched as database operations. The modularity of a database platform with variant data 
and additional information in respective tables is also convenient in terms of progressive 
annotation extension and update: e.g., for relational databases, the discussed annotation 
sources (Table 4), which often are already available in proper database format (SQL, tab-
ular formats), can be integrated with conventional and highly optimized join operations. 
In summary, we argue that it is beneficial for genome analysis platforms like GATK to be 
tighter integrated with Big Data technology.

Conclusion
In this work, we evaluated the performance of several genomics data sciences approaches 
to interpret and extract variation data. We studied five tools, namely SnpSift, BCFtools, 
Hail, GEMINI, and OpenCGA, and compared them according to several feature meas-
ures to display the tools’ qualities in the context of Genomic Data Science. Among the 
aspects of a desired data science tool are the entry requirements, query-related fea-
tures, storage paradigm, annotation capabilities, and scalability. The key feature is the 
expressive power captured across all tools to enable the transformation of a researcher’s 
genomics questions into explicit, yet efficient queries.
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It is evident that preprocessing of the INFO column into appropriate data structures 
that leverage indexing enjoy numerous benefits. Among those seen in this work are: per-
formant queries, better scalability, more flexible pipelines, increased operational integra-
tion, and enhanced protection against data mishandling. The trade-off to achieve these 
merits is primarily in boosting storage capacity which, in modern systems, is not exces-
sively costly as many genomic data stores currently relish vast storage prescriptions [48].

It bears mentioning that the apparent Achilles’ heel for modern genomic querying 
tools is complexity. Complex systems incur great technical debts, thereby entailing more 
expertise and personnel to manage, hindering adoption. Tools like Hail strike a good bal-
ance between sophistication and usability by keeping a low technical footprint with the 
conveniences of structured data. At the two extremes are BCFtools: the locally-hosted 
monolith with a low learning curve, and OpenCGA which span multiple services but is 
highly query-optimized.

We found that different tools suit different situations and resources. Thus, users can 
opt for the appropriate tool depending on the scale of their projects. Our results show 
that flat-file manipulation tools are less preferable in comparison to tools that leverage 
sophisticated data organization in various aspects. The paradigm that OpenCGA has 
adopted supports horizontal scalability in large-scale projects like the 100,000 Genomes 
Project [49] and UK BioBank database [37]. However, current implementations leave a 
large room for improvement in terms of usability and community strength.
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