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Introduction
Breast cancer is the most common cancer in women [1–4] and represents one of the 
leading causes of death in women [5]. In 2020, breast cancer occupied 12% of all human 
malignant tumor cases [6], and by 2040, this number is expected to rise to 46%. Human 
epidermal growth factor receptor-2 (HER2) is a diagnostic and prognostic factor for 
breast cancer, and HER2-positive breast cancer is one of the several subtypes of breast 
cancer, which accounts for about 15% of early-stage breast cancers [7]. HER2-positive 
breast cancer is defined as HER2 gene amplification or HER2 protein overexpression, 
and HER2-positive tumors grow faster and spread more easily than HER2-negative 
tumors [8], but the good news is that these tumors can respond better to targeted drugs 
[9]. Trastuzumab, a HER2-targeted drug, has recently been introduced and greatly 
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sifies the HER2 status from hematoxylin and eosin (H&E) stained histological images, 
reducing additional costs. It achieves superior performance compared to other compu-
tational methods.
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improved the survival of HER2-positive breast cancer patients [10]. The treatment plans 
for breast cancer patients should be formulated based on HER2 status, in this regard, the 
early diagnosis of HER2 status is crucial, which can greatly improve patient survival.

In the routine diagnosis of HER2 expression, breast cancer tissue sections are stained 
with hematoxylin and eosin (H&E), the morphology is determined by manual visual 
inspection, and the expression levels of HER2-specific proteins are then measured by 
immunohistochemical (IHC) analysis and in  situ hybridization (ISH) technology [11]. 
HER2 expression levels are categorized by the American Society of Clinical Oncology/
College of American Pathologists (CAP/ASCO) into four categories (0, 1+, 2+, 3+) 
based on visual analysis of IHC histological images [11], where patients with expression 
levels of 0 and 1+ are defined as HER2-negative (HER2−), and those with an expression 
level of 3+ are classified as HER2-positive (HER2+). Due to the unclear expression of 
HER2-specific proteins in 2+ cases, further evaluation of HER2 gene status using ISH 
is required. However, IHC is associated with high costs, besides, the tissue availability, 
as well as operation skills and analysis of the operator in manual testing can also affect 
the assessment of HER2 status [14,18], which can have an impact on the final treatment 
plan.

Deep learning (DL) is under rapid development in recent years and plays a role in 
various fields. Convolutional Neural Network (CNN) is a DL network model, which is 
extensively proved to be applicable in multiple research directions such as cell segmen-
tation, tumor classification, and cancer localization. CNN can identify histopathological 
abnormalities in routine H&E images related to the presence of atomic biomarkers in a 
range of cancer types, including rectal cancer [12], lung cancer [13], prostate cancer [14], 
and skin cancer [15]. DL has also been applied in the direction of breast cancer tissue 
histopathology identification [16]. These works can help reduce the burden on patholo-
gists, and meet the requirements of high precision and efficient computation.

Some solutions to these problems have been proposed. For instance, Kather et al. [17] 
proposed a deep-learning approach for the assessment of hormone receptor status from 
H&E stained whole slide images (WSIs). Oliveira et  al. [18] developed a CNN model 
based on multi-instance learning to classify HER2− or HER2+ from H&E images, and 
their trained model was tested on the CIA-TCGA-BRCA (BRCA) dataset, yielding an 
accuracy of 83.3%. However, they only classified HER2− and HER2+ but not classified 
the four statuses of HER2. In [19], U-Net was utilized to find the location of cell nuclei 
in H&E stained images, and a cascaded CNN architecture was constructed to classify 
HER2, which resulted in an area under the curve (AUC) value of 0.82 in the Warwick 
dataset [20]. Nonetheless, in this method, it is necessary to analyze the prediction results 
of patch-level images during the classification process, which increases the overheads. 
Moreover, Sakib Hossain Shovon et  al. [21] put forward an improved TL architecture 
HE-HER2Net, using the same BCI dataset as ours, and the accuracy rate reached 87%, 
this work has achieved promising results, but the prediction accuracy still needs to be 
improved. Compared with HAHNet proposed in this paper, HE-HER2Net had lower 
accuracy. Lu et al. [19] proposed a GNN model-SlideGraPh+, which not only predicted 
the DAB density of H&E stained WSIs, but also predicted the HER2 status according to 
the DAB density. Thereafter, the trained model was tested on HER2C and Nott-HER2 
datasets, yielding the AUCs of 0.78 and 0.8. But the HER2 scores of 2+ cases were 
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avoided during the model testing process. Shamai [22] raised a deep CNN model based 
on residual networks (ResNet) [23], aiming to predict the expression of molecular organ-
isms in breast cancer by the analysis of digitized H&E stained tissues, where the AUC for 
HER2 status classification was 0.74. Nevertheless, this work was based on a single data 
source and only included tissue microarrays (TMA) images.

Based on the above conclusions, existing methods for HER2 status classification of 
H&E stained images have several limitations, including insufficient granularity in clas-
sification, higher computational costs due to patch-level predictions, avoidance of cer-
tain class data, and inadequate accuracy. Considering the significance of HER2 status 
diagnosis and the limitations of current computational methods, we propose the neural 
network model HAHNet to aid pathologists in better assessing HER2 status and to help 
more breast cancer patients receive improved treatment plans. In summary, the main 
contributions of this paper can be summarized as follows.

• A deep learning method is proposed based on attention mechanism and multi-scale 
feature fusion, so as to improve the accuracy of breast cancer HER2 status classifica-
tion.

• Unlike most current algorithms, the data predicted by HAHNet are based on con-
ventional H&E images without IHC staining, which increases the difficulty in our 
prediction, but HAHNet still performs efficiently.

Materials and methods
Datasets and pre‑processing

The dataset used in our study was a new breast cancer immunohistochemistry (BCI) 
benchmark dataset [24], and Hamamatsu NanoZommer S60 was utilized to acquire this 
dataset, with a scan speed of 60 s per slice and a scan resolution of 0.46 um per pixel. 
This dataset collated 4870 pairs of H&E and IHC images (resolution, 1024*1024). The 
four types of HER2 H&E images are displayed in Fig. 1.

H&E images from the BCI dataset were adopted in this work. There were 4870 images 
in total, including 3896 images in the training set and 977 in the test set. To train more 
efficiently and speed up data processing, the Python toolkit opencv was employed to 
reduce the size of the data from 1024*1024 to 299*299. Figure 2 presents the H&E images 
of HER2-1+ and HER2-3+ categories and their images after IHC staining. (a) and (b) 
displayed the ordinary H&E images, the HER2 status in (a) was 1+, and the HER2 status 
in (b) was 3+, while (c) and (d) were derived from (a) and (b) after IHC staining. Obvi-
ously, (c) and (d) were very different from each other, and the HER2 status in these two 
images was distinguishable by the naked eye, but it was difficult to distinguish the HER2 
status in H&E images without IHC staining.

HAHNet

As discovered after comparison, the accuracy of InceptionV3 [25] in the evaluation 
of HER2 status was significantly superior to other classical models. The InceptionV3 
model is the third-generation model in the Google Inception series. Compared with 
other neural network models, the most significant feature of the Inception network is 
that it expands the convolution operation between neural network layers and realizes 
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multi-scale feature extraction. The idea of multi-scale feature extraction can not only be 
used in the construction of convolutional modules, but also be applied in the construc-
tion of the overall network model structure, as did in this study. HAHNet changed the 
original model structure of InceptionV3 into a parallel structure, and after convolutional 
preprocessing, the feature maps were downsampled to extract multi-scale features, 
which allowed us to obtain more multi-scale features and ensured the accuracy of HAH-
Net for the classification of HER2 status. The “Inception” structure was adopted in all of 
our convolution modules. It used the parallel convolution with different-size convolu-
tion kernels, and a maximum pooling layer was added to the parallel line for multi-scale 
feature extraction on the feature map. We also introduced a novel attention mechanism 
in our model, which combines the Convolutional block attention module (CBAM) [26] 
and Efficient Channel Attention (ECA) [27]. We named it the Efficient Channel Atten-
tion-Convolutional block attention module (ECA-CBAM) attention mechanism. The 
overall model structure is exhibited in Fig. 3.

Feature extraction

Feature Extraction was the most important part of the model. A parallel structure was 
adopted in all the five modules in Feature Extraction.

To be specific, InceptionA, InceptionC, and InceptionE utilized convolutions 
of different sizes to extract multi-scale features in the four feature extraction lines, 

Fig. 1 Four types of HER2 image samples in BCI-H&E dataset: a HER2-0, b HER2-1+, c HER2-2+, d HER2-3+
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introduced an average pooling layer to compress the features, finally fused the results 
of the four lines and input them into the next module. InceptionB and InceptionD, 
which included downsampling operations, were the modules that we paid more atten-
tion to. Both InceptionB and InceptionD contained four feature extraction lines. Of 
them, the first three lines adopted convolutions of different sizes to extract multi-scale 
features and introduced a max pooling layer to extract texture information. To further 
preserve global information in the dimensionality reduction process, the global aver-
age pooling, a 1×1 convolution, and a Sigmoid function were introduced in the fourth 
line. Notably, the global average pooling contributes to effectively extracting global 
spatial information. Thereafter, multi-scale features extracted by the first three lines 

Fig. 2 H&E staining images and IHC staining images, c and d are obtained from a and b after IHC staining

Fig. 3 The overall structure of the model. The model takes input images of size 299× 299× 3 and outputs 
four categories corresponding to the four levels of HER2 expression. The Conv and MaxPool module consists 
of five convolutional layers and two max pooling layers. The FC module consists of only one fully connected 
layer
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were fused. The results processed by the fourth line were not directly connected with 
the results of other layers, instead, they were multiplied with the connection results 
of other layers to adjust the global spatial weight. Later, the final results were incorpo-
rated into the SiLU function. The specific structure is shown in Fig. 4.

DownsampleBlock

Noteworthily, considering that some fine features might be lost in ordinary convolu-
tional downsampling during resolution degradation, Ankit Goyal et  al. [28] proposed 
an ’Inception’ structured downsampling block that implemented the multiscale process-
ing of the feature map during downsampling, where convolutional nuclei with smaller 
size were able to better sense fine features and preserve them. This block was used in 
our model. The first line of the downsampling block consisted of a 2D average pool-
ing and a 1×1 convolution, while the second line included a 3×3 convolution with a 
stride of 2, and the third line contained the global Average pooling, a 1×1 convolution 
and a sigmoid function. After finishing convolution of the first two lines, BatchNorm 
was added. Afterwards, the results of the first two lines were fused and multiplied with 
those of the third line, and the results were later input into the SiLu activation function. 
Multi-dimensional convolution can help the model to better retain detailed features and 
context information during the downsampling process in the meantime of adding more 
activation functions to introduce stronger nonlinear characteristics, which can effec-
tively improve the model learning ability. The specific structure of DownsampleBlock is 
displayed in Fig. 5.

Fig. 4 Feature extraction structure, the feature extraction phase consists of five types of convolutional 
modules: InceptionA, InceptionB, InceptionC, InceptionD, and InceptionE. All of these convolutional modules 
employ a parallel structure

Fig. 5 DownsampleBlock structure
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Eca‑CBAM attention block

Before downsampling, an improved attention block was added, which allowed our model 
to focus more on important features and better retain important features during downsam-
pling. Based on the purpose of the research, the introduction of spatial attention and chan-
nel attention was the best choice, which preserved contextual information and allowed the 
model to know which features were more important. The CBAM attention mechanism [26] 
combines spatial attention with channel attention, which meets our needs, but the chan-
nel attention in CBAM will perform dimensionality reduction operations, which will bring 
side effects. Such operations will lead to the loss of some detailed features. Therefore, some 
improvements to CBAM were made by introducing ECANet [27] channel attention to 
replace the channel attention in CBAM. The ECA (Efficient Channel Attention) mechanism 
utilizes 1D convolution to achieve local cross-channel interaction and extract dependencies 
between channels. This method effectively solves the issues caused by dimension reduction 
operations. The improved attention mechanism was called Eca-CBAM. The structure of 
Eca-CBAM attention mechanism is shown in Fig. 6. Channel attention and spatial attention 
were calculated as follows (Eqs. 1–2).

Equation  1 is the calculation formula of channel attention, where C1D denotes 1D 
convolution, σ represents the sigmoid function, and k indicates that the module only 
involves k parameters, and y represents the input feature map. C1Dk(y) denotes map-
ping the input feature map y to a vector of dimension k. The Channel Attention Layer 
is a component of the Eca-CBAM Attention Block, which helps the model focus on rel-
evant channels and suppress less important channels.

Equation 2 represents the calculation formula of spatial attention, where ? stands for the 
sigmoid function, AvgPool represents average pooling operation, MaxPool represents 
maximum pooling operation, and f 7∗7 represents a convolution operation with a filter 
size of 7× 7 . The Spatial Attention Layer is a component of the Eca-CBAM attention 

(1)ω = σ C1Dk y

(2)Ms(F) = σ
(

f 7∗7([AvgPool(F),MaxPool(F)])
)

= σ

(

f 7∗7
([

FS
avg ; F

S
max

]))

Fig. 6 Eca-CBAM attention mechanism structure
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block, used to capture spatial dependencies in the input feature map, enabling the model 
to focus on relevant spatial regions.

Results
Experimental setup and parameter initialization

The GPU used in the experiment is RTX4090, the graphics card memory is 24 GB, and 
the PyTorch deep learning library is utilized in all experiments. The same optimizer 
(Adam) is used in all models during training. After debugging different hyperparame-
ters, the learning rate of 0.0005. In the loss function, weight decay is a coefficient placed 
before the regularization term. Its role is to adjust the impact of model complexity on 
the loss function and prevent overfitting. We set the weight decay to 0.00001. In addi-
tion, to prevent overfitting, we added a dropout layer before the fully connected layer. 
Due to the low learning rate, the model converges slowly, so we set a larger epoch value 
to ensure full convergence of the model. The epoch value is set to 250. During training, 
the batch size is set to 64. The input image size is 299× 299× 3 . In the experiment, the 
whole slide is used for training and testing without partitioning it into patches. At last, 
the model weight corresponding to the iteration with the highest precision is retained. 
To detect the presence of overfitting, we recorded the accuracy and loss rates during 
the model training process. Figure  7 represents the training-validation curve, display-
ing accuracy and loss rates during the experiment. It can be observed that the curves 
initially exhibit fluctuations but eventually smooth out, indicating that the model con-
verges effectively without overfitting or underfitting issues. The highest model accuracy 
and lowest training loss were achieved at epoch 233.

Performance metrics

In this experiment, a novel convolutional neural network, HAHNet, is proposed for 
the multi-stage classification of breast cancer HER2 status. To evaluate the model per-
formance, the accuracy, precision, recall, F-score, and MCC were calculated. Figure 8 
presents the ROC curve of HAHNet. The ROC curve is a graphical representation 

Fig. 7 Training-validation curve of HAHNet. This figure illustrates the changes in the train loss, test loss, train 
accuracy, and test accuracy of HAHNet as the number of epochs increases during the training process
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used to describe the performance of a classification model and serves as a compre-
hensive evaluation metric. Based on the ROC curve, we calculated the AUC (Area 
Under the Curve) values of HAHNet for predicting 4 levels of HER2 expression. The 
AUC value reached 0.99, demonstrating that HAHNet performs well in predicting 
HER2 expression levels. From Fig.  8, it is evident that HAHNet exhibits impressive 
predictive performance for the 4 HER2 expression levels in the dataset. The calcula-
tion formulas of all the evaluation metrics are as follows (Eqs. 3–7). TP is a positive 
sample predicted as a positive class, TN is a negative sample predicted as a negative 
class, FP is a negative sample predicted as a positive class, and FN is a positive sample 
predicted as a negative class.

Accuracy: The proportion of correctly predicted samples to the total samples.

Recall: The probability of being predicted as a positive sample in the actual positive 
sample.

Precision: The probability of the actual positive sample among all the samples predicted 
to be positive.

F-score: The harmonic mean of precision and recall, which is closer to the smaller value 
of the two numbers.

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Recall =
TP

TP + FN

(5)Precision =

TP

TP + FP

(6)F-score =
2× TP

2× TP + FP + FN

Fig. 8 ROC curve of HAHNet
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MCC: It is essentially a correlation coefficient that describes the actual classification and 
the predicted classification. The value closer to 1 indicates the better prediction effect.

Experimental results

HAHNet was compared with AlexNet, VGG19, InceptionV3, ResNet101, ResNet152, 
DenseNet161, Densenet201 and HE-HER2Net. Figure 9 demonstrates the comparisons 
of prediction effects of all models on the four HER2 statuses. It is seen intuitively that 
HAHNet performs suboptimally only in the HER2_ 0 category, while it achieves the best 
predictive performance in the HER2_1+, HER2_2+, a _ d HER2_ 3+ categories. Overall, 
HAHNet demonstrates superior overall performance compared to other methods.

The confusion matrix of the above models was introduced to further analyze all the 
models. Figure  10 displays a diagram of the confusion matrix of all models. The dark 
blue modules on the diagonal in the confusion matrix represented the accuracy of the 
model for each type of prediction, in HER2-1+, HER2-2+, and HER2-3+ categories. 
The accuracy rates of HAHNet in the prediction of three categories were 0.915, 0.951, 
and 0.938, respectively, higher than all the other compared models.

Figure 11 presents the original image and feature maps of the image that is correctly 
predicted by the parallel model and incorrectly predicted by the serial model, where the 
feature maps are obtained by HAHNet processing. Compared with the rest of the data, 
the image has a lower degree of dyeing and a wider distribution of features, which make 
it more difficult to extract the image features, and some small features and association 
information between regions are easily lost during processing.

Table 1 describes the comparisons between HAHNet and other models on multiple 
metrics. Obviously, HAHNet outperforms all the other compared models. Compared 
with InceptionV3, HAHNet shows great improvements in the six evaluation metrics of 
acc, precision, recall, F-score, MCC, and AUC. Relative to the suboptimal method HE-
HER2Net, the accuracy rate of HE-HER2Net is 0.8701, and that of HAHNet is 0.9365, 
which increases by about 0.065. The precision of HE-HER2Net is 0.8773, and that of 
HAHNet is 0.9367, which elevates by 0.06. Moreover, the recall rate of HE-HER2Net is 
0.8700, and that of HAHNet is 0.9246, with an increase of about 0.055. Furthermore, the 

(7)MCC =

TP × TN − FP × FN
√

(TP + FP)× (TP + FN )× (FP + TN )× (FN + TN )

Fig. 9 This figure presents a comparison of the performance of nine models participating in the comparative 
experiment in predicting the four HER2 expression statuses
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F-score of HE-HER2Net is 0.8711, and that of HAHNet is 0.9366, showing an increase 
of approximately 0.065. The MCC of HE-HER2Net is 0.8076, and that of HAHNet is 
0.9041, demonstrating an increase of around 0.1.

Ablation experiment

Ablation experiments are also designed in this study. In each experiment, one block in 
HAHNet is removed while the rest are kept. The results are shown in Table 2. In HAH-
Net_ 1, the DownsampleBlock in HAHNet is removed, so that the model is a serial 
structure, and the final HAHNet_ 1 accuracy is 0.8843. The original InceptionB and 
InceptionD blocks in InceptionV3 do not contain the above-mentioned fourth line. In 
HAHNet_ 2, the unmodified InceptionB and InceptionD Blocks are utilized, and the 
accuracy is 0.9181. HAHNet_ 3 removes the attention block in HAHNet and achieves 
an accuracy of 0.9242.After comparison, HAHNet achieves the best results with an 
accuracy rate of 0.9365. This indicates that adopting a parallel structure, modifying the 

Fig. 10 This figure displays the performance of the confusion matrices for the nine models, namely 
ResNet101, ResNet152, AlexNet, DenseNet161, DenseNet201, Vgg19, InceptionV3, HE-HER2Net, and HAHNet, 
which participated in the comparative experiment
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Fig. 11 The data that are incorrectly predicted by the serial models such as ResNet101, ResNet152, 
ResNet161, and ResNet201, but correctly predicted by the parallel models. a denotes unprocessed data, b, c, 
d are feature maps generated by HAHNet convolution. The convolution order starts with the convolution in 
(b), followed by (c), and finally (d). The convolutions in b, c, and d each consist of a single convolutional layer 
and are repeated only once. We extract and display the feature maps corresponding to four channels from 
each convolution. The highlighted part of the feature map is the feature noticed by the model

Table 1 This table presents the performance evaluation results of all models in the comparative 
experiment

Model Accuracy Precision Recall F‑score MCC AUC 

HAHNet 0.9365 0.9367 0.9246 0.9366 0.9041 0.99

HE-HER2Net 0.8701 0.8773 0.8700 0.8711 0.8076 0.91

InceptionV3 0.8423 0.8448 0.8101 0.8428 0.7629 0.88

DenseNet161 0.8096 0.8156 0.7964 0.8112 0.7159 0.87

DenseNet201 0.7656 0.7686 0.7556 0.7667 0.6484 0.84

ResNet101 0.7277 0.7280 0.7221 0.7276 0.5898 0.82

ResNet152 0.6899 0.6852 0.6342 0.6832 0.5231 0.79

AlexNet 0.6949 0.7089 0.7211 0.6981 0.5524 0.80

Vgg19 0.6653 0.6741 0.5785 0.6621 0.4894 0.72
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structure of the InceptionB/InceptionD Block, and introducing attention mechanisms 
effectively enhance the performance of HAHNet in extracting multi-scale features and 
contextual information.

Discussion
This study aims to predict the HER2 status from H&E images. To achieve this aim, sev-
eral classic models, such as AlexNet, VGG19, InceptionV3, ResNet101, ResNet152, 
DenseNet161, and Dense net201, were trained. Due to the difficult classification of some 
data in the Dataset, some classic models cannot effectively complete the multi-classifica-
tion tasks on H&E images. The accuracy, precision, recall rate, and AUC of some models 
are very low, along with poor loss convergence, and the final loss value is high.

From Table 1, we can clearly see that the parallel models, HAHNet, HE-HER2Net, and 
InceptionV3, achieve prediction accuracies of 0.9365, 0.8701, and 0.8423, respectively. 
On the other hand, among the serial models, DenseNet161 performs the best with an 
accuracy of only 0.8096. We observe that the parallel structure models outperform the 
other models. To analyze these results, we provide the feature maps extracted during 
the convolution process. As observed from Fig. 11, the feature sizes in the histological 
images vary greatly, and the feature distribution is wide. In this regard, capturing multi-
scale features and extracting contextual information become the key factors for HER2 
status classification. In the convolution block of the parallel structure model, convolu-
tion kernels of different sizes are utilized to extract multi-scale features, which reduce 
feature loss. However, the serial structure model does not have such ability, leading to 
the even worse effect of the serial structure model. This gives us the new research ideas 
of retaining the parallel structure of the convolution block, applying the idea of multi-
scale feature extraction in the overall network structure design, and introducing the 
attention mechanism. Based on the above new research ideas, HAHNet is proposed in 
this paper. Our results show that the proposed HAHNet is able to classify the HER2 
status of H&E images with high accuracy, and our method achieves excellent results on 
different evaluation metrics.

In general, the novelty of the proposed HAHNet can be summarized as follows: (1) It 
predicts HER2 expression levels in breast cancer based on H&E images, which greatly 
reduces the cost of HER2 expression level prediction. (2) HAHNet adopts a parallel 
structure and designs two parallel feature extraction lines. The two lines are responsible 
for feature extraction on images of different sizes to obtain more multi-scale features, 
so that the model has much more choices. (3) The parallel structure Downsample-
Block is adopted during the downsampling process to better collect detail features, 
organizational structural features, and image context information during the image 

Table 2 Comparison results of ablation experiments

Model Accuracy Precision Recall F‑score MCC AUC 

HAHNet 0.9365 0.9367 0.9246 0.9366 0.9041 0.99

HAHNet_1 0.8843 0.8923 0.8821 0.8938 0.8522 0.92

HAHNet_2 0.9181 0.9201 0.9126 0.9202 0.8896 0.96

HAHNet_3 0.9242 0.9281 0.9179 0.9285 0.8962 0.97
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downsampling process. (4) The improved InceptionB and InceptionD modules are able 
to extract global spatial information in the dimensionality reduction operation, which 
is very important for the final prediction results. Moreover, the introduction of more 
activation functions in the module effectively improves the model learning ability. (5) 
The introduced attention mechanism assigns greater weights to important features, thus 
properly directing the attention of the model to ignore irrelevant information, amplify 
important information, and guide the model to learn important features. This paper 
introduces a new attention mechanism called Eca-CBAM attention mechanism. The 
Eca-CBAM attention mechanism improves upon the CBAM attention mechanism by 
avoiding the loss caused by dimension reduction operations.

Breast cancer is a significant health issue among women, and HER2 is a crucial prog-
nostic and predictive factor. The classification of HER2 status is essential for determin-
ing treatment plans for breast cancer. Our method employs H&E images to discriminate 
HER2 status. Moreover, based on the experimental results presented in this paper, 
HAHNet demonstrates significant improvements over HE-HER2Net, another HER2 
expression prediction method using H&E images. Specifically, HAHNet achieves 
approximately 6.5% higher accuracy, 6% higher precision, 5.5% higher recall, 6.5% 
higher F1-score, and 10% higher MCC compared to HE-HER2Net. HAHNet effectively 
addresses the issues of high cost and inadequate accuracy in the current field of HER2 
status classification. It can serve as a valuable reference for pathologists in HER2 breast 
cancer screening, diagnosis, and prognosis decision-making.

Conclusion
In conclusion, a parallel-structured neural network is presented in this paper. The idea 
of multi-scale feature extraction is applied in the convolutional module and network 
structure design, which combines with attention mechanisms, effectively improves the 
accuracy of HER2 status classification on H&E stained images. The results show that 
the proposed HAHNet is efficient in HER2 status evaluation on H&E stained images. 
For the HER2 classification task, HAHNet achieves the accuracy of 0.9365, precision of 
0.9367, recall of 0.9246, F-score of 0.9041, and AUC of 0.99, demonstrating higher per-
formance than the existing methods. With regard to the analysis of feature maps and 
model structure, the reasons for the high efficiency of HAHNet are explained, which 
makes our model more transparent.

Breast cancer histological images are a type of complex structured data. Although 
HAHNet utilizes a multi-scale feature fusion approach to extract features from differ-
ent scales, deep learning methods primarily focus on feature representation and learn-
ing, making them more suitable for uncovering local patterns in the data. This means 
that some global structural features in the images may be overlooked. Additionally, deep 
learning methods may encounter challenges in computation and storage when deal-
ing with large-scale data. In contrast, graph theory methods emphasize the topologi-
cal structure and connectivity between nodes, which is crucial for studying the global 
properties of data. Some graph theory methods have already emerged in the medical 
field. Rostami et al. [29] introduced the application of community detection algorithms 
in the healthcare domain, and Azadifar et al. [30] proposed a graph-based gene selection 
method for cancer diagnosis. It is important to emphasize that graph theory methods 
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and deep learning methods are not mutually exclusive but can be combined and inte-
grated. When dealing with complex data and tasks, combining graph theory methods 
with deep learning can leverage the strengths of both approaches to improve model per-
formance and representation. Therefore, integrating graph theory methods into deep 
learning models may lead to better predictions of HER2 status in breast cancer.

In future work, we aim to develop a model that combines image synthesis capabili-
ties with HER2 expression prediction. This model will generate IHC-stained images 
based on H&E images and utilize the generated IHC-stained images to further predict 
the HER2 expression levels within the images. During the prediction process, we will 
incorporate some graph theory related algorithms. By doing so, we expect to achieve 
improved predictive performance and provide greater assistance to pathologists.
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