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Abstract 

Background: Genome-wide association studies (GWAS) have identified hundreds 
of genetic loci associated with kidney function. By combining these findings with post-
GWAS information (e.g., statistical fine-mapping to identify independent association 
signals and to narrow down signals to causal variants; or different sources of annotation 
data), new hypotheses regarding physiology and disease aetiology can be obtained. 
These hypotheses need to be tested in laboratory experiments, for example, to identify 
new therapeutic targets. For this purpose, the evidence obtained from GWAS and post-
GWAS analyses must be processed and presented in a way that they are easily acces-
sible to kidney researchers without specific GWAS expertise.

Main: Here we present KidneyGPS, a user-friendly web-application that com-
bines genetic variant association for estimated glomerular filtration rate (eGFR) 
from the Chronic Kidney Disease Genetics consortium with annotation of (i) genetic 
variants with functional or regulatory effects (“SNP-to-gene” mapping), (ii) genes 
with kidney phenotypes in mice or human (“gene-to-phenotype”), and (iii) drugabil-
ity of genes (to support re-purposing). KidneyGPS adopts a comprehensive approach 
summarizing evidence for all 5906 genes in the 424 GWAS loci for eGFR identified 
previously and the 35,885 variants in the 99% credible sets of 594 independent signals. 
KidneyGPS enables user-friendly access to the abundance of information by search 
functions for genes, variants, and regions. KidneyGPS also provides a function (“GPS 
tab”) to generate lists of genes with specific characteristics thus enabling customiz-
able Gene Prioritisation (GPS). These specific characteristics can be as broad as any 
gene in the 424 loci with a known kidney phenotype in mice or human; or they can 
be highly focussed on genes mapping to genetic variants or signals with particularly 
with high statistical support. KidneyGPS is implemented with RShiny in a modularized 
fashion to facilitate update of input data (https:// kidne ygps. ur. de/ gps/).

Conclusion: With the focus on kidney function related evidence, KidneyGPS fills 
a gap between large general platforms for accessing GWAS and post-GWAS results 
and the specific needs of the kidney research community. This makes KidneyGPS 
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an important platform for kidney researchers to help translate in silico research results 
into in vitro or in vivo research.

Keywords: GWAS, Kidney function, Web application, KidneyGPS, Gene prioritization

Background
Genome-wide association studies (GWAS) have successfully identified genetic 
loci associated with complex traits [1]. Human genetic evidence has been shown to 
improve the success rate in drug discovery, especially when the drug target is sup-
ported by a Mendelian trait or a GWAS association linked to a missense variant or an 
otherwise deleterious coding variant [2].

Chronic kidney disease is one of the top 15 causes of death in industrial countries 
and a poses a large individual and public health burden [3]. Impaired glomerular 
filtration rate (GFR) < 60  ml/1.73m2/min is a hallmark of CKD. GWAS have identi-
fied hundreds of genetic loci associated with GFR estimated from serum creatinine 
(eGFR) in the general population [4, 5]. However, linking the significant GWAS loci 
to causal variants and genes pinpointing molecular disease mechanisms relevant for 
kidney function is challenging.

Post-GWAS fine-mapping of identified loci aims to identify independent signals 
within loci and to narrow down each signal to the genetic variants that are likely the 
driving variant of an association signal (e.g., 99% credible sets of variants containing 
the causal variant with 99% probability, [6]). A 99% credible set of variants is gen-
erated for each signal. However, only the signals narrowed down to a limited num-
ber of variants in the credible set (e.g., small sets of five or less variants), or sets of 
any size that include a variant with a high posterior probability of association (e.g., 
PPA ≥ 50%), might be considered to have strong statistical support for pinpointing 
the rather likely causal variants. A signal with one variant in the credible set can be 
considered as narrowed down to single variant resolution: this variant has a 99% 
probability to be the causal variant for the association signal, given the causal vari-
ant is among the analysed variants. Such variant prioritizations have been adopted 
by Mahajan and colleagues (for Type 2 Diabetes) [7], Wuttke and colleagues (for kid-
ney function) [5] and by Fritsche and colleagues (for Age-related macular degenera-
tion) [8]. Another post-GWAS aim is then the mapping of the statistically supported 
genetic variants to genes by a variant’s predicted effect on the protein or regulatory 
function in relevant tissue. The relevant annotation data will typically depend on the 
disease or phenotype of interest.

The kidney researcher will typically want to focus on kidney tissue, if gene regula-
tory information is accessed, but also to have a look at other tissue to see whether gene 
regulation is kidney-specific or ubiquitous. A kidney researcher might also want to see 
whether a gene has a kidney phenotype in mice or human, or whether the gene is already 
a drug target in registered clinical trials for kidney disease. Yet, a gene targeted by clini-
cal trials for other diseases might also be interesting for potential re-purposing. Thus, 
the relevant information should be kidney-centered, but not necessarily kidney-specific. 
A kidney researcher might also want to see genetic association evidence for kidney func-
tion biomarker other than creatinine-based eGFR, for eGFR in individuals with diabetes 
mellitus (DM), or for eGFR decline over time.
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For a kidney researcher interested in selecting targets for functional follow-up or in 
judging pre-existing targets about GWAS support, the abundance of information from 
GWAS loci associated with kidney function and annotation data to map genes with kid-
ney function relevance can be overwhelming. The data resulting from GWAS and post-
GWAS is typically made publicly available either as online database or as supplementary 
tables of research articles. Supplementary tables are very specific, but cumbersome 
to search through. Online platforms like “GWAS catalog” [9], “Open Targets” [10] or 
“HugeAMP” [11] provide a broad view across numerous traits in parallel and integrate 
as many available GWAS results as possible. While this is comprehensive across traits, 
it can be challenging to extract the information relevant for a specific disease or trait. 
Bridging the gap between GWAS-based evidence and ready information for laboratory 
researchers is still an unmet need, particularly for kidney function genetics.

Our KidneyGPS, is a web-based application to query the evidence from GWAS results 
on eGFR joined with multiple annotation datasets and post-GWAS analyses that are rel-
evant to the kidney. KidneyGPS also provides extended kidney-relevant genetic associa-
tion results: (i) for alternative kidney function biomarkers, (ii) for eGFR in individuals 
with diabetes, and (iii) for eGFR decline. KidneyGPS can thus help the kidney-interested 
laboratory researcher to obtain an overview of existing genetic association support of 
specific genes and variants and to generate lists of genes with specific characteristics 
(customizable Gene PrioritSation, GPS).

Construction and content
The primary backbone of KidneyGPS are the 424 loci identified from GWAS on eGFR 
from the Chronic Kidney Disease Genetics (CKDGen) consortium, the largest consor-
tium dedicated to genetic research on kidney function, and its expansion by UK Biobank 
totalling 1,201,909 individuals of primarily European ancestry [4]. Each locus was fine-
mapped to identify independent signals within the locus using approximate conditional 
analyses (GCTA [12]); for each signal, the 99% credible set of variants was generated 
using Bayesian fine-mapping [13] (i.e., smallest set of variants that contains the causal 
variant with 99% probability). Due to the lack of an appropriate trans-ethnic linkage 
disequilibrium (LD) reference panel (required for the GCTA analysis), the GCTA and 
Bayesian fine-mapping analyses were based on Europeans-only (i.e., on eGFR sum-
mary statistics from 1,004,040 Europeans and on a LD reference panel that consisted of 
20,000 unrelated Europeans from the UK Biobank). Given the recently expressed con-
cern regarding the limited robustness of fine-mapping results upon different rounding of 
GWAS association statistics [6, 14], we conducted sensitivity analyses. We found some 
of the signals and credible sets observed in the original analysis [4] as less robust when 
increasing the number of decimal digits in the per-variant association statistics from 4 
to 6, but no relevant change when further increasing to 8 decimal digits (Additaional file 
1: Note S1, Figs. S1, S2). We thus updated the fine-mapping results (independent signal 
identification, credible sets) using 6 decimal digits for the association statistics yielding 
594 independent signals across the 424 loci with a total of 35,885 variants in the 99% 
credible sets. Among the 594 signals, 172 signals showed strong statistical support for 
pinpointing likely causal variants by a 99% credible set that was small (≤ 5 variants) or 
contained a high-PPA (≥ 50%) variant (Fig. 1). Comparison of variants’ PPA with the size 
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of the credible set that contained the variant supported the idea that small credible sets 
were enriched for high PPA variants (Additaional file 1: Fig. S3).

For each of the 35,855 credible set variants, we queried annotation data to infer 
whether variants were protein-relevant or regulatory for any of the 5906 genes located 
the 424 eGFR loci (“variant-to-gene mapping”): (1) whether the variant resided within 
a gene and was protein-relevant by any of the three categories (using Ensembl Vari-
ant Effect Predictor, VEP [15], and Combined Annotation Dependent Depletion, 
CADD, [16] for the categories): (i) “stop-gained”, “stop-lost”, “non-synonymous (pro-
viding CADD-Phred score) (ii) “canonical-splice”, “noncoding-change”, “synonymous”, 
“splice-site” (providing CADD-Phred score) and (iii) other consequences restricted to 
CADD-Phred score ≥ 15 to ascertain protein-relevance; (2) whether the variant had an 
association with gene expression (eQTL, false discovery rate < 0.05) in kidney-tissue 
(tubulo-interstitium or glomerulus from NEPTUNE [17] or Susztaklab [18], kidney cor-
tex from GTEx v7 [19]) or any tissue (GTEx v7); (3) whether the variant was associ-
ated with expression levels of exon junctions or variation in the relative abundances of 
gene transcript isoforms (splice quantitative trait locus, sQTL, FDR < 0.05) in any tissue 
(GTEx V7).

We also queried annotation data for the 5,906 genes (“gene-to-phenotype mapping”): 
(4) whether the gene had kidney-relevant phenotypes in mice (Mouse Genome Infor-
matics, MGI [20]); (5) whether the gene was known for human genetic disorders with 
kidney phenotype (Online Mendelian Inheritance in Man, OMIM, [21]) or with evi-
dence from sequencing patients (CKD patients [22] or autosomal dominant tubuloint-
erstitial kidney disease patients [23]); (6) whether the gene was known for drugability 
or drug-interaction from registered clinical trials (Therapeutic Target Database [24]) for 
kidney-related indications (ICD-11 codes GB4“X” to GB9“X”, Additional file 1: Table S1), 
also providing the information on other indications (relevant for re-purposing).

Fig. 1 The 594 eGFR signals by strength of statistical support of pinpointing the likely causal variants. The 594 
independent eGFR association signals were separated by size of their 99% credible set, stating the number 
of signals and number of variants in the corresponding 99% credible sets. In the 3rd row, we distinguished 
signals further by the highest PPA of a variant in a set: (i) one variant in the credible set (i.e. > 99% PPA, light 
green), (ii) at least one variant with PPA 50%-99% (dark green), or (iii) small credible set with all variants’ 
PPA < 50% (turquoise). Blue and turquoise boxes under dark green boxes contain the remaining variants in 
signals with one high PPA variant. The last row shows the number of respective variants that were mapped 
to a gene (protein-relevant or eQTL/sQTL in kidney tissue), also stating the number of mapped genes and 
number of signals with at least one credible set variant mapped to a gene
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Additionally, for each of the 594 eGFR signals, we queried further genetic associa-
tion data relevant to the kidney researcher: (7) To highlight the relevance of a genetic 
association with creatinine-based eGFR for kidney function rather than creatinine 
metabolism, we included information on whether the locus association was direction-
ally consistent and nominally significant for blood urea nitrogen (BUN) or cystatin-
based eGFR (eGFRcys; i.e. locus lead variant P < 0.05; opposite or same direction of 
effect for BUN or eGFRcys, respectively; n = 852,678 or 460,826, respectively; yielding 
491 of 594 signals validated); (8) Since genetic effects with steeper decline versus more 
stable eGFR over time might point to particularly deleterious mechanisms for the kid-
ney, we included information on whether the signal showed significant association on 
eGFR decline (N = 343,339 [25], yielding 8 decline signals). (9) Since eGFR etiology in 
DM might differ from eGFR generally, we included information on the eGFR association 
for DM and noDM individuals separately and whether the eGFR signals were more or 
less pronounced in DM versus noDM  (NDM = 178,691,  NnoDM = 1,296,113 [26], yielding 
6 signals associated with eGFR only or more strongly in DM and 1 signal only associated 
in noDM).

 The specific aspects and annotation data integrated in KidneyGPS as of now (version 
2.3.0) and how this compares to the previous publication [4] are shown in Additaional 
file 1: Table S2 and the KidneyGPS online documentation. By these annotations (of the 
35,855 variants, 5906 genes), KidneyGPS contains (a) 13,716 credible set variants that 
mapped to any of 940 genes as being protein-relevant or eQTL/sQTL in kidney tissue 
(Table 1A) and (b) 381 genes with known kidney phenotype in mouse or human (includ-
ing drug targets for kidney diseases; Table 1B).

The architecture of the KidneyGPS database is structured hierarchically based on the 
424 eGFR loci and annotation data, where each of these above outlined steps are consid-
ered additional layers of evidence that are partly locus-specific, signal-specific, variant-
specific, or gene-specific (Fig. 2). KidneyGPS is implemented as RShiny web application 
(https:// kidne ygps. ur. de/ gps/).

Utility and discussion
User interface

The user interface of KidneyGPS is organized into five tabs: Three tabs enable the spe-
cific search for genes, variants and regions (underlying data structure shown in Addi-
tional file  1: Fig.  S4): (1) “gene search” tab: search for genes using their gene names 
(synonyms automatically mapped to their official HGNC gene name [18]), (2) “variant 
search” tab: search variants using their rs-identifiers or genetic positions (chr:pos from 
GRCh37), and (3) “region search” tab: search for start and end of a genomic regions 
using chromosome and base-positions. (4) The GPS tab enables to generate lists of genes 
with specific characteristics and thus enables customized gene prioritization. (5) The last 
tab, labelled “Documentation & Help”, includes step-by-step-guides for search and GPS 
features, data source descriptions, and contact options, and data privacy statement.

The GPS tab summarizes the integrated data on all 5906 genes and 594 signals 
in a comprehensive “GPS Table”. It enables gene prioritization by generating lists of 
genes with specific characteristics, using various filter options: for example, all genes 
in the 594 eGFR signals that have a known kidney phenotype in mice or human, 

https://kidneygps.ur.de/gps/
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or all genes mapping to signals with specific properties regarding the strength of 
statistical support for pinpointing the likely causal variant. There are three types of 
filter options: (1) “Signal filtering” allows to restrict the view of the GPS-table to 
signals with small credible sets (≤ 5 variants) or to signals with a high PPA variant 
in the credible set (10%, 50% or 99%) or any combination of the two filters. Addi-
tionally, one can restrict the GPS-view to signals where the genetic association with 
creatinine-based eGFR is eGFRcys/BUN-validated, modulated in individuals with 
DM, or with a genetic association also for eGFR decline over time. (2) “Variant-
to-gene mapping” allows to further restrict the GPS-view to genes that are mapped 

Table 1 Annotation of credible set variants and genes in the 594 signals associated with eGFR

The 35,885 variants in the 99% credible sets were queried for being protein-relevant or eQTL/sQTL in kidney tissue to any of 
the 5,906 genes; the 5,906 genes were queried for kidney phenotypes in human or mouse, and for drugability. A: Separating 
the variants by strength of statistical support, we show the number of variants that are protein-relevant [11, 16] or an eQTL/
sQTL [17–19] in kidney tissue, the number of signals, and the number of mapped genes. B: Shown are the number of genes 
known for (i) causing a genetic disorder in human with kidney phenotype [21–23], (ii) a kidney phenotype in mouse [20] (iii) 
being drug target in registered clinical trials for kidney disease or any other diseases [24]

Columns: “PPA > 99%”: exactly one variant in credible set; “PPA 50–99%”: variant has high PPA; “other variants in small set”: 
variant in small set that has PPA >  < 50%; “any other variants”: variants with PPA >  < 50% and set size > 5); Abbreviations: VEP: 
Variant effect predictor, CADD-Phred: Score for deleteriousness of a variant, eQTL: expression quantitative trait locus, sQTL: 
splice quantitative trait locus, #sig: number of signals, #var: number of variants in 99% credible sets

CKD chronic kidney disease, ADTKD autosomal dominant tubulointerstitial kidney disease, MGI mouse genome informatics, 
TTD therapeutic target database

A

Annotation feature PPA > 99% (# sig 
| #var | #genes)

PPA 50–99% 
(# sig | #var | 
#genes)

other variants in small 
sets (# sig | #var | 
#genes)

any other variants 
(# sig | #var | 
#genes)

Protein-relevant (all, VEP) 14 | 14 | 14 22 | 22 | 22 15 | 18 | 16 279 | 950 | 520

 Stop-gained/-lost; 
non-synonymous

10 | 10 | 10 16 | 16 | 16 6 | 6 | 6 127 | 271 | 197

 Canonical splice, 
noncoding change, 
synonymous, splice 
site

1 | 1 | 1 2 | 2 | 2 2 | 2 | 2 147 | 342 | 247

 Other (CADD-
Phred ≥ 15)

3 | 3 | 3 4 | 4 | 4 9 | 10 | 9 169 | 344 | 217

eQTL kidney tissue (all) 11 | 11 | 14 28 | 28 | 41 24 | 61 | 28 239 | 13,025 | 520

 Tubulo-interstitium 10 | 10 | 11 22 | 22 | 30 21 | 54 | 23 205 | 10,472 | 400

 Glomerulus 7 | 7 | 10 18 | 18 | 26 15 | 38 | 16 195 | 10,562 | 362

 Kidney cortex 0 | 0 | 0 2 | 2 | 2 1 | 1 | 1 30 | 1,267 | 36

sQTL kidney cortex 0 | 0 | 0 0 | 0 | 0 1 | 1 | 1 13 | 522 | 23

Any of the above 23 | 23 | 27 47 | 47 | 61 31 | 70 | 39 348 | 13,576 | 865

B

Feature (source) # genes

Genes with kidney phenotype in human (all sources) 235

 Online Mendelian Inheritance in Man (OMIM) genes 163

 Genes from sequencing CKD Patients (Groopman et al., 2019) 178

 Genes from sequencing ADTKD patients (Wopperer et al., 2022) 12

Genes with kidney phenotype in mouse models (MGI) 342

Gene is drug target in registered clinical trial (TTD) 499

 By trial with kidney disease indication 7

 By trial with any other indication 492

Any of the above 866
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by credible set variants with specific characteristics, e.g., protein-altering variants, 
or regulatory variants in kidney tissue. (3) “Gene-to-phenotype mapping” allows to 
restrict the GPS-view to genes of specific characteristics, e.g., known for human or 
mouse kidney phenotypes, or for genes that are drug targets in registered trials for 
kidney disease. Case examples of how to use the GPS tab are provided in Additional 
file 1: Note S2.

The “gene search” tab enables the user to search for up to 2,000 genes simultane-
ously, either as a list or a text-file input. The generated output provides an extract 
of the GPS-Table for the respective gene(s) as well as all underlying gene- and vari-
ant-based information. The variant-based information can be restricted to variants 
with PPA above a user-defined threshold. The “variant search” is similarly structured 
allowing for simultaneous querying of up to 2000 variants. The output yields the 
eGFR association statistics (all ancestries) for any variant that was genome-wide sig-
nificantly associated with eGFR (P < 5 ×  10–8). For credible set variants (regardless of 
their association p value), it yields eGFR association statistics in European-ancestry 
(with and without fully conditioning on independent signal index variants of the 
locus) and functional or regulatory annotation, if applicable. The “region search” 
enables the user to identify eGFR associated loci that overlap their genomic region 
of interest and provides the GPS Table for all genes within these loci. For the gene 
and variant search, we also provide regional association plots of the respective eGFR 
locus (LocusZoom [27]). All search results are available for download as Excel tables 
or as plain csv files.

Fig. 2 Overview of the architecture of KidneyGPS. We integrated data from multiple GWAS and post-GWAS 
approaches and derived evidence for variant and gene prioritization regarding their impact on kidney 
function. Shown are the integrated datasets by the various levels (with the respective input and output of 
the query within the software) and the front end (input and output of the query of the user); implemented as 
web application using RShiny
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Limitations and potential misinterpretations

Understanding the limitations of the methods and data employed in KidneyGPS is 
crucial to avoid misinterpretations.

There is some uncertainty in the robustness of independent signal identification and 
generated credible sets of variants [6]. The signal identification uses the variants’ cor-
relations based on variant reference panels. Due to the lack of an appropriate trans-
ethnic reference panel, here, a reference panel of 20,000 unrelated Europeans from 
UK Biobank was used, which fits very well to the integrated UK Biobank GWAS, 
but with some uncertainties regarding its fit to other European or non-European 
GWAS studies included in CKDGen. The generation of credible sets of variants for 
each signal was performed based on European-only eGFR summary statistics using 
the method by Wakefield [13], which assumes one causal variant per signal and thus 
depends on successfully distinguishing the independent signals up front. Alternative 
approaches allowing for multiple causal variants per signal like SuSiE [28, 29] or FIN-
EMAP [30] are currently investigated, but have not been widely applied to large con-
sortia data so far and might even more strongly depend on the variant reference panel 
and power. Any approach for generating credible sets of variants will successfully 
narrow down only a part of all GWAS signals due to power and regions with large 
stretches of jointly inherited variants (i.e., high LD). Credible sets as wide as > 100 
or even > 1000 genetic variants or credible set variants with low PPA provide limited 
credibility in the statistical support of any of these variants and users might want to 
use the “signal filter” of KidneyGPS to focus on signals and/or variants with high sta-
tistical support. Currently emerging methods to investigate fine-mapping robustness, 
e.g., SLALOM [14], might help quantify the uncertainties in fine-mapping results. 
Integrating more individuals of African ancestry can help dissect large stretches of 
high LD in the genome and sharpen GWAS signals in the future.

It is a limitation that the GWAS association statistics for eGFR are based mostly 
and the fine-mapping solely on European populations. Therefore, KidneyGPS results 
cannot be generalized to non-European populations when genetic variant frequencies 
differ or when the causal variants even vary between ancestries. For example, multiple 
variants in APOL1 have high impact on kidney function in African Americans [31], 
but are not associated in European ancestry due to low allele frequencies. Currently 
emerging larger GWAS on kidney function with improved coverage of non-European 
populations and emerging multi-population fine-mapping methods will provide the 
opportunity to expand KidneyGPS to represent individuals more globally.

With regards to the phenotype used for the GWAS, some genetic effects identified 
for creatinine-based eGFR may not necessarily impact kidney function but creatinine 
metabolisms. Our filter option for eGFRcys or BUN validated signals can be used to 
provide more certainty on kidney function relevance.

Finally, genetic effects on eGFR might differ by sex, in the presence of hypertension, 
or have other interactions with lifestyle factors, but GWAS within these subgroups or 
GWAS incorporating gene-lifestyle interactions are currently lacking. We do provide 
genetic association of eGFR in DM [26] and highlight the—surprisingly few—differ-
ences of these with general eGFR.
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Table 2 Feature comparison across GWAS online platforms

We compared KidneyGPS with three other post-GWAS platforms. We contrasted search functionalities, approaches to gene 
prioritization (machine learning derived gene scores or customizable prioritization via filter options to generate lists of 
genes with specific characteristics) and integrated features
a Binding sites, open-chromatin, enhancer, promotor
b Information only available when searched for 1 variant (not downloadable, not for lists of variants in a searched region)
c No focus on kidney phenotype, DM: Diabetes mellitus

Feature KidneyGPS GWAS Catalog [9] Open Targets Genetics 
[10]

HugeAMP [11]

Focus on kidney function

eGFR associations [4] y (until version 1.3.1) y n y

eGFR associations (Stan-
zick et al. updated)

y n n n

eGFR associations [32] n y n y

eGFR associations [5] n y y (lead variants) y

eQTL/sQTL data (kidney 
tissue)

y n Partly (in coloc) n

BUN association [4] For lead variants y n y

eGFRcys association [4] For lead variants y n y

eGFR in DM versus 
noDM [26]

y n n n

eGFR over time [25] For lead variants n n n

Genes with kidney 
phenotypes in mouse or 
human

y Link to  OMIMc Link to open  targetsc Link to  MGIc

Genes targeted by 
kidney disease drugs

y n n n

Search functionality

Gene search y y y y

Variant search y y y y

Region search y y n y

Gene prioritization

Machine learning 
derived gene scores

n n y y

Filter options for gene 
prioritization

y n n n

Prioritization per locus y n y n

Prioritization across loci y n n n

Features

Protein-relevant variants y Partlyb Integrated but not 
extractable

y

eQTL data (any tissue) y n Integrated but not 
extractable

Integrated but 
not extractable

sQTL data (any tissue) y n n n

Genes with kidney 
phenotypes in mouse or 
human

y for kidney Link to OMIM Link to open  targetsc Link to MGI

Drug target information y n Link to open  targetsc n

Genomic and epigenetic 
features a

Planned n y y

Phewas Planned n y y

pathway analyses Planned n Link to open targets y



Page 10 of 12Stanzick et al. BMC Bioinformatics          (2023) 24:355 

Comparison with existing tools

While other post-GWAS tools like GWAScatalog [9], HugeAMP [11] and Open Tar-
get Genetics [10] are more comprehensive across diseases and traits, KidneyGPS 
stands out due to its focus on kidney function, its direct link to other kidney-related 
GWAS, and due to its customizable approach to generate lists of genes of specific 
characteristics (Table  2). Although all platforms provide variant- and gene-search 
functionalities, KidneyGPS outperforms the other platforms in terms of the depth 
of kidney-related results and the options available to extract kidney function spe-
cific information (real showcase example in Additional file 1: Note S3). KidneyGPS is 
unique in its customizable approach to gene prioritization in the sense that the user 
can generate lists of genes of specific characteristics depending on personal prefer-
ence or research interest, rather than prioritizing genes by a specified algorithm that 
typically implies assumptions. An advantage of GWAS Catalog [9], Open Targets 
Genetics [10] or HugeAMP [11] is that users can extract information across many 
different phenotypes. However, due to the focus on data related to kidney function, 
KidneyGPS is a practical tool for the kidney researcher enabling easy access and easy 
information extraction.

Future developments

We have developed KidneyGPS within a cooperation with the CKDGen consortium 
and we will continue to cooperate there. This will enable timely updates with novel 
loci and signals for eGFR, more diverse populations included in the GWAS, improved 
resolution at already existing signals, and further expansion to other kidney function 
traits or subgroup-specific GWAS. Other updates will include information on open 
chromatin in kidney tissue, kidney cell-type specific gene expression and enriched 
pathway.

Conclusion
KidneyGPS summarizes the statistical and biological evidence identified by GWAS for 
eGFR and post-GWAS approaches with a special focus on kidney-relevant annotation 
data as well as complementing genetic associations for other kidney-related traits. Kid-
neyGPS displays this information in a clear and comprehensive way to make it easily 
accessible to a broader interdisciplinary scientific community. KidneyGPS is designed 
to support kidney researchers to help translate in silico research results into in vitro or 
in vivo research.
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