
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Al‑Aamri et al. BMC Bioinformatics (2023) 24:354
https://doi.org/10.1186/s12859‑023‑05470‑2

BMC Bioinformatics

Critical assessment of on‑premise
approaches to scalable genome analysis
Amira Al‑Aamri1†, Syafiq Kamarul Azman1†, Gihan Daw Elbait2,3, Habiba Alsafar3,4 and Andreas Henschel1,3*

Abstract

Background: Plummeting DNA sequencing cost in recent years has enabled genome
sequencing projects to scale up by several orders of magnitude, which is transform‑
ing genomics into a highly data‑intensive field of research. This development provides
the much needed statistical power required for genotype–phenotype predictions
in complex diseases.

Methods: In order to efficiently leverage the wealth of information, we here assessed
several genomic data science tools. The rationale to focus on on‑premise installa‑
tions is to cope with situations where data confidentiality and compliance regula‑
tions etc. rule out cloud based solutions. We established a comprehensive qualitative
and quantitative comparison between BCFtools, SnpSift, Hail, GEMINI, and OpenCGA.
The tools were compared in terms of data storage technology, query speed, scal‑
ability, annotation, data manipulation, visualization, data output representation,
and availability.

Results: Tools that leverage sophisticated data structures are noted as the most suit‑
able for large‑scale projects in varying degrees of scalability in comparison to flat‑file
manipulation (e.g., BCFtools, and SnpSift). Remarkably, for small to mid‑size projects,
even lightweight relational database.

Conclusion: The assessment criteria provide insights into the typical questions posed
in scalable genomics and serve as guidance for the development of scalable computa‑
tional infrastructure in genomics.

Keywords: Genomic data science, Big data, Genomic databases, SQL, VCF, NoSQL,
Horizontal scaling

Introduction
The past few years have witnessed a rapid progression in the study and understand-
ing of human genetic variations. This has resulted in an incredible wealth of informa-
tion that expanded the knowledge of interpreting genetic variations and emphasizing
their diversity. The anticipated growth of genomic data considering 100s of millions of
genomes sequenced by 2025 is estimated to reach data volumes in the order of Exa-
bytes [1]. Genetic variations may differ in their characteristics and the forms they take
in the human genome [2]. These differences are the key factors to unravel underlying

†Amira Al‑Aamri and Syafiq
Kamarul Azman have
contributed equally to this work.

*Correspondence:
Andreas.henschel@ku.ac.ae

1 Department of Electrical
Engineering and Computer
Science, College of Engineering,
Khalifa University, P.O.
Box 127788, Abu Dhabi, United
Arab Emirates
2 Department of Biology, College
of Arts and Sciences, Khalifa
University, P.O. Box 127788, Abu
Dhabi, United Arab Emirates
3 Center for Biotechnology
(BTC), Khalifa University, P.O.
Box 127788, Abu Dhabi, United
Arab Emirates
4 Department of Biomedical
Engineering, Khalifa University,
P.O. Box 127788, Abu Dhabi,
United Arab Emirates

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05470-2&domain=pdf

Page 2 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

phenotypes and define disease susceptibility in different individuals [3–6]. However, as
many phenotypes are complex and polygenic, statistical power analysis has shown that
huge sample sizes are required [7]. For example, a genome wide association study for
human height variation has recently been conducted and involved 5.4 million samples
[8]. While the actual DNA sequencing (and genotyping array) technology seems to scale
with this demand, it is not clear how downstream Genomics analysis can keep up and
leverage Big Data technologies of recent decades in the best possible way. The problem
is exacerbated by a community that has built its foundation in flat-file based ecosystems,
at a time when data volumes were orders of magnitudes smaller. The variant call format
(VCF) file is a popular flat-file format that holds genetic variation information in a tabu-
lar form. VCF files feature metadata columns providing detailed information pertaining
to a variant and the set of samples carrying that variant. In studies revolving around a
cohort, the VCF file links together the variant information and the genotypes of the indi-
viduals in the study.

The tabular paradigm of the VCF conforms well to non-technical researchers, as it
imitates a spreadsheet environment. The highly-exploited INFO column, a loosely struc-
tured data field into which variant annotations are stored, is one of the creature com-
forts of the VCF. Many annotation tools implement syntactic conventions, however, they
are not enforced by the VCF specifications and different tools follow conflicting con-
ventions. As a result, processing and indexing all columns of VCF files and extracting
the unstructured data into a digest becomes nontrivial, especially as the size of VCFs
becomes a daunting task.

Many genomic tools provide variant analysis solutions using VCF files but lack func-
tionality when it comes to managing the variant data, let alone multiple projects and
heavy data querying [9].

Genomic data science algorithms and databases are co-evolving with the abundance of
data engendered by next-generation sequencing (NGS) as a means of performing clini-
cal studies. Bread-and-butter research like genome-wide association studies (GWAS) or
personalized medicine relies on statistical measures that improve with larger cohorts.
This is demonstrated in ongoing successes such as the 100,000 Genomes Project [10] or
the BioBank Japan Project [11] but suffers from infrastructural challenges at scale. The
100,000 Genomes Project recently introduced a sparse relational database Rareservoir,
which focuses on large amounts of rare variants only [12]. The authors argue for the use
of relational databases, but avoid horizontal scaling by variant reduction assuming that
causative, contributing variants are rare and known in advance. Big data solutions seem-
ingly remedy these issues as evident in the growing adoption of distributed paradigms in
recent releases of bioinformatics software (e.g., GATK [13], etc).

Presently, several studies have been steered towards presenting solutions for assess-
ing and processing variants. There are different genomic data science tools that exist to
manipulate and extract genomic information for interpreting the relevance of identi-
fied variants. These tools range from simple flat-file-based solutions e.g (BCFtools [14],
SnpSift [15], VCFtools [16]), slivar [17] to database-enabled platforms e.g. (GEMINI [4],
Hail [18], OpenCGA [19] and VCF-Miner [20]).

A clear dichotomy in the toolbox is that flat-file manipulation programs are favored
over managed platforms, as evident in the prevalence of such tools in the literature.

Page 3 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

Current solutions and processing pipelines are not all designed to work as standalone
tools. This entails depending on external variant annotation sources and third-party
annotation tools (e.g., ANNOVAR [21], VEP [22], VariantAnnotation [23]) to process
a VCF file effectively. Among the current solutions and processing pipelines, several are
structured for cloud-based models. While this is driven by the advantages of cloud infra-
structure, on-premises deployments are desirable to comply with legal restrictions; for
example, a country’s ban on the movement of human genetic sequences outside digital
borders. This work focused on on-premise solutions to explore areas of deployments as
it is understudied, to the best of our knowledge. Interested readers can find more on
cloud-based genomics solutions in a comprehensive review by Shi and Wang [24].

Another crucial attribute of a VCF processing platform is to what extent it enables a
user to express complex queries. Undoubtedly, the expressive power of queries is directly
linked to the wealth of information available in the VCF file, especially in the INFO col-
umn where annotations reside. It is worth noting that many annotations utilize hierar-
chical structures such as ontologies (e.g., Gene Ontology [25], SNPEff mutation ontology
[15]) and taxonomies (e.g., metabolic pathway hierarchies [26], ClinVar [27], ICD [28]).
A modern query system should be capable of harvesting semantic annotations that are
intrinsically taxonomy-oriented. For instance, selecting variants for Parkinson’s disease
which is a member of degenerative nervous system disorders, which is, in return, under
the umbrella of neurological disorders. Algorithmically, this can then be used to explore
hierarchical feature spaces to perform genotype-phenotype predictions, as for the exam-
ple done in [29].

In this work, we focused on evaluating and assessing the performance of different on-
premise genomic data science approaches for human genomics. We bring a comprehen-
sive comparison based on numerous feature categories such as storage, query speed,
scalability, annotation, manipulating data (filtering, extracting), visualization method,
data output representation, and the availability of these tools as open-source or peer-
reviewed articles. Addressing the query speed is essential as it is not often assessed in
current reviews of the literature [30, 31]. A common metric of these tools is the ability
to load and process a whole parsed VCF file. We have omitted tools like VCF-Miner as
it handles each chunk of the VCF file separately; hence it doesn’t allow for a fair com-
parison with other analysis tools. This work intends to bring a solid foundation for bioin-
formaticians and other researchers interested in genomics applications to identify ideal
solutions that match their purposes.

Methods
In this section, we address a common genomics data science workflow on which the
tools are applied. We then explain the VCF file format and its contents. In particular,
the INFO column of the VCF file format is elaborated as it is the most crucial part for
variant annotation. We then introduce the five data science tools used for the compari-
son. Finally, we define each of the highlighted features and how each feature fits in the
selected tools.

Page 4 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

General workflow

Existing data science genomics solutions follow a common workflow to some extent. The
diagram in Fig. 1 shows the abstract illustration for the generalized approach followed by
most VCF manipulation tools studied in this critical assessment.

A typical pipeline starts with a raw VCF after variant calling and consists of a sequence
of four components: input, storage, annotation, and query. The input is the first step as
the user provides the genomics data. In this context, it’s a VCF file in a human-readable
format (uncompressed) or a binary/zipped memory-efficient format (compressed). The
VCF file is then introduced to the tools to either be indexed or loaded into some form
of storage. Some tools build upon the storage method by transferring the data from the
VCF file into a designated data structure.

After the data is properly stored, the next stage is to augment the data with annota-
tions (further explained in depth in “Annotation availability” section). The ultimate out-
come following these steps is the ability to perform queries on variants and/or samples
that take all sorts of associated information such as phenotype but also pathway mem-
bership between variants in the dataset. An example query would be to retrieve a set of
variants based on the associated phenotypes and the sample genotypes. Other queries
could be to find rare variants in a cohort, to perform a genome-wide association study,
or PCA visualization of a cohort labeled by an annotation property.

VCF data format

The VCF is a file format used for storing information about variants which are called
with respect to a reference. As the human genome is known to be highly conserved
from one person to another, the VCF file has been developed to represent the different
positions in the genome where nucleotides vary. This format specification reduces the
number of redundant nucleotides that would otherwise be identical in many samples. A

Fig. 1 The general workflow of a genomics data science solution. The input is a VCF file after a variant calling
pipeline which could undergo transformation into a storage system. Variants are then annotated with a
variety of sources and fed back into the storage. The contents of the VCF file can be queried via a client or a
program for later analysis

Page 5 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

properly constructed VCF file contains a header block (lines starting with the ‘#’ char-
acter), metadata arranged into columns (CHROM, POS, ID, REF, ALT, QUAL, FILTER,
INFO, FORMAT), and one or more sample columns.

Each line in the metadata block details a variant that was called based on the align-
ments of sequences against a reference. The INFO column has an unstructured format
that often contains reserved sub-field key-value pairs but is not strictly imposed. Users
may define their own sub-fields as long as it is delimited by a semicolon and is defined in
the header. The FORMAT column defines the fields for describing the samples such as
the genotype, the read depth, or haplotype quality, and is uniquely determined for each
sample in the VCF file.

GVCF (Genomic VCF) is another file format used by several variant callers, including
GATK. It is a modified version of the VCF format that contains more comprehensive
information about genomic sites, including non-variable sites. Further, gVCF files can be
helpful to disambiguate situations where a variant is not called, either because the base
calls agree with the reference or there was not enough (unambiguous) high quality cov-
erage to make a call. Although gVCF files provide more extensive genomic information,
they usually require conversion to VCF files before annotation and querying. The format
is rather large and therefore often used only as a temporary file (e.g. during joint geno-
type calling in GATK). The additional storage, gVCF requires is another reason to have
horizontal scaling designed into Genomic Data Science platforms.

Annotation

Annotations are additional information that can be embedded into a VCF file. This
enrichment of the VCF file is optional but crucial to the description of variants that are
present in a call. Examples of such information pertain to the type of mutation, its asso-
ciated phenotype, and cohort-related statistics (e.g. allele frequency in different world
populations).

Annotations may be sourced in different ways: a common practice is to use publicly
available annotation sources and copy over the information into the working VCF file.
Annotation sources such as dbSNP [32] or gnomAD [33] contain annotations for vari-
ants that were previously explored for the association with a particular phenotype.
Annotation transfer from such sources proposes the advantages of predicting whether
a person is likely to have developed the phenotype. Mutation types—such as insertions,
deletions, or single nucleotide polymorphisms (SNP)—can be inferred from the VCF
file’s REF and ALT columns or from imported annotations [14]. These determine if the
variant would have an impact on the overall expression of a protein. Another annota-
tion approach is to calculate the allele statistics based on the sample genotypes. Sample
statistics can also be captured from other cohorts and imputed into the VCF file from
sources such as the 1000 Genomes project [34] (for cohorts originating in East Asia,
North America, etc.)

Tools

BCFtools

BCFtools (https:// github. com/ samto ols/ bcfto ols) was developed in 2009 as part of a con-
sortium of related tools such as SAMtools and HTSlib. BCFtools is written in C and has

https://github.com/samtools/bcftools

Page 6 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

amassed a large community of users due to its early adoption when bioinformatics tools
were scarce. It is operated as a command line interface (CLI) tool and works directly
on the VCF file without any transformations. Functionalities that target region-specific
queries require that the VCF file be block-compressed and indexed. The indexing is then
stored in the filesystem as a separate CSI or TBI format file. Variants are indexed solely
by genomic position or isolate variants by scanning the entire VCF file for desired values
in the INFO field. In addition, users can opt for the conversion of VCF to BCF file before
processing.

SnpSift

SnpSift (https:// github. com/ pcing ola/ SnpSi ft) is a toolbox developed over 8 years ago by
Pablo Cingolani. The tool is designed for extracting genomics data via VCF file manip-
ulation and filtering. It is mainly written in Java, and the provided functionalities are
aggregated in a Java Archive (JAR) file format and are run as a CLI program that oper-
ates on the VCF file directly. The community of users is fairly large which allows new
users to familiarize themselves with the tool’s structure and syntax. Indexing variants
and alternative storage options are not provisioned with this tool. SnpSift was also intro-
duced as a continuation project to the annotation tool SnpEff, as a technique to query
and filter the variant annotation information. SnpEff is a variant annotation tool that
provides additional predictions for the effects of variants on genes. The idea was to cre-
ate a two-step pipeline for users by using SnpEff to enrich the VCF file with annotations
and then operate on the annotated file with SnpSift.

Hail

Hail (https:// github. com/ hail- is/ hail) is a newcomer (relative to the other tools presented
here) to the VCF manipulation scene and is maintained by a team of people in the Neale
lab at the Broad Institute. The first cited use of Hail was in 2016 and it has been gaining
traction over the years.

Hail presents itself as a Python library and employs the Matrix Table data structure
for handling the VCF file data. Querying the data is akin to manipulating a Pandas Data-
Frame: using logical operations and string pattern matching as a means of filtering. The
Python library can be installed via the Python package manager or built from a source
which is necessary for some deployments.

GEMINI

GEMINI (GEnome MINIng) (https:// github. com/ arq5x/ gemini) is a relatively modern
framework designed in the Quinlan laboratory at the University of Virginia for human
genome variations analysis and interpretations. GEMINI follows the workflow of a
genomics data science approach like the one shown in Fig. 1. The VCF file is loaded into
an integrated database where an automated process takes place by iterating over all the
genetic variations and filling in the annotations for each variant. GEMINI utilizes a vari-
ety of annotation resources, which are listed in “Annotation availability” section. The
tool employs an SQLite database to store variants’ information by mapping each field in
the VCF file to a column in the database along with the newly added annotations. The

https://github.com/pcingola/SnpSift
https://github.com/hail-is/hail
https://github.com/arq5x/gemini

Page 7 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

interaction with the database is achieved through the “gemini query” tool where a basic
SQL-like syntax can be written to construct the final query.

OpenCGA

OpenCGA (https:// github. com/ opencb/ openc ga) is the newest member of the genomic
data science tools studied in this work. Developed by the Computational Biology Lab at
the University of Cambridge, the big data platform aspires to solve major issues in scal-
ability and performance with respect to genomics. Despite being a new player in this
domain, the technology is already powering high-profile projects such as the 100,000
Genomes Project and is being used at Genomics England. OpenCGA is built in conjunc-
tion with a suite of tools known as OpenCB and includes a variant visualization tool
(IVA) and an annotation server (CellBase).

In contrast to the other tools presented in this work, OpenCGA took the form of a
solution platform. Genomic data is loaded into a management hierarchy of user-owned
projects with multiple studies within a project; this enables access control to multiple
users of the platform. OpenCGA leverages a networked object database to store all fac-
ets of information including sample identifiers, sample metadata, and variant informa-
tion. The loaded data is then thoroughly indexed to enable fast querying and retrieval.

OpenCGA is supplied as a RESTful web service with multiple client options in Python,
R, Java, and JavaScript. Queries can be done through the REST API using the language
clients but also directly through the provided CLI.

Installation

BCFtools version 1.13 (https:// github. com/ samto ols/ bcfto ols/ relea ses/ tag/1. 13) was
installed into the working environment by downloading the release tarball from GitHub
and compiled using Linux make tools. Likewise, SnpSift (https:// snpeff. blob. core. windo
ws. net/ versi ons/ snpEff_ latest_ core. zip) was downloaded as part of the SnpEff release zip
file. Although no installation was required of SnpSift, Java is required to be installed in
the system to run the JAR file. The version of Java installed was 1.8.0_222-b10.

GEMINI and Hail provide overall good documentation for the usage of the tools. Spe-
cifically, both provide a comprehensive set of examples for defining the syntax parame-
ters. GEMINI is a standalone tool and Hail can be installed through the Python package
manager.

GEMINI required an outdated version of Python (specifically 2.7.15) and a normalized
VCF file. Python was used to run the GEMINI install script (https:// gemini. readt hedocs.
io/ en/ lates t/# new- insta llati on) which was downloaded from the GEMINI website. Post-
installation, the VCF file is indexed using Tabix [35] and loaded into an SQLite database
using GEMINI’s CLI. As GEMINI has constraints to be installed on Python version 2.7,
it is not likely able to stand the test of time as other libraries might deprecate function-
alities that GEMINI depends on.

Hail (https:// pypi. org/ proje ct/ hail/0. 2. 105/) was installed using the Python package
manager on Python 3.7.12. The raw VCF file was converted into a Matrix Table using a
Python script featuring the Hail library functions. The Matrix Table is then saved onto
the disk once converted for querying later.

https://github.com/opencb/opencga
https://github.com/samtools/bcftools/releases/tag/1.13
https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip
https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip
https://gemini.readthedocs.io/en/latest/#new-installation
https://gemini.readthedocs.io/en/latest/#new-installation
https://pypi.org/project/hail/0.2.105/

Page 8 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

OpenCGA is a relatively new tool; therefore the community of users is small and the
documentation is limited to those found on the official documentation page. Further-
more, the tool can be installed in different configurations and could have many depend-
encies, increasing setup complexity. OpenCGA’s querying syntax is highly expressive but
comes with a relatively steep learning curve. The tool’s initial challenge is compensated
by the extra functionalities exclusive to OpenCGA. It is also well-supported for cloud
deployment on Amazon Web Services and Microsoft Azure.

For our research setup, we endeavored to place each tool in a similar environment.
To that end, we installed OpenCGA and its dependencies in separate virtual machines
(VM): (1) a VM for MongoDB, (2) a VM for Solr as a secondary index, and (3) a VM for
the OpenCGA tool in a Docker container. The version of OpenCGA installed was 2.1.0
(https:// hub. docker. com/r/ opencb/ openc ga- base), MongoDB is version 4.2, and Solr is
version 8.6.0. The raw VCF file was loaded and indexed into OpenCGA using the CLI in
the OpenCGA VM.

Feature measures for comparison

A wide range of feature measures is covered to characterize various data science
approaches. This in return brings a solid foundation for bioinformaticians and computer
researchers interested in genomic analysis to identify different approaches that match
their purposes. The feature measures with a brief description are listed below:

• Scalability This is one of the main standards that need to be considered highly in
current genomic applications. In view of the fact that genomic data is consistently
scaling, a compatible processing pipeline is necessary [9]. With this measure, we
evaluated the scaling ability, and the type of scalability if applicable.

• Data management Here we identified the data storage options provided by each tool.
We also distinguished between VCF flat-file-based, indexed files and database-based
approaches and evaluated each option.

• Storage of the INFO column As mentioned in “VCF data format” section, the INFO
column consists of numerous fields that describe the genetic variation in each row.
Each field adds a different value to the overall understanding of a variant; hence,
proper storage of the INFO column is desirable.

• Data retrieval

– Expressive power of queries All the tools perform queries on information stored
in a VCF file. We focused on the expressive power of queries; particularly, on
queries related to the annotation in the INFO column (e.g. queries based on
metabolism, type of mutation, clinical relevance, allele frequency, homozygosity,
etc.). Those types of queries are considered complex as they are extracted using
several fields in the database or the VCF file. In addition to these “INFO-column
queries”, another kind of complex query are those involving secondary knowl-
edge, for example: extract all variants for samples belonging to a cohort, which
are associated with Cardiovascular Diseases (i.e. spanning more than one disease
identifier related to cardiovascular diseases). A simple query on the other hand is
a query that extracts information from the common fields of a VCF file, targeting

https://hub.docker.com/r/opencb/opencga-base

Page 9 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

a single field and only referring to a single value. For instance, a simple query is to
(e.g. find all variants with allele frequency > 5%), or, (e.g. retrieve all variants with
heterozygous genotype for all samples).

– Query speed This is another measure that is considered essential and most often
overlooked in comparison to annotation speed. Complex queries, such as query-
ing for variants of polygenic diseases, can vary in response times due to varying
indexing schemes. Measuring the query throughput will shed light on the effi-
ciency of the indexing deployed by the tool.

• Entry requirement and installation This measure tests the availability of documenta-
tion to aid in setting up and using the tool. Furthermore, it identifies the infrastruc-
tural requirements to get the tool operational. It also determines the tool’s learning
curve and the complexity of navigating through the tool’s functionality.

• Annotation availability Typically, variant annotation is part of the process of gen-
otype data enrichment. Consequently, some VCFs have annotation information
already present in the file. In this measure, we were particularly interested to show if
the tools make use of the internal annotation in the file. Additionally, we indicated if
the tool is capable of integrating external annotation sources. The relevance and the
size of the sources are also evaluated.

• Customization (functionality and database) In addition to the measures defined
above, we tested if the studied tools provide room for functionality and database
extension. It is common to tailor a pipeline to meet different objectives after acquir-
ing a VCF file. Several applications claim to provide a customizable analysis platform,
and this feature metric verifies that.

• Output The output content is formatted differently in each genomic application. We
used this feature measure to inspect the readability, usability, and completeness of
data portrayed in the different output formats.

Results
In this section, we explore the data preparation and system specifications to set up each
tool. Furthermore, we provide a detailed evaluation for each of the feature measures
mentioned in “Feature measures for comparison” section. All the findings are reflected
in a detailed feature comparison Table 1 while considering the general analysis pipeline
shown in “General workflow” section.

Data preparation and system specification

An in-house bioinformatics unit was built to develop a Genome Sequencing analy-
sis pipeline on High-Performance Computing and large servers. More details on the
data can be found in an article by Daw Elbait et al. [36]. Data sourced from the out-
put sequencing of machines in the bioinformatics unit (e.g., Illumina NovaSeq, NextSeq,
and MiSeq) is streamlined securely into a variant calling pipeline that features industry-
standard tools.

The testament to this pipeline is a curated set of sequences from 153 (120 genomes
and 33 exoms) UAE nationals. This data, consisting of over 25 million variants, was
used as a standardized data input to analyze and compare the genomics data science
approaches in this work. For one query scenario, we leveraged a data array of 805,426

Page 10 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

variants sourced from the UK Biobank (UKB) [37]. This enabled us to evaluate the tools’
capabilities on a large scale in the dimension of sample size. We selected patients and
cohorts based on ICD codes. This captured roughly 100,000 patients and controls which
became our primary dataset. Through random subsampling, we built smaller cohorts of
patients and controls of sizes 10,000 up to 100,000 in increments of 10,000.

We validated the performance of five data science solutions, namely BCFtools, SnpSift,
Hail, GEMINI, and OpenCGA. The constant across all tools is the initial VCF file that is
processed and queried by each tool. Different tools may require further processing of the
VCF file into either a copy or into another structural format containing the data in the
original VCF. A summary of each tool is reported in “Tools” section. All solutions were
installed on a local Linux server with the following system specifications: Intel Xeon
Gold 6130 32-core CPU @ 2.10 GHz and 64 GB RAM, running CentOS 7. All param-
eters, including the input file, were consistent across all running tools.

Evaluating feature measures

In Table 1, we showcase the findings of this comparative analysis. We have prepared and
summarized the features of each tool according to a predefined set of feature measures
(see “Feature measures for comparison” section). These measures described the tool’s
performance and operation starting from the entry requirement phase, through to the
downstream analysis. The purpose of this comparison is to create a benchmark for data
science researchers to identify the optimal approach for their scope of work. It also
works as a reference for designing new genomics data science applications. We took into
consideration the overall flexibility of the analysis pipeline for each tool, the repeatability
of the process steps, and the time it takes to execute various queries. In addition to the
summary in Table 1, the following is a detailed description of the findings for each evalu-
ation measure.

Scalability

BCFtools and SnpSift are single programs that are built for manipulating flat VCF files.
BCFtools additionally have the ability to manipulate flat BCF files. This means the limi-
tations of these tools are realized as the data size grows by samples or variants. Another
drawback is the extra efforts brought by the need to provide the annotation sources and
then reintroduce them to the expansive VCF/BCF file. These tools naturally have no net-
working capabilities.

Hail employs the Matrix Table which stores a data structure that references the actual
data. Operations on the Matrix Table are planned out but deferred until users request
the output. Although it may not always be fast, it scales well when used with large data-
sets. Downstream processing can be distributed via a Spark local instance or Hadoop
cluster; however, Hail lacks data distribution in terms of networked storage. For larger-
scale projects, Hail will require much more time to construct the initial Matrix Table.
Beyond that, Hail primarily relies on vertical scaling as larger projects require more stor-
age space and more CPU capability to perform as expected.

GEMINI is competent in small-scale situations when the number of variants is
low. GEMINI lacks networking capabilities due to the design choice of SQLite as a
database management system, despite the availability of other database alternatives

Page 11 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

like MySQL, PostgreSQL, or Vertica [38]. This minimizes the amount of horizontal
scaling as one can not provision more machines to increase throughput. Scalabil-
ity is achieved by installing better CPU, memory, or storage as a means of storage
expansion or processing queries more rapidly.

OpenCGA is highly scalable as the storage is built with horizontal scaling in mind.
Storage is supported by distributed database services such as MongoDB and HBase,
thus allowing processing pipelines to exploit the networked nature of the platform
to perform tasks in parallel. Samples and variants are stored in the distributed data-
base as documents containing the INFO column and other metadata. The modular
design enables the further addition of samples and variants after data has already
been loaded and established.

Data management

The data storage options provided by each tool are considerably diverse. BCFtools
and SnpSift operate on the VCF flat file without any extract-transform-load (ETL)
mechanism. Advanced uses of BCFtools require that the files be block gzipped
which is doubly beneficial: it reduces overall disk storage and enables swift access to
variant loci (assuming the VCF is sorted). BCFtools allows the user to transform the
VCF file into BCF format which trades off a slight increase in disk space for faster
processing. BCFtools and SnpSift rely on indexing, but the indices are stored in the
filesystem. Operating directly on the VCF file will affect the speed as is discussed in
“Query speed” section.

The rest of the tools follow an ETL procedure. Hail utilizes the Matrix Table; a
distributed data structure that resembles matrices and Pandas DataFrames [18]. The
original VCF file is transformed into a multidimensional Matrix Table which is saved
as a set of files containing schema description in JavaScript Object Notation (JSON)
and raw data in binary format.

GEMINI loads and stores the VCF file along with the variants’ annotations in an
SQLite database. The database consists of seven tables, with the main one being the
“Variant” table. The database schema is provided in the documentation available on
the tool’s website. GEMINI stores genotype information as a binary blob especially
for info that relates variants to samples. The variant table is indexed based on the
locus, combining the chromosome number and position.

OpenCGA manages the VCF data and stores it in an object database. Sample infor-
mation and variant information are stored in different collections in the OpenCGA
“Catalog”. There are two usable storage setups (i.e. MongoDB [39] and HBase [40]).
Object databases store nested key-value pairs, allowing for unstructured informa-
tion to be stored efficiently. OpenCGA creates a unique identifier for variants and
distinguishes between multi-allelic variants by creating a new record for each allele.
An example of a variant identifier format is as follows: <chromosome>:<positio
n>:<reference allele>:<one alternative allele>

Applying these tools to our local genomic data composed of 150 Emirati genomes,
we recorded the total storage utilization in Table 2.

Page 12 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

Storage of the INFO column

A common annotation practice following the GATK Best Practice Pipeline applies
several annotation tools sequentially. From an information theoretic perspective, this
practice is disadvantageous. Not only does it leave a trail of large, unindexed, and
highly redundant files, but it also often leads to inconsistent INFO column formatting
due to conflicting conventions. As a result, this practice does not lend itself to fast
querying.

Some examples of the abuse of INFO columns include the interchanging of sepa-
rators, mixed word casing (snake case, camel case), and subfield annotations using
period marks (e.g., mydb.annotation=...). Additionally, this information is
stored as text as opposed to industry-grade data structures that accelerate querying
retrieval. Therefore, it is preferable to normalize the extract-transform-load (ETL)
process that standardizes information entry, especially with respect to the INFO col-
umn when the data scales up.

BCFtools and SnpSift do not have special indexing for the INFO column, rather
they operate directly on the INFO column in the flat VCF file or BCF file in the case
of BCFtools. However, they also allow users to query the INFO sub-fields in a con-
venient way through built-in subcommands. The query mechanics will be explained
in a later section.

Hail stores the INFO column into typed columns as part of the Matrix Table. The
INFO columns are identified based on the header of the loaded VCF file and the data
type of the INFO sub-field is automatically inferred based on the available data. The
INFO sub-fields are accessible through the Matrix Table loaded into memory when
running in a Python environment.

GEMINI stores the INFO data under designated SQL table columns built into
GEMINI. For the remainder of sub-fields in the INFO columns that do not match the
GEMINI predefined table columns, a BLOB field is provided as general storage.

The INFO column is stored in OpenCGA as a collection of objects in the Catalog.
Each INFO sub-field is stored takes up space in the flexible data schema, and inherits
the exact formats as specified in the meta-information part of the VCF file.

Expressive power of queries

We recalled the query examples stated in “Feature measures for comparison” section
in order to verify if each tool can execute various complex queries.

With BCFtools, users can build complex queries provided that the querying VCF/
BCF file has sufficient annotation and adheres to the assumed format conventions.
BCFtools allow for numerical value filtering, and regular expression matching for
multi-faceted INFO subfields and can combine queries through logical operators.
Note that the multi-faceted INFO subfields are unindexed and therefore depend on
the correctness of the regular expression. This is error-prone as similar fields such as
AF and MAF can match the same query giving false positive results.

SnpSift does not facilitate the use of complex queries. The tool is more focused on
VCF manipulation, such as calculating the concordance between two VCF files, join-
ing two VCF files, the intersection of variants sets in VCF files, and so forth.

Page 13 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

The Matrix Table designed by Hail is structured in a usable way for building com-
plex queries. Users are able to list all values of the INFO sub-fields in tabular format
and inspect each INFO sub-field. Operations typical of a DataFrame can be con-
ducted on the Matrix Table to filter, sort, and aggregate data across the VCF.

With GEMINI, the complexity of the query is bounded by the limitations of SQL
queries and the capacity of an SQLite database. Generally, SQL has an overall high
expressive power and for the purposes of querying information in a VCF file, SQLite is
sufficient to perform complex queries.

OpenCGA queries are executed on the object database storage of variants with multi-
ple techniques provided. The primary mode of querying is via the CLI, although alterna-
tive modes of querying are available through a REST API call, and Python or R wrapper
library. Note that all the above-mentioned query mechanisms can be combined with
GATK workflows, though with varying efforts: BCFtools and SnpSift operate on (posi-
tion-indexed) VCF files directly, whereas the latter three approaches require database
population of GATK’s VCF files.

Query speed

We tested the query speed by running several scenarios using the same dataset across
all tools. To make a fair comparison, we used the Linux time command to measure the
response time of each query starting from user input to output. This includes the total
amount of time for the tool to load the variant data from its respective storage type, exe-
cute the query and return the result. We recognize that some tools have a longer startup
time but could return a query more quickly if the data was already loaded into memory
(particularly for Hail).

In some cases, BCFtools query time was consistent and performed well in comparison
to other tools due to optimizations in the implementation written in the C programming
language, and chromosome region indexing. However, BCFtools operates line-by-line
and still needs to go through the entire VCF/BCF to produce an output. The query time
is notably reduced when an index is provided (e.g. chromosome region) since BCFtools
has to go through the entire chromosome region instead of the whole VCF/BCF file.
It was also notable that the query time would fluctuate proportionally to the chromo-
some region size. It is also notable that BCFtools queries faster with BCF files. However,
the conversion time from VCF to BCF is about one hour for our dataset. Additionally,
queries that are accelerated by region indexing require that the VCF file be compressed
using bgzip and indexed.

SnpSift does not perform automated indexing; hence, the query speed is the slowest
among the tools. For instance, that can be seen when two identical queries are executed
on different chromosome regions. For example, a query that targets variants in chro-
mosome 1 takes much less time to display on the screen compared to a query target-
ing chromosome 13. This is because the VCF file is ordered by the chromosome loci
in an ascending manner. However, in both cases, SnpSift would take similar amounts
of time before stopping its execution (as it had to complete the entire VCF file). This is
normally remedied by splitting the original VCF file into smaller VCF files consisting of
each chromosome region but increases the difficulty in data management.

Page 14 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

It is noted that Hail’s indexing is considerably better than GEMINI’s. We speculate that
Hail fully exploits its multi-threaded workload via Spark while GEMINI suffers from a
lack of performance as the indexing is done on an SQLite DB which is not fully managed
like MySQL or PostgreSQL. Another point to be addressed is that all Hail query speed
results are inclusive of the initialization time of 6 s.

OpenCGA query speed is considered the highest among these tools on average. This
is attributed to OpenCGA’s feature of indexing multiple fields when a VCF is loaded and
annotated. It should be noted that OpenCGA’s query via the command line performs a
REST API call which can introduce delays in the overall execution time.

Fig. 2 Query performance comparison for all studied tools to query for a unique variant by its identifier
with and without providing the chromosome. Chromosome regions are shown as bands of dark and
light rectangles. BCFtools and GEMINI results are presented in a log scale: as the query time between
chromosome‑bound queries and regular queries differ by order of magnitude, the log scale is more favorable
to display the intricate patterns when querying with region indexing

Page 15 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

Figures 2, 3, and 4 illustrate the query speed for Scenarios 1, 2, and 3 respectively.

(a) Scenario 1
Return all information for a variant given its unique rsID
We evaluated the five tools to query for a unique rsID throughout the whole genome.
The query was performed in two different manners: including the chromosome region
as a query parameter, and by querying solely with the rsID. As some tools index by chro-
mosome regions, it would be interesting to identify what performance gains can be
realized by leveraging the indexing. We randomly sampled 50 rsIDs across the entire

Fig. 3 Query performance comparison between all studied tools to query for all INDEL‑typed variants
located in chromosome 5

Fig. 4 Query performance comparison between all studied tools to query for all variant sites where all
samples in the study have homozygous genotype

Page 16 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

genome that are roughly equidistant. These rsIDs were sampled along with and without
their respective chromosome region. Queries were run in the order that the selected var-
iants appear in the genome and each query is repeated 5 times to measure its statistics.

The general trend across all tools is that queries involving the chromosome region
of the targeted rsID are faster than those without. The exception to this is SnpSift
whereby the query with the chromosome region is about 20 s slower than the query
without the chromosome region. We assume that this is due to the complexity intro-
duced into the query to not only check for the right rsID but also to check that the
chromosome matches correctly.

It is evident in the first plot of Fig. 2 that BCFtools employs indexing when the chro-
mosome region is present in a query. Within a chromosome region, query run times
plateau, suggesting that BCFtools explores the extent of the entire chromosome for
each query. Naturally, smaller regions are much quicker to query compared to larger
regions. Note that the size of the chromosome is not indicative of the query speed but
rather the number of variants that were called in that region. As shown in Fig. 2, que-
rying VCF and BCF files result in a similar trend across the chromosomes. However,
when it comes to query speed, BCF files outperform VCF files.

The difference in delay between the chromosome-bound query and regular query is
noticeable across all tools except for Hail where the running times for each query are
almost identical. Peaks can be seen at different positions across the genome but these
values fall within the bounds of the standard deviation of the individual runs. This is
possibly due to background processes occupying the CPU when the query is run.

Without the chromosome region available, GEMINI appears to scan through the
entire SQLite database for the matching rsID, akin to BCFtools and SnpSift. How-
ever, an interesting fluctuation pattern appeared as queries were executed across the
genome when the chromosome region is present. It is noticeable that these fluctua-
tions appear to be highest at the start of a new chromosome. That might be due to the
way GEMINI stores information between queries. Queries are seemingly dependent
on the last information kept in the cache. As long as the next targeted rsID belongs
to the same chromosome as the previous query, the variant can be returned quickly.
However, as noticed in Fig. 2, when the chromosomes changes, GEMINI requires
time to load the new region into the cache and thus slowing down the query speed for
the first retrieved rsID in the next chromosome.

OpenCGA is the fastest among all tools in this plot. The tool maintains its speed
results in both types of queries (with and without chromosomes) under a total of
2.5 s and there is a sustained 2-s delay between the two types of queries. OpenCGA
retrieves the variants consistently across the whole genome as is evident by the
straight line performance in Fig. 2.

(b) Scenario 2
Get all variants typed INDEL in chromosome 5
With this test, we evaluated the performance of retrieving indel-typed variants given
that the original VCF did not contain that information. Querying for variants by their
variant type (e.g. SNP, SV, INDEL, etc.) is a common analysis to identify potentially

Page 17 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

harmful mutations when proteins are translated from the RNA sequence. We have
arbitrarily chosen chromosome 5 to limit the search space of the query. This query is
repeated 5 times to account for variability between runs.

Overall, BCFtools is the fastest despite the lack of well-defined variant type infor-
mation in the INFO column. As the tool streams over the VCF/BCF file, it determines
the variant type by comparing the REF and ALT columns. This query is enabled by the
powerful “expressions” functionality featured in the BCFtools documentation, which
would have otherwise been unknown. BCFtools is likely fast due to its implementa-
tion in the C language and runtime optimizations. Again, we see that the BCF file
responds faster to this query, compared to the VCF file.

SnpSift lacks the functionality to immediately compare the REF and ALT columns.
Instead, one would need to annotate the VCF file using the VarType command to
populate the variant type field in the INFO column. This step yields an annotated
VCF file that is different from the original. This annotated VCF file is then queried
for the variant type to find all variants which are INDEL. The time displayed in Fig. 3
does not take into account the time to generate the annotated VCF file.

Hail provides a built-in function called is_indel to determine if the reference
and alternative alleles are indels. This function is applied to the “alleles” column of the
Matrix Table and is used to create a boolean value column that indicates whether a
variant is an indel or not. The query is then executed on this new column to filter for
indel-typed variant rows. Hail’s query time also includes the time taken to create the
boolean column and the time query to query by that column; hence why it is slightly
slower than BCFtools and GEMINI.

GEMINI’s database contains variant type information as a result of the initial anno-
tation when loading a VCF file. The query is executed against the “type” column in the
“variants” table and the run time is not capturing the annotation step. GEMINI’s use
of SQL tables is of notable value in this situation where there are few possible values
for a single column.

Like GEMINI, OpenCGA creates the variant type as part of the initial annotation
process. Although OpenCGA has extensively indexed the VCF information and anno-
tation, the query executed against the variant type field is surprisingly slower than
BCFtools which operates on a flat file. Additional space requirements to store the var-
iant type for each tool are shown in Table 3.

(c) Scenario 3
Retrieve sites where all samples have the homozygous genotype
In this scenario, the query checks that all samples have the genotype 0/0 or 1/1. This
tests the tools’ capability to handle queries spanning multiple, if not all, samples in a
VCF file. This particular query is thought to be useful for determining if a cohort collec-
tively has a different genetic makeup compared to the reference and is useful for classify-
ing groups. To minimize variance in the results, the query is run 5 times.

BCFtools—querying a VCF file—and Hail demonstrate similar performance, with Hail
having a 6-s advantage over BCFtools due to its start-up delay. However, when work-
ing with the corresponding BCF file, BCFtools exhibits faster processing compared

Page 18 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

to Hail. SnpSift appears to have its worst performance over all queries studied in this
benchmark.

GEMINI utilizes a Python indexing package called bcolz to speed up queries tar-
geting genotype fields. bcolz is based on columnar, compressible, chunked data con-
tainers. Genotype columns in the GEMINI database are indexed to accelerate querying
using the argument “–use-bcolz” in the same genotype filtering query to get a quick
query response. That is shown in Fig. 4 as GEMINI scores the highest speed among all
tools. Skipping the indexing step, however, would increase GEMINI’s query time dra-
matically up to an average of 150 s.

OpenCGA is second to GEMINI in this test scenario. However, it is a considerably
slight difference between the two tools.

(d) Scenario 4
Retrieve the variants where the allele frequency of patients is below or equal to 40% and
the allele frequency of controls is above 40%

(i) Annotation time
In this scenario, prior to the query, a calculation is required to annotate each cohort
(patient and control) by the allele frequency. The query then retrieves variants based on
the annotation which is found in the INFO column of a VCF file. This tests the tools’
capability to handle queries spanning multiple, if not all, samples in a VCF file. The num-
ber of variants remained constant throughout all sample sizes. This particular query
is thought to be helpful in determining if a cohort collectively has a different genetic
makeup compared to the reference and is useful for classifying groups.

From a biological perspective, this query identifies variants that are not likely to
appear in patients of a study. In our case, we investigated patients with circulatory
system disorders in the UK Biobank dataset. We tested the tools’ capabilities in terms
of two aspects: the annotation time and the query time as shown in Figs. 5 and 6,
respectively.

Hail is the fastest among studied tools in terms of the time taken to process the
annotation and save it into the Matrix Table format. BCFtools comes second, and the
annotation is simply inserted into the INFO column of the VCF file. Both Hail and
BCFtools have a linearly correlated annotation time which increases as the sample
size grows.

SnpSift does not provide any command to annotate the variants based on the
cohort’s allele frequency. However, we reused the annotations provided by BCFtools
to measure the query time for SnpSift. As for GEMINI, we performed annotation
for sample sizes 10k, 20k, and 30k and did not proceed further due to the prolonged
annotation times. It took more than 2 h for 10k samples to be annotated and almost
5 h for 30k samples. This annotation time combines the time taken to load the VCF
file to an SQLite database, and the time it takes to update the database by inserting
new columns for the control and patient allele frequencies.

Page 19 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

OpenCGA had the slowest annotation time due to the several steps involved to
annotate the cohorts. The steps include linking the VCF file, the primary indexing of
variants, cohort creation, and statistical calculations to generate the cohorts’ allele
frequency. We also had to limit the annotation process for OpenCGA up to a 20k
sample size. One reason is that the time taken to process a VCF file with 20k samples
requires more than 24 h to complete. Another reason is the tremendous amount of

Fig. 5 Time (in hours) taken by the studied tools to annotate the variants by patients and controls’ allele
frequency. The annotation time is shown for a different number of samples

Fig. 6 Query performance comparison of studied tools for different numbers of samples to retrieve all
variants that appear in more than 40% of control samples and less than or equal to 40% of patient samples

Page 20 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

Table 1 A summary matrix of the tools presented in this work along with the different feature
measures on which the tools are evaluated

OpenCGA GEMINI Hail Bcftools SnpSift

Entry requirement
and installation

Many dependen‑
cies

Python‑based
install script

Python package
installation

make compilation Java JAR down‑
load

Data managementMongoDB/HBase SQLite Matrix Table Flat‑file VCF Flat‑file VCF

Storage of the
INFO column

Highly indexed,
nested object
structure

Partially indexed
SQLite tabling

Stored as type‑
inferred columns

Unindexed VCF file
INFO column

Unindexed VCF
file INFO column

Annotation avail‑
ability

34 data sources,
manual

18 data sources,
automatic

13 data sources,
manual (experi‑
mental)

N/A, manual dbNSFP, manual

Query complexity Multiple clients,
unconventional
syntax

SQL query‑like DataFrame‑like
filtering

CLI, documented
syntax

CLI, documented
syntax

Query speed Fast, comprehen‑
sive indexing

Database index‑
ing, moderate
speed

Fast, Spark‑back‑
end querying

Fast for flat‑file
based query,
indexes by chro‑
mosome

Slow, not indexed

Query ranking Best in rsID query
(Scenario 1)

Best in homozy‑
gous genotype
query (Scenario 3)

Best in complex
query (Scenario 4)

Best in INDEL‑type
query (Scenario 2)

Overall last place

Scalability Horizontally scal‑
able, managed
platform

Limited vertical,
monolithic

Efficient filesystem
storage, Spark‑
based

N/A, monolithic N/A, monolithic

Customization
(function and DB)

Java plugins Only DB is exten‑
sible

Python‑native C plugins Only built‑in
commands

Output JSON, VCF‑like,
Tabular text

Tabular text Matrix Table objectVCF file, Tabular
text

VCF file

Table 2 Storage utilization of each tool after transformation

Storage use (GB) Annotations Notes

Original VCF 93.77 No –

BCFtools(VCF) 16.75 No bgzip + csi file

BCFtools(BCF) 19.60 No bgzip + csi file

SnpSift 16.75 No Same as BCFtools(VCF)

GEMINI 119.48 Yes SQLite file size

Hail 17.55 No Matrix table folder size

OpenCGA 103.27 Yes MongoDB collection size

Table 3 Additional space requirements to store the variant type for each tool

Additional space requirement Rating

BCFtools None Low

SnpSift Creates a new VCF file with INDEL boolean flag High

GEMINI None, pre‑annotated during initial load Low

Hail Creates a new column of boolean type in Matrix Table Med

OpenCGA None, pre‑annotated during initial load Low

Page 21 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

RAM that is required to run the indexing which is in excess of 32 GB. The true value
of the memory that would be required is unknown as we did not have the capacity to
provision more memory to the virtual machine.

(ii) Query time
Across the 5 repeated runs, all tools exhibit a linear increase in query time, except Hail,
with respect to the number of samples. BCFtools query time ranged between 8 min up
to 42 min across all sample sizes. SnpSift performed surprisingly well in comparison to
its performance in all other scenarios presented in this work. The query time increased
from 2 min to under 20 min between 10k to 100k samples. As the content of the VCF file
increases between 10k samples and 100k samples, the number of bytes that needed to be
processed by SnpSift and BCFtools increases; therefore leading to an increase in query
time. This is one of the inherent weaknesses of using flat-file (e.g., VCF) storage for que-
rying data in the INFO column.

Hail is considerably fast among the studied tools and is consistent across all sample
sizes. We attribute this to Hail’s ability to store allele frequencies as floating-point data in
the Matrix Table once it has been annotated. Hail leverages Spark in the backend to par-
allelize queries and enable faster retrieval across all chromosomes. As all datasets con-
tained an identical number of variants, the small fluctuations in query time are visible
artifacts of random CPU throughput during different runs.

The query time for GEMINI is measured for the previously annotated 10k, 20k, and
30k sample size databases. The highest query time goes up to 6 s for the 30k sample size
database which is considered very fast in comparison to the other tools. The way SQLite
database stores floating-point data appears to have some benefits for quick retrieval of
data.

OpenCGA query time results for 10k and 20k sample sizes seem consistent, though
there is too little data to extrapolate further whether it would be linearly correlated with
sample size or not. It is worth mentioning that OpenCGA introduced a timeout error
when the query was set to retrieve all variants. To tackle this, we had to limit the number
of variants in the query in order to include OpenCGA in this analysis. The same limit of
the first 100 variants encountered was set for the queries in all other tools to ensure a
fair comparison.

Entry requirements and installation complexity

In this feature measure, we mainly evaluated the availability of documentation for set-
ting up and using the tool. We found BCFtools and SnpSift to be the best among the five
tools in providing detailed documentation for users. These two tools benefit from having
a larger community of users as a result of being developed prior to the others. New users
trying to get familiar with the syntax can easily find solutions to their problems through
numerous results in search engines. In addition, these tools are standalone, command-
line interface (CLI) based programs and have few dependencies. Installation complexity
as described in “Installation” section is summarized in row 1 of Table 1.

Page 22 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

Annotation availability

BCFtools have the functionality for annotating a VCF/BCF file but do not adhere to any
specific annotation source. SnpSift is coupled with dbNSFP [41] and provides a subcom-
mand to annotate VCF files with the rich functional predictions found in dbNSFP. For
both tools, users may employ any desired additional annotation source, with the condi-
tion that the source is formatted to the tools’ annotation format specifications.

Hail features a moderate set of annotation sources coupled with the library, but the
functionality is currently in the experimental stage. The annotations are hosted online
in the cloud and users must have a Google Cloud Platform (GCP) or Amazon Web Ser-
vices (AWS) account to operate the annotation database class. Annotations are applied
to the Matrix Table and the information is saved into the filesystem as described earlier
in “Data management” section.

GEMINI boasts a large set of annotation sources from notable public annotation
archives such as ENCODE [42], UCSC [43], OMIM [44], dbSNP [32], KEGG [26], and
HPRD [45]. Upon loading a VCF file, GEMINI automatically annotates the variants
and stores the result in the internal SQLite database. However, GEMINI only supports
human genome variants aligned to build 37 (hg19).

OpenCGA draws annotations from a comprehensive library via CellBase [46]: a
NoSQL-based annotation database that compiles numerous annotation sources com-
parable to the popular Ensembl Variant Effect Predictor (VEP) tool [22]. Users must
configure the CellBase server connection credentials if the users have a local CellBase
installation. Otherwise, annotations are collected from a publicly available CellBase
server hosted by OpenCB but the process risks delays due to connection latency. The set
of common variant annotation sources present across each tool is listed in Table 4.

Customization (function and database)

BCFtools allow for functionality customization via the development of plugins in the C
programming language. An API template is provided to standardize the structure of cus-
tom libraries. Users can use the internal functionality of other SAMtools-related librar-
ies such as HTSlib, SAMTools, and BCFtools. Currently, there are custom functionalities
that are community-built and accepted into the BCFtools repository such as counts,
indel-stats, and remove-overlaps to name a few.

Being a monolithic tool, SnpSift only provides built-in commands which are accessible
to the users via the CLI. However, the developers have made a wealth of functionality
available in SnpSift which users can leverage in scripts to compensate for the lack of
customizability.

Since Hail is a Python-based data analysis library, there is the flexibility of using other
libraries in conjunction with Hail. One example would be leveraging plotting and eager
execution during the analysis of genomic data in the comfort of a Jupyter notebook envi-
ronment. The Matrix Table can be modified to include user-defined columns which pro-
vide the freedom to customize the INFO column sub-fields programmatically.

For researchers, the main customizable functionality in GEMINI is given by the option
to include custom annotations via sub-commands. The tool also shows flexibility in
terms of allowing users to extend the SQLite database by adding columns to any GEM-
INI pre-defined table or creating new tables to suit users’ personalized analysis.

Page 23 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

OpenCGA welcomes community-developed plugins as a way to extend the platform.
Java plugins can be added to the internal processing pipeline, thus operations can be
performed directly on the query iterators, increasing the efficiency of the novel func-
tionality that benefits from this access. Moreover, the Python and R wrappers give flex-
ibility to analysis options in the respective languages, although this would come at the
cost of speed.

Output

BCFtools and SnpSift output the data in the same format as the input VCF file, in
addition to tabular formats that are viewed with some query types. If BCFtools “view”
is used, whole VCF/BCF files can be almost entirely regenerated creating redundancy
in the storage as rows of the VCF/BCF are extracted.

Hail produces a structured tabular output format by default, where the nested INFO
columns are also indicated. Users may also export the output as a Matrix Table or
other genomics-specific file formats such as VCF, PLINK, and BGEN. Hail also pro-
vides some visualization functionalities that are featured through the Jupyter note-
book environment making it an additional output presentation. For example, Matrix
Tables can be rendered as HTML tables which suits the conventions of a Jupyter
notebook.

GEMINI’s output format is a typical SQLite tabular text output. Users need to spec-
ify the column fields that would appear in the output or choose to view all columns.
OpenCGA provides many output format options for users. The default output is a
VCF-like structure though this option lacks some genomics information such as the
annotation and the variant unique ID. As an alternative, users may choose between
JSON format or tabular text format to view the detailed data of variants. It is impor-
tant to highlight that OpenCGA holds all the information on gene-related traits but
these annotations do not appear unless the user provides at least one of the traits in
the query. For example, a user would provide at least one OMIM ID in the query in
order to get all other related OMIM IDs.

Table 4 Common annotation sources available in each tool

OpenCGA GEMINI Hail BCFTools SnpSift

1kG � �

CADD � � �

ClinVar � � �

COSMIC � �

dbSNP � �

Ensembl � � �

ESP � �

GERP � � �

gnomAD � � �

Polyphen � �

Others � � � N/A dbNFSP

Page 24 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

Discussion
We note that the feature measures mentioned in this work are not exhaustive and
there could be many other facets that put a tool in a different light. After considera-
tion of how the tools are deployed, we believe these metrics shed light on the typical
questions posed in a modern Genomics Data Science project. We strived to deliver
a fair comparison between all the tools to the best of our ability, though in certain
situations we had to work within the constraints of the tools to achieve our results.
Another promising tool, somewhat resembling the functionality of GEMINI, is sli-
var [17]. It has strong capabilities to query and filter variants and has a strong focus
on rare diseases and facilitates analyses with filters provided by the hts-nim [47], a
library accessing htslib. Slivar does not utilize state of the art database technology
and doesn’t address population wide scalability and fast data retrieval, in particular,
it does not focus on horizontal hardware scaling of genomic projects. As the tool
requires a pedigree structure (and in particular, a pedigree file), slivar is not directly
compatible with the structure of the population scale benchmark used here.

As for the future of large scale genomics projects, it is conceivable and—in our
opinion—desirable that variant information including secondary annotations are
stored, indexed and queried as database operations, thus leveraging the mature and
scalable database technologies of recent decades. This process should start as early as
variant calling in genome pipelines. For example, popular VCF generating tools like
GATK can benefit from database operations during variant calibration, variant filtra-
tion, and annotation. The current best practices often involve recreation of new ver-
sions of VCF files that are largely redundant thus, not storage efficient.

Efforts to use database technology (GenomicsDB) have been made in GATK version
4.0, but are currently not used to its full potential. The principle then transcends to
downstream steps such as genotype phasing and cohort selection, all of which can be
couched as database operations. The modularity of a database platform with variant data
and additional information in respective tables is also convenient in terms of progressive
annotation extension and update: e.g., for relational databases, the discussed annotation
sources (Table 4), which often are already available in proper database format (SQL, tab-
ular formats), can be integrated with conventional and highly optimized join operations.
In summary, we argue that it is beneficial for genome analysis platforms like GATK to be
tighter integrated with Big Data technology.

Conclusion
In this work, we evaluated the performance of several genomics data sciences approaches
to interpret and extract variation data. We studied five tools, namely SnpSift, BCFtools,
Hail, GEMINI, and OpenCGA, and compared them according to several feature meas-
ures to display the tools’ qualities in the context of Genomic Data Science. Among the
aspects of a desired data science tool are the entry requirements, query-related fea-
tures, storage paradigm, annotation capabilities, and scalability. The key feature is the
expressive power captured across all tools to enable the transformation of a researcher’s
genomics questions into explicit, yet efficient queries.

Page 25 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

It is evident that preprocessing of the INFO column into appropriate data structures
that leverage indexing enjoy numerous benefits. Among those seen in this work are: per-
formant queries, better scalability, more flexible pipelines, increased operational integra-
tion, and enhanced protection against data mishandling. The trade-off to achieve these
merits is primarily in boosting storage capacity which, in modern systems, is not exces-
sively costly as many genomic data stores currently relish vast storage prescriptions [48].

It bears mentioning that the apparent Achilles’ heel for modern genomic querying
tools is complexity. Complex systems incur great technical debts, thereby entailing more
expertise and personnel to manage, hindering adoption. Tools like Hail strike a good bal-
ance between sophistication and usability by keeping a low technical footprint with the
conveniences of structured data. At the two extremes are BCFtools: the locally-hosted
monolith with a low learning curve, and OpenCGA which span multiple services but is
highly query-optimized.

We found that different tools suit different situations and resources. Thus, users can
opt for the appropriate tool depending on the scale of their projects. Our results show
that flat-file manipulation tools are less preferable in comparison to tools that leverage
sophisticated data organization in various aspects. The paradigm that OpenCGA has
adopted supports horizontal scalability in large-scale projects like the 100,000 Genomes
Project [49] and UK BioBank database [37]. However, current implementations leave a
large room for improvement in terms of usability and community strength.
Acknowledgements
The authors wish to acknowledge the contribution of Khalifa University’s high‑performance computing and research
computing facilities to the results of this research. In addition, the authors are grateful to Zetta Genomics Limited, Cam‑
bridge, UK, for their extensive support for OpenCGA as well as their general comments. Furthermore, this research has
been conducted using data from UK Biobank, a major biomedical database.

Author contributions
AH conceived the project idea and developed the study design. AH and HA received Khalifa University’s Competi‑
tive Internal Research Award that facilitated funding of equipment and personnel. AA and SKA set up all platforms,
conducted the bench‑marking, performed all analysis and drafted the manuscript. GD guided query development for
relational databases. HA provided guidance for DNA sequencing aspects in genomic analysis. All authors contributed to
the interpretation of results and critically reviewed the manuscript.

Funding
The authors acknowledge the financial support received from Khalifa University of Science and Technology under award
CIRA‑2019‑076 towards AH and HA.

Availability of data and materials
Data supporting the conclusions of this article is available used here was published at the European Genome Archive
(EGA) under study accession number EGAS00001004537 with the dataset link: https:// ega‑ archi ve. org/ datas ets/ EGAD0
00010 10916. Genotype datasets from UK Biobank were retrieved under application number 64823. The data is subject to
UK Biobank regulations.

Code availability
Benchmark scripts are available at https:// github. com/ syaff ers/ genom ic_ ds_ queri es. The github repository also contains
a docker file that containerizes all benchmark scripts and tools (except OpenCGA which requires additional setup).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

https://ega-archive.org/datasets/EGAD00001010916
https://ega-archive.org/datasets/EGAD00001010916
https://github.com/syaffers/genomic_ds_queries

Page 26 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

Conmpeting interests
The authors declare that the research was conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Received: 27 May 2023 Accepted: 8 September 2023

References
 1. Hartung T. Making big sense from big data. Front Big Data. 2018;1:5.
 2. Ku CS, Loy EY, Salim A, Pawitan Y, Chia KS. The discovery of human genetic variations and their use as disease markers:

past, present and future. J Hum Genet. 2010;55(7):403–15.
 3. Adetunji MO, Lamont SJ, Abasht B, Schmidt CJ. Variant analysis pipeline for accurate detection of genomic variants from

transcriptome sequencing data. PLoS ONE. 2019;14(9): e0216838.
 4. Paila U, Chapman BA, Kirchner R, Quinlan AR. GEMINI: integrative exploration of genetic variation and genome annota‑

tions. PLoS Comput Biol. 2013;9(7): e1003153.
 5. Chellappa SA, Pathak AK, Sinha P, Jainarayanan AK, Jain S, Brahmachari SK. Meta‑analysis of genomic variants and gene

expression data in schizophrenia suggests the potential need for adjunctive therapeutic interventions for neuropsychi‑
atric disorders. J Genet. 2019;98(2):1–13.

 6. Chang X, Zhong D, Wang X, Bonizzoni M, Li Y, Zhou G, et al. Genomic variant analyses in pyrethroid resistant and suscep‑
tible malaria vector, Anopheles sinensis. G3 Genes Genomes Genet. 2020;10(7):2185–93.

 7. Sham PC, Purcell SM. Statistical power and significance testing in large‑scale genetic studies. Nat Rev Genet.
2014;15(5):335–46.

 8. Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S, et al. A saturated map of common genetic variants
associated with human height. Nature. 2022;610(7933):704–12.

 9. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al. Adam: genomics formats and processing pat‑
terns for cloud scale computing. University of California, Berkeley technical report, No UCB/EECS‑2013. 2013;207:2013.

 10. Haga SB. 100k genome project: sequencing and much more. Pers Med. 2013;10(8):761–4.
 11. Nagai A, Hirata M, Kamatani Y, Muto K, Matsuda K, Kiyohara Y, et al. Overview of the BioBank Japan Project: study design

and profile. J Epidemiol. 2017;27(Supplement‑III):S2–8.
 12. Greene D, Consortium GER, Pirri D, Frudd K, Sackey E, Al‑Owain M, et al. Genetic association analysis of 77539 genomes

reveals rare disease etiologies. Nat Med. 2023;29:1–10.
 13. Van der Auwera GA, O’Connor BD. Genomics in the cloud: using Docker, GATK, and WDL in Terra. Sebastopol: O’Reilly

Media, Inc; 2020.
 14. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical param‑

eter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93.
 15. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of

single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‑2; iso‑3. Fly.
2012;6(2):80–92.

 16. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformat‑
ics. 2011;27(15):2156–8.

 17. Pedersen BS, Brown JM, Dashnow H, Wallace AD, Velinder M, Tristani‑Firouzi M, et al. Effective variant filtering and
expected candidate variant yield in studies of rare human disease. NPJ Genom Med. 2021;6(1):60.

 18. Team H.: Hail 0.2. https:// github. com/ hail‑ is/ hail/ commit/ 13190 f0b61 03. Accessed 18 Aug 2021
 19. Lopez J, Coll J, Haimel M, Kandasamy S, Tarraga J, Furio‑Tari P, et al. HGVA: the human genome variation archive. Nucleic

Acids Res. 2017;45(W1):W189–94.
 20. Hart SN, Duffy P, Quest DJ, Hossain A, Meiners MA, Kocher JP. VCF‑Miner: GUI‑based application for mining variants and

annotations stored in VCF files. Brief Bioinform. 2016;17(2):346–51.
 21. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‑throughput sequencing

data. Nucleic Acids Res. 2010;38(16):e164–e164.
 22. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predictor. Genome Biol.

2016;17(1):1–14.
 23. Obenchain V, Lawrence M, Carey V, Gogarten S, Shannon P, Morgan M. VariantAnnotation: a bioconductor package for

exploration and annotation of genetic variants. Bioinformatics. 2014;30(14):2076–8.
 24. Shi L, Wang Z. Computational strategies for scalable genomics analysis. Genes. 2019;10(12):1017.
 25. The Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res.

2021;49(D1):D325–34.
 26. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro‑Watanabe M. KEGG for taxonomy‑based analysis of pathways

and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.
 27. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpreta‑

tions and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–7.
 28. World Health Organization. The international statistical classification of diseases and health related problems ICD‑10:

tenth revision. volume 1: tabular list, vol. 1. Geneva: World Health Organization; 2004.
 29. Oudah M, Henschel A. Taxonomy‑aware feature engineering for microbiome classification. BMC Bioinform.

2018;19(1):1–13.
 30. Tollefson GA, Schuster J, Gelin F, Agudelo A, Ragavendran A, Restrepo I, et al. VIVA (VIsualization of VAriants): a VCF file

visualization tool. Sci Rep. 2019;9(1):1–7.
 31. Liang Y, He L, Zhao Y, Hao Y, Zhou Y, Li M, et al. Comparative analysis for the performance of variant calling pipelines on

detecting the de novo mutations in humans. Front Pharmacol. 2019;10:358.

https://github.com/hail-is/hail/commit/13190f0b6103

Page 27 of 27Al‑Aamri et al. BMC Bioinformatics (2023) 24:354

 32. Sherry ST, Ward M, Sirotkin K. dbSNP‑database for single nucleotide polymorphisms and other classes of minor genetic
variation. Genome Res. 1999;9(8):677–9.

 33. Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, et al. A genome‑wide mutational constraint map quanti‑
fied from variation in 76,156 human genomes. bioRxiv. 2022;2022–03.

 34. Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68.
 35. Li H. Tabix: fast retrieval of sequence features from generic TAB‑delimited files. Bioinformatics. 2011;27(5):718–9.
 36. Daw Elbait G, Henschel A, Tay GK, Al Safar HS. A population‑specific major allele reference genome from the United Arab

Emirates population. Front Genet. 2021;12:527.
 37. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and

genomic data. Nature. 2018;562(7726):203–9.
 38. Bear C, Lamb A, Tran N. The Vertica database: SQL RDBMS for managing big data. In: Proceedings of the 2012 workshop

on management of big data systems. MBDS ’12. New York, NY, USA: Association for Computing Machinery; 2012. p.
37–38. https:// doi. org/ 10. 1145/ 23783 56. 23783 67.

 39. Bradshaw S, Brazil E, Chodorow K. MongoDB: the definitive guide: powerful and scalable data storage. Sebastopol:
O’Reilly Media; 2019.

 40. George L. HBase: the definitive guide: random access to your planet‑size data. Sebastopol: O’Reilly Media, Inc.; 2011.
 41. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript‑specific functional predictions and

annotations for human nonsynonymous and splice‑site SNVs. Genome Med. 2020;12(1):1–8.
 42. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature.

2012;489(7414):57.
 43. Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, et al. Track data hubs enable visualization of user‑defined

genome‑wide annotations on the UCSC Genome Browser. Bioinformatics. 2014;30(7):1003–5.
 44. McKusick V, Hamosh A, Scott A, Amberger J, Valle D. Online Mendelian inheritance in man (OMIM). McKusick‑Nathans

Institute for Genetic Medicine, Johns Hopkins University. National Center for Biotechnology Information, National Library
of Medicine, Bethesda; 2004. http:// www. ncbi. nlm. nih. gov/ omim/.

 45. KeshavaPrasad T, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference data‑
base—2009 update. Nucleic Acids Res. 2009;37(suppl–1):D767–72.

 46. Bleda M, Tarraga J, De María A, Salavert F, Garcia‑Alonso L, Celma M, et al. Cell Base, a comprehensive collection of
RESTful web services for retrieving relevant biological information from heterogeneous sources. Nucleic Acids Res.
2012;40(W1):W609–14.

 47. Pedersen BS, Quinlan AR. Hts‑nim: scripting high‑performance genomic analyses. Bioinformatics. 2018;34(19):3387–9.
 48. Papageorgiou L, Eleni P, Raftopoulou S, Mantaiou M, Megalooikonomou V, Vlachakis D. Genomic big data hitting the

storage bottleneck. EMBnet J. 2018;24:e910.
 49. Caulfield M, Davies J, Dennys M, Elbahy L, Fowler T, Hill S, et al. The National Genomics Research and Healthcare Knowl‑

edgebase. figshare; 2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2378356.2378367
http://www.ncbi.nlm.nih.gov/omim/

	Critical assessment of on-premise approaches to scalable genome analysis
	Abstract
	Background:
	Methods:
	Results:
	Conclusion:

	Introduction
	Methods
	General workflow
	VCF data format
	Annotation
	Tools
	BCFtools
	SnpSift
	Hail
	GEMINI
	OpenCGA
	Installation

	Feature measures for comparison

	Results
	Data preparation and system specification
	Evaluating feature measures
	Scalability
	Data management
	Storage of the INFO column
	Expressive power of queries
	Query speed
	Entry requirements and installation complexity
	Annotation availability
	Customization (function and database)
	Output

	Discussion
	Conclusion
	Acknowledgements
	References

