
Identification of plant vacuole proteins 
by using graph neural network and contact 
maps
Jianan Sui1, Jiazi Chen2, Yuehui Chen3*, Naoki Iwamori2 and Jin Sun4 

Introduction
Plant vacuoles are unique organelles composed of a monolayer membrane and their 
internal cell fluid, and are mostly found in plant cells [1, 2]. Plant vacuoles have cell func-
tions such as degradation, autolysis and regulation. They play several important roles in 
the cell, including storage, waste disposal, and maintenance of turgor pressure. Vacu-
oles can store a variety of substances, including water, ions, nutrients, and pigments [3]. 
In recent years, a growing body of evidence has demonstrated the crucial role of the 
three-dimensional structure of vacuolar proteins in their cellular transport and localiza-
tion. For instance, studies have shown that the vacuolar sorting receptor 4(VSR4) and 
vacuolar sorting receptor 6(VSR6) receptors located on the vacuolar membrane can 
recognize the C-terminal HDEL domain of vacuolar proteins, thereby facilitating their 
transportation into vacuoles [4, 5]. And other studies have demonstrated the importance 
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of the three-dimensional structure of the Arabidopsis thaliana vacuolar H +—pyrophos-
phatase (AVP1) in proper targeting to the tonoplast membrane. Mutations that disrupt 
the structure of AVP1 have been found to cause mislocalization and reduced activity [6, 
7].

To obtain the 3D structures of plant vacuole proteins, the recently developed Alpha-
Fold2 [8] can be employed. AlphaFold2 demonstrates exceptional accuracy in predicting 
protein structures. According to the Protein Data Bank (PDB) official website (https://​
www.​rcsb.​org/), a substantial number of protein structures have been solved. As of Sep-
tember 5, 2023, the Protein Data Bank (PDB) boasts a substantial collection, encompass-
ing around 48,272 resolved plant vacuole protein structures. Additionally, an impressive 
total of 28,118 structures emerged from computational endeavors through Computed 
Structure Models (CSM) experiments. Among these predictive models, 6,278 boast 
confidence scores (pLDDT) exceeding 90, while 15,952 fall within the pLDDT range of 
70–90. Additionally, 5,534 models exhibit pLDDT scores ranging from 50 to 70, with 
only 354 models displaying pLDDT scores below 50. In general, a pLDDT score exceed-
ing 70 serves as a robust indicator of the reliability of a predicted protein structure. 
Elevated pLDDT scores signify a greater concordance between the predicted protein 
structure and the actual structure, typically associated with a higher quality prediction. 
Remarkably, approximately 80% of the determined structures of plant vacuole proteins 
in the PDB boast pLDDT scores surpassing 70, thereby underscoring the dependabil-
ity of these predictions. This degree of reliability holds substantial significance for our 
investigations in plant vacuole protein identification.

Simultaneously, an increasing body of experimental evidence has substantiated the 
fact that AlphaFold2-predicted protein 3D structures significantly contribute to the pro-
cess of identification and characterization of various biological entities. Duan et al. [9] 
discovered that the protein structure predictions generated by AlphaFold2 offer valu-
able insights into the identification and classification of the A1 aspartate protease fam-
ily. Specifically, these predictions are particularly informative for the characterization 
of nucleoprotein-like and atypical members within the family. Cheng et al. [10] utilized 
the 3D protein structure predictions generated by AlphaFold2 to aid in the identifica-
tion and functional analysis of members belonging to the tobacco INV gene family. Their 
study confirmed the utility of the predicted protein structure in unraveling the mecha-
nistic insights into INV function, thereby providing valuable information for a compre-
hensive understanding of the functional aspects associated with the INV gene family.

Furthermore, elucidating the mechanisms that maintain the biogenesis of vacuoles 
requires a comprehensive understanding of the biochemical and physiological roles of 
plant vacuole proteins [2, 11]. However, traditional biological experiments are time-con-
suming and expensive. Therefore, it is essential to develop efficient computational meth-
ods for identifying plant vacuole proteins.

In recent years, various models have been proposed for identifying organelle proteins. 
In the field of Golgi protein identification, researchers have employed different feature 
extraction and prediction methods to achieve high accuracy. For example, Ahmad et al. 
[12] utilized a combination of split amino acid composition (SAAC), 3-gap dipeptide 
composition (3-gap DPC), and bigram position-specific scoring matrix (Bigram PSSM) 
as feature extraction methods, achieving an accuracy of 94.8% in identifying Golgi 
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proteins. Zhou et  al. [13] proposed a new Golgi protein type prediction method that 
combined pseudo amino acid composition (PseAAC), dipeptide composition (DC), 
pseudo position-specific scoring matrix (PsePSSM), and an ensemble of binary classi-
fiers by evidence-based group work (EBGW) to extract feature vectors. They selected 
extreme gradient boosting (XGBoost) as the classifier, and the best accuracy of the model 
reached 92.1%. Lv et al. [14] developed a Golgi protein localization classifier called isGP-
DRLF, which evaluated ten widely-used machine learning algorithms, finding that the 
best independent test accuracy was 98.4%. Moreover, other models have been developed 
for identifying Golgi proteins [15–20]. In the field of mitochondrial protein identifica-
tion, researchers have used various features and classifiers to predict the sub-mitochon-
drial localization of proteins. For example, Du and Li [21] carried out the first study on 
the identification and localization of sub-mitochondrial proteins. Lin et  al. [22] used 
the highly representative tetrapeptide selected by binomial distribution to predict the 
sub-mitochondrial position of mitochondrial proteins and generated the dataset M317. 
The prediction accuracy of support vector machine (SVM) as a classifier reached 94%. 
Additionally, there are several other models that have been developed to identify mito-
chondrial proteins, such as those described in references [23–28]. In addition, Anteghini 
et al. [29] developed the In-Pero model in 2021 to identify peroxisomal proteins. This 
model utilized the deep learning embedding methods UniRep [30] and SeqVec [31] to 
extract the properties of peroxisomal proteins. The authors reported a high accuracy 
of 92% for identifying peroxisomal proteins using the In-Pero model, as determined by 
cross-validation. However, there are few tools available for identifying plant vacuole pro-
teins. Yadav et al. [32] proposed a prediction model called VacPred for identifying plant 
vacuole proteins. The VacPred model uses the SVM algorithm and two classical feature 
extraction methods: dipeptide combination (DPC) and k-spaced position-specific scor-
ing matrix (K-PSSM), a feature descriptor based on the position-specific scoring matrix 
(PSSM). The VacPred model achieved independent test accuracy of 86.49% and fivefold 
cross-validation accuracy of 81.75%. Jiao et  al. [33] developed an efficient plant vacu-
ole protein prediction model called iPVP-DRLF by using the deep learning embedding 
model UniRep [30] to extract features, and applying a two-step feature selection strategy 
involving the combination of light gradient boosting machine (LGBM) and sequential 
forward search (SFS) to identify the optimal feature subset from each high-dimensional 
feature. iPVP-DRLF achieved fivefold cross-validation and independent test accuracy 
values of 88.25% and 87.16%, respectively, which were better than the previous state-of-
the-art prediction values.

The current tools for identifying plant vacuolar proteins are limited, and previous 
studies on plant vacuoles have mostly relied on protein sequences, ignoring the struc-
tural information of proteins. To address this, we developed a plant vacuole protein rec-
ognition model called GraphIdn. We incorporated the structural information of plant 
vacuole proteins using the AlphaFold2 algorithm. To obtain PDB files containing the 
structural information, we input protein accession numbers into the AlphaFold2 website 
(https://​alpha​fold.​ebi.​ac.​uk/). However, downloading PDB files one by one was not scal-
able, so we developed a Python crawler program to automate the process. By inputting 
multiple protein sequence accession numbers into a text file, our crawler program could 
download the corresponding PDB files from the AlphaFold2 website in bulk. Once we 

https://alphafold.ebi.ac.uk/
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obtained the PDB files, we calculated the corresponding contact maps and fed them into 
a graph neural network. The structural features obtained from the graph neural network 
were then inputted into a multi-head attention module and finally a fully connected 
layer to identify plant vacuole proteins. The node features of the graph neural network 
were initialized using the deep representation learning model SeqVec, which was trained 
on the protein sequences. The overall GraphIdn model flow is illustrated in Fig. 1.

Materials and methods
Datasets

Dataset of vacuole proteins

The selection of an appropriate and accurate dataset is a critical step in the model train-
ing process and has a significant impact on the model’s accuracy. In this study, we used 
the dataset collected by Yadav et al. [32]. They searched the UniprotKB/SwissProt data-
base [34], removed sequences with nonstandard amino acids and identified a total of 
579 plant vacuole proteins (PVPs) and 36,189 non-plant vacuole proteins (non-PVPs). 
Among the 579 plant vacuole proteins, the CD-HIT [35] program was applied, result-
ing in 200 and 274 protein sequences at the 40% and 60% identity cutoffs, respectively. 
Subsequently, 200 protein sequences were chosen from the 40% identity cutoff group 
as positive samples for the training dataset. To construct an independent dataset, they 
established distinction by implementing cut-offs at 60% (274) and 40% (200) levels for 
proteins, employing these as the independent positive dataset. Similarly, Yadav et  al. 
employed CD-HIT to identify 9,485 protein sequences from a pool of 36,189 non-plant 
vacuole proteins using a 40% identification cutoff. To establish dataset balance, they 
conducted multiple rounds of random selection [36] to choose 200 protein sequences 
from the initial pool of 9,485 sequences. Subsequently, the top-performing 200 protein 
sequences were utilized as negative samples for the training dataset. In a similar manner, 
74 protein sequences were randomly selected multiple times from the remaining pool 
of 9,285 sequences, and the best performing 74 protein sequences were then chosen as 

Fig. 1  The overall framework of the GraphIdn model



Page 5 of 20Sui et al. BMC Bioinformatics          (2023) 24:357 	

negative samples for the independent test set. The construction of the dataset is depicted 
in Fig. 2. Table 1 presents the number of proteins in the dataset.

Dataset of peroxisome proteins

In this study, we employed the dataset for peroxisomal proteins created by Anteghini 
et al. [29] in 2021. They conducted a search in the UniprotKB/SwissProt database to col-
lect 327 sequences of peroxisomal membrane proteins. Applying the CD-HIT program, 
they selected 162 protein sequences at the 40% identity cutoff. Next, they further refined 
their selection to include only proteins with at least one relevant publication-specific 
subcellular localization, resulting in 132 highly curated sequences of peroxisomal mem-
brane proteins.

Similarly, a search in the UniprotKB/SwissProt database provided 60 peroxisomal 
matrix protein sequences. After applying the CD-HIT program, they obtained 22 pro-
tein sequences at the 40% identity cutoff. They further narrowed down their selection to 
include only proteins with at least one relevant publication-specific subcellular locali-
zation. This screening process yielded 19 highly curated peroxisomal matrix protein 
sequences.

Due to the limited number of matrix proteins obtained, they conducted another 
search in the Uniprot protein database and obtained 721 peroxisomal matrix protein 
sequences. Applying the CD-HIT program, they selected 202 protein sequences at the 
40% identity cutoff. Further screening based on proteins with specific subcellular locali-
zation in at least one relevant publication led to 22 highly curated peroxisomal matrix 
protein sequences. Combining these two subsets resulted in a total of 41 peroxisomal 
matrix protein sequences, from which 13 common entries were removed, ultimately 
leaving 28 unique peroxisomal matrix protein sequences. The basic construction process 

Fig. 2  Flow chart of vacuole proteins datasets construction

Table 1  Protein distribution in the dataset of vacuole proteins

Categories of proteins Number 
of 
proteins

PVPs 274

Non-PVPs 274
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of the peroxisome protein dataset is shown in Fig. 3. Table 2 presents the number of pro-
teins in the dataset.

Protein contact maps

The protein contact map is a concise representation of a protein’s structure, presented 
as a symmetrical two-dimensional matrix. The dimensions of the matrix correspond to 
the number of residues in the protein sequence. The matrix elements are binary, spe-
cifically ’1’ or ’0’, indicating whether there is a contact or absence of contact between the 
residues. The prevailing global standard for defining protein contact maps adheres to 
the authoritative criteria set forth by the International Critical Assessment of Protein 
Structure Prediction (CASP) [37]. According to this definition, when assessing whether 
two residues within a protein structure are in contact, the Euclidean distance between 
their Cβ atom (for glycine, it is the Cα atom) is pivotal. If this distance is less than 8 Å, 
the residues are deemed to be in contact. Conversely, if the Euclidean distance exceeds 
8 Å, it signifies that the two residues are not in contact. In order to obtain contact maps 
of proteins, we used AlphaFold2. AlphaFold2 is a deep learning-based algorithm devel-
oped by DeepMind for protein folding prediction. It uses a neural network to predict the 
3D structure of a protein from its amino acid sequence. The network was trained on a 
large dataset of known protein structures using a two-stage approach. In the first stage, 
the network predicts the distance between pairs of amino acids. In the second stage, the 
network uses this distance information to predict the 3D structure of the protein. The 
network is trained using a combination of supervised and unsupervised learning tech-
niques. The AlphaFold2 algorithm also uses a novel attention mechanism to help the 
network focus on the most relevant parts of the protein when predicting its structure. 
This attention mechanism is similar to the one used in natural language processing to 
allow neural networks to focus on different parts of a sentence.

Feature extraction

Amino acid embedding

In prior research, the methods used to extract features from protein sequences were 
primarily based on traditional coding techniques, such as manual features derived from 
component features, location features, and physical and chemical properties. However, 

Fig. 3  Flow chart of peroxisome proteins dataset construction

Table 2  Protein distribution in the dataset of peroxisomal proteins

Categories of proteins Number 
of 
proteins

Membrane 132

Matrix 28
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these methods ignore a significant amount of information that is hidden between resi-
dues in the sequence. Recently, deep representation learning models have been applied 
for protein sequence representation [38–42]. These models were trained on a large data-
base of protein sequences and represented the protein sequence as a continuous vector 
using a deep embedding model. In this study, we employed the SeqVec model, which 
leverages the deep bidirectional ELMo model commonly used in natural language pro-
cessing, to acquire the vector representation of the protein sequence. ELMo models the 
protein sequence as a probability distribution and integrates evolutionary information 
into the embedding, effectively capturing the biophysical properties of protein sequences 
from a large database (UniRef50).

Each protein sequence is first converted to an integer sequence according to the fol-
lowing function:

where mj is the j th amino acid of the sequence. The integer sequence f (mj),j = 1, 2, 3, 
4, ……L (length of protein sequence) is embedded into 1024-long feature vectors via the 
model named SeqVec.

Structural feature extraction

The protein space graph is defined as G = (V, A), where V represents the set of nodes. 
For the amino acid node feature X of a protein sequence of length L, we initialize the 
amino acid sequence using the model named SeqVec. X ∈ RL×D , D represents the feature 
dimension, which is 1024 dimensions. A∈RL×L represents the adjacency matrix, which is 
calculated from the contact map and can describe the position between two residues in 
the space. The GCN module in our model consists of two GCN layers, each of which can 
be described by the following formula:

where 
∼
A = A+ I,I is the unit matrix. 

∼
D is a diagonal degree matrix of 

∼
A.H is the feature 

of each layer, for the input layer H is X. W is the weight matrix of a specific layer of train-
able parameters.σ is a nonlinear activation function, we use the ReLU function. In order 
to accelerate the convergence of the GCN layer, there is a normalization layer behind 
each GCN layer that maps its output to the range of [0,1]. The output of the final GCN 
layer is the feature matrix M, M ∈ RL×o,o represents the output dimension of the GCN 
layer. The dimension of M is related to the length of the amino acid sequence. In order 
to eliminate the sequence alignment variance and the size variance [43] to obtain a fixed 
representation, we use the multi-head attention mechanism:

T  ∈ Rk×L , k is the number of attention groups. The k groups of attention coefficients 
assess the contributions of each amino acid to the identification of plant vacuole proteins 

(1)f (mj) = i

(2)i = 1, 2......., 20, if mj ∈ 20 canonical amino acid

(3)H (l+1) = σ(
∼− 1

2

D
∼
A

∼− 1
2

D H (l)W (l))

(4)T = softMax(W2 tanh(W1M
T ))
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from different perspectives.W1 , W2 are two learned attention matrices with hyperparam-
eters k and f,W1 ∈ Rf×o,W2 ∈ Rk×f  . Finally, we multiply the matrix M and T as the out-
put of our multi-head attention module.

Feature selection

Since the plant vacuole protein sequence features extracted by SeqVec model may 
have redundant information, it is easy to affect the performance of the model. Herein, 
we employ the elastic regression network (Elastic Net) as a feature selection method to 
identify the optimal protein feature set. Elastic Net is a regularization technique that 
combines both L1 and L2 regularization. The L1 regularization imposes sparsity by set-
ting some of the coefficients to zero, while the L2 regularization controls the magnitude 
of the non-zero coefficients. The Elastic Net algorithm balances these two regularization 
terms to achieve both sparsity and accuracy.

Mathematically, the Elastic Net algorithm can be expressed as follows:

where y is the response vector, X is the feature matrix, β is the coefficient vector, �1 and 
�2 are the regularization parameters that control the L1 and L2 penalties, respectively.

By varying the values of �1 and �2 , Elastic Net can select the optimal subset of features 
that can predict the response variable with high accuracy. To apply Elastic Net for pro-
tein feature selection, we first constructed a feature matrix containing all the candidate 
protein features, and then performed Elastic Net regression to identify the optimal sub-
set of features. The selected features were used as inputs for our machine learning mod-
els. Overall, the use of Elastic Net as a feature selection method enabled us to identify 
the most informative features of plant vacuole proteins while avoiding overfitting and 
improving the predictive performance of our models.

Traditional machine learning classifier

We constructed and evaluated multiple traditional machine learning classifiers to iden-
tify plant vacuole proteins using nine classification algorithms that have previously been 
used for similar applications. The employed algorithms include gaussian naive bayes 
(GaussianNB), logistic regression (LR), random forest (RF), support vector machine 
(SVM), light gradient boosting (LightGBM), gradient boosted decision trees (GBDT), 
multilayer perceptron (MLP), k-nearest neighbors (KNN), and extreme gradient boost-
ing (XGBoost). Gaussian naive bayes (GaussianNB) is a simple and fast algorithm for 
classification tasks. It is a probabilistic algorithm based on Bayes’ theorem and assumes 
that the features of a data point are independent and normally distributed. Logistic 
regression (LR) is a commonly used statistical method for binary classification tasks. It 
is a linear model that uses a logistic function to predict the probability of a data point 
belonging to one of two classes. Random forest (RF) is an ensemble machine learning 
algorithm for classification and regression tasks. Support vector machine (SVM) is a 
supervised learning algorithm for classification and regression tasks. It works by find-
ing the hyperplane in high-dimensional space that best separates the data into classes. 
Light gradient boosting machine (LightGBM) is a gradient boosting framework that uses 
tree-based learning algorithms. Gradient boosting decision tree (GBDT) is an ensemble 

(5)min ||y− Xβ||2 + �1||β||1 + �2||β||22
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learning method that uses a combination of decision trees to make predictions. Multi-
layer perceptron (MLP) is a type of artificial neural network used for supervised learn-
ing. K-nearest neighbor (KNN) is a simple and widely used machine learning algorithm 
for classification and regression. Extreme gradient boosting (XGBoost) is an optimized 
and scalable implementation of the gradient boosting algorithm for decision tree-based 
learning. These algorithms were implemented through the scikit-learn [44], and we 
fine-tuned their hyperparameters through grid search to achieve the best possible per-
formance. In this study, we fed feature vectors of plant vacuole proteins into different 
algorithms and compared their performance to select the most effective one.

Fully connected layer

Fully connected layers are a type of neural network layer commonly used in deep learn-
ing models. These layers are typically positioned towards the end of the network and are 
responsible for mapping the output from the preceding layers to a set of output classes. 
In the GraphIdn model, the protein spatial structure features obtained by the graph con-
volutional neural network are inputted into the multi-head attention module, followed 
by a fully connected layer that identifies organelle proteins. The matrix is transformed 
into an m-dimensional vector, where m is the number of organelle protein types, using 
the fully connected layer. As the identification of plant vacuole proteins and peroxisomal 
proteins in this study is a binary classification task, the value of m is 2. The SoftMax 
function is then applied to map the values to the interval [0, 1], and the plant vacuole 
proteins and peroxisomal proteins are identified based on the maximum index of the 
output two-dimensional matrix.

Evaluation metrics and methods

Accuracy (Acc), sensitivity (Sn), specificity (Sp), Matthews correlation coefficient (MCC) 
and F1-score were utilized to evaluate the performance of the prediction system [45–
50]. The calculation method is as follows:

In this study, we are examining the identification of plant vacuole proteins, which 
presents as a binary classification problem with only two potential outcomes (0 and 1). 

(6)Sp =
TN

TN + FP

(7)Sn =
TP

TP + FN

(8)Acc =
TP + TN

TP + FN + TN+FP

(9)F1 =
2× TP

2× TP + FN + FP

(10)MCC=
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FN )× (TN + FP)
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The accuracy of the prediction is determined by four categories: true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN). The ratio of correct predic-
tion in positive and negative samples is represented by Sn and Sp, respectively. The F1 
score measures the robustness of the model, with a higher score indicating a stronger 
robustness. The overall accuracy of the predictor is reflected by Acc. However, when 
the data set is unbalanced, Acc may not provide an accurate evaluation of the classifi-
cation results and it is better to use Matthews Correlation Coefficient (MCC) instead. 
Additionally, the performance of the model is evaluated using receiver operating charac-
teristic area under the curve (ROC-AUC) and precision-recall area under the curve (PR-
AUC). ROC-AUC represents the area under the ROC curve and the higher the value, 
the better the model. The relationship between precision and recall is depicted by the 
PR curve, where precision is represented by P and recall is represented by R. In general, 
recall is set on the x-axis and precision on the y-axis. Similarly, PR-AUC is calculated by 
measuring the area under the PR curve, with a higher value indicating a better perfor-
mance of the model.

Result and discussions
Performance of fivefold cross‑validation and independent experiments on traditional 

machine learning models

To identify plant vacuole proteins, we first utilized the SeqVec model to convert protein 
sequences into continuous vectors. We then evaluated the performance of traditional 
machine learning models on the plant vacuole protein datasets.

It is observed from Table 3 that the highest Acc, F1-score, Sp, Sn, ROC-AUC, PR-AUC 
and MCC values of the relevant models on the independent test set are 66.89%, 0.6839, 
75.67%, 71.62%, 0.7144, 0.7190 and 0.3394, respectively. The LightGBM model is found 
to be the best overall performer, outperforming other models in terms of Acc, MCC and 
ROC-AUC indicators. The GaussianNB model performs the worst, with an accuracy of 
only 59.46%.

Table 4 illustrates the results of the evaluation of traditional machine learning models 
in the fivefold cross-validation. The LightGBM model is found to have the best perfor-
mance, with the highest Acc, F1-score, Sp, Sn, ROC-AUC, PR-AUC and MCC values 
of 65.23%, 0.6868, 70.43%, 67.85%, 0.6504, 0.8100 and 0.3838, respectively. The Light-
GBM model outperforms other models in terms of Acc, F1-score, Sp, Sn, and MCC. 

Table 3  The performance of traditional machine learning models on the independent test set

Model Acc (%) F1-score Sp (%) Sn (%) MCC ROC-AUC​ PR-AUC​

GaussianNB 59.46 0.6386 47.30 71.62 0.1950 0.6291 0.7190

LR 63.51 0.6582 56.76 70.27 0.2728 0.6888 0.6570

SVM 66.89 0.6839 62.16 71.62 0.3394 0.7014 0.6796

RF 66.22 0.6667 64.86 67.57 0.3244 0.7062 0.7001

LightGBM 66.89 0.6573 70.27 63.51 0.3386 0.7144 0.7074

GBDT 64.18 0.6345 66.22 62.16 0.2840 0.6843 0.6763

MLP 62.16 0.6164 63.51 60.81 0.2433 0.6770 0.6639

KNN 60.14 0.6144 56.75 63.51 0.2032 0.6462 0.6600

XGBoost 63.51 0.5846 75.67 51.35 0.2786 0.6707 0.6681
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Meanwhile, the MLP model have the worst performance, except for the Sp index, as its 
other indicators are lower than those of other models.

Subsequently, we employed the Elastic Net model as a feature selection approach to 
identify the most relevant and informative features, thereby eliminating any redun-
dant features that may have been present. The resulting optimal feature set was fur-
ther reduced to 175 dimensions and subsequently utilized as input for nine traditional 
machine learning models for comprehensive analysis and evaluation.

The performance of the machine learning models improved significantly after the fea-
ture selection process using the Elastic Net model. The largest improvement was seen in 
the LR model, which had a 9% increase in accuracy, reaching 72.97%. Figure 4 compares 
the best-performing LR model before and after feature selection. After feature selection, 
the performance of each model improved on the fivefold cross-validation compared to 
before feature selection. The Acc value of the LightGBM model increased to 71.16%, 
which was roughly 6% higher than its previous value. Figure  5 shows the comparison 
between the best-performing LightGBM model before and after feature selection.

Table 4  The performance of traditional machine learning model on the fivefold cross -validation

Model Acc (%) F1-score Sp (%) Sn (%) MCC ROC-AUC​ PR-AUC​

GaussianNB 60.00 0.6163 54.46 65.02 0.1971 0.6096 0.7010

LR 58.25 0.5791 58.45 57.80 0.1625 0.6141 0.6099

RF 60.75 0.5980 63.07 58.44 0.1503 0.6127 0.5868

SVM 54.50 0.5678 58.96 55.99 0.2166 0.5925 0.5427

LightGBM 65.23 0.6868 70.43 67.85 0.3838 0.5809 0.5429

GBDT 57.25 0.6569 67.38 65.05 0.3253 0.5751 0.5754

MLP 52.50 0.4934 57.43 47.07 0.0447 0.5650 0.5462

KNN 56.50 0.5189 59.02 49.68 0.0869 0.5722 0.8100

XGBoost 56.50 0.5015 64.28 45.89 0.1043 0.6504 0.8100

Fig. 4  The performance of the LR model on the independent test set before and after feature selection
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Performance of fivefold cross‑validation and independent experiments on the GraphIdn 

model

In this study, we utilized the AlphaFold2 algorithm to obtain the structural information 
of plant vacuole proteins in our dataset and subsequently calculated contact maps. These 
contact maps were then used as inputs for a graph convolutional neural network. The 
structural features obtained from the graph neural network were then fed into a multi-
head attention module and finally into a fully connected layer, which was utilized to 
identify plant vacuole proteins.

As shown in Table 5, we compare our GraphIdn model with previous models after fea-
ture selection on the independent test set. The results of the independent test set show 
that the GraphIdn model has an Acc of 88.51%, F1-score of 0.8917, Sn of 82.43%, Sp 
of 94.59%, MCC of 0.7760, ROC-AUC of 0.9326, and PR-AUC of 0.9140. These results 
indicate that the GraphIdn model outperforms the best overall performing LR model 

Fig. 5  The performance of the LightGBM model on the fivefold cross-validation before and after feature 
selection

Table 5  The performance of models on the independent test set

Model Acc (%) F1-score Sp (%) Sn (%) MCC ROC-AUC​ PR-AUC​

GaussianNB 63.51 0.6667 54.05 72.97 0.2752 0.6963 0.6971

LR 72.97 0.7500 64.86 81.08 0.4656 0.7509 0.7111
RF 71.62 0.7308 66.22 77.03 0.4350 0.7669 0.7560

SVM 69.59 0.6939 70.27 68.92 0.3919 0.7763 0.6976

LightGBM 68.24 0.6846 67.57 68.92 0.3649 0.7431 0.7100

GBDT 64.86 0.6667 59.46 70.27 0.2990 0.7162 0.7128

MLP 64.87 0.6338 68.92 60.81 0.2983 0.7476 0.7339

KNN 60.14 0.6335 51.35 68.92 0.2059 0.6443 0.6186

XGBoost 65.54 0.5641 86.49 44.59 0.3423 0.6883 0.6824

GraphIdn 88.51 0.8917 82.43 94.59 0.7760 0.9326 0.9140
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by around 15.6% in terms of accuracy rate and has a higher Matthews correlation coef-
ficient by 0.31 when compared to the LR model. Additionally, the F1-score, Sp, Sn, ROC-
AUC, and PR-AUC values of the GraphIdn model are around 0.142, 17.6%, 13.5%, 0.182, 
and 0.203 higher, respectively, compared to those of the LR model. Figures 6 and 7 also 
show the ROC and PR curves of each model on the independent test set.

At the same time, our model was also tested on the fivefold cross-validation. As shown 
in Table 6, we compare the GraphIdn model with previous models after feature selec-
tion on the fivefold cross-validation. The Acc, F1-score, Sp, Sn, MCC, ROC-AUC, and 
PR-AUC values of the GraphIdn model on fivefold cross-validation are 89.93%, 0.8917, 
89.70%, 90.47%, 0.8020, 0.9399, and 0.9191, respectively. These values are 18.1% higher 
than the accuracy of the best overall performance model, LightGBM. Additionally, the 
F1-score, Sp, Sn, MCC, ROC-AUC, and PR-AUC values of the GraphIdn model are 
around 0.185, 16.2%, 20.8%, 0.370, 0.206, and 0.337 higher, respectively, compared to 
those of the LightGBM model. As shown in Figs. 8 and 9, we also draw the ROC curve 

Fig. 6  ROC curve of models on the independent test set

Fig. 7  PR curve of models on the independent test set
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Table 6  The performance of models on the fivefold cross-validation

Bolded values are the models that perform better

Model Acc (%) F1-score Sp (%) Sn (%) MCC ROC-AUC​ PR-AUC​

GaussianNB 62.00 0.6289 58.30 65.11 0.2355 0.6442 0.6553

LR 62.75 0.6307 61.61 63.97 0.2554 0.6782 0.6724

RF 60.25 0.5835 64.62 56.20 0.2104 0.6227 0.6165

SVM 62.75 0.6002 64.57 58.46 0.2316 0.6270 0.6527

LightGBM 71.16 0.7063 73.48 69.67 0.4327 0.7344 0.5825
GBDT 58.00 0.6689 70.75 65.62 0.3649 0.5856 0.6127

MLP 58.00 0.5730 58.26 57.32 0.1570 0.6322 0.6372

KNN 57.25 0.5659 58.89 56.12 0.1506 0.5830 0.7388

XGBoost 61.00 0.5636 63.21 54.19 0.1757 0.5938 0.7388

GraphIdn 89.93 0.8917 89.70 90.47 0.8020 0.9399 0.9191

Fig. 8  ROC curve of models on the fivefold cross-validation

Fig. 9  PR curve of models on the fivefold cross-validation
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and PR curve of each model on the fivefold cross-validation. The results of the fivefold 
cross-validation and independent test set experiments demonstrate that our model out-
performs traditional machine learning models. Furthermore, the efficacy of the Alpha-
Fold2 structural model is validated through a comparative assessment of experimental 
outcomes between employing protein sequences represented by the SeqVec model as 
direct inputs into conventional machine learning models and utilizing GraphIdn, which 
incorporates structural information.

Finally, to investigate the usefulness of AlphaFold2 structure models, we have devised 
two models: the first utilizes the contact graph, generated from the structural insights 
provided by the AlphaFold2 model, as the adjacency matrix. The second model, in 
contrast, does not rely on the AlphaFold2 structural model. Instead, we construct the 
adjacency matrix ourselves arbitrarily. Within the second scenario of not utilizing the 
AlphaFold2 structural model, we have subdivided it into three distinct models: one with 
a randomly constructed adjacency matrix, another with an adjacency matrix consisting 
solely of ones, and a third with an adjacency matrix comprising exclusively of zeros. As 
such, we have designed a total of four models to meticulously assess the practical appli-
cability of the AlphaFold2 structural models. Table 7 distinctly indicates that the perfor-
mance of the GraphIdn models, which exclude the utilization of AlphaFold2 structural 
models, demonstrates notably inferior results when compared to the GraphIdn models 
utilizing the AlphaFold2 structural models. Particularly, this distinction becomes more 
pronounced, especially when the adjacency matrix comprises solely zeros. This outcome 
strongly underscores the utility of AlphaFold2 structural models.

We then proceeded to compare the performance of our proposed GraphIdn model 
with a recently proposed model, IPVP-DRLF [33], and previously proposed mod-
els, VacPred-DPC [32] and VacPred-PSSM [32], as shown in Tables 8 and 9. All these 
models were trained using the identical dataset as the GraphIdn model, and the same 

Table 7  The impact of AlphaFold2 structural models on the performance of the GraphIdn

Bolded values are the models that perform better

Model Adjacency matrix Acc (%) Sn (%) Sp (%) MCC ROC-AUC​

GraphIdn (With 
structural 
features)

With topology 88.51 94.59 82.43 0.776 0.933

GraphIdn (With-
out structural 
features)

Random construction 85.10 91.89 77.03 0.722 0.917

All 1 83.11 90.54 75.67 0.670 0.914

All 0 50.00 0.00 100.0 0.00 0.490

Table 8  Comparison of GraphIdn model with previous models on the independent test set

Bolded values are the models that perform better

Model Acc (%) Sn (%) Sp (%) MCC ROC-AUC​

VacPred-DPC 80.41 82.43 78.38 0.610 0.840

VacPred-PSSM 86.49 90.54 82.43 0.730 0.930

iPVP-DRLF 87.16 89.19 85.14 0.744 0.916

GraphIdn 88.51 94.59 82.43 0.776 0.933
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independent test set was employed for evaluation. They have been published in high-
quality journals and their experiments and model parameter adjustments are the best 
results available. Additionally, Yadav et al. [32] developed more than 30 different types of 
models and finally selected two models with the best performance, including one dipep-
tide composition-based and one PSSM-based model. In the proposed iPVP-DRLF, Jiao 
et al. [33] used 12 feature extraction methods for comparative experiments and finally 
selected the best-performing method.

Our model outperformed the other models in terms of accuracy, sensitivity, Matthews 
correlation coefficient and ROC-AUC values on the independent test set, improving by 
1.35%, 5.40%, 0.032, and 0.017 respectively. On the fivefold cross-validation, our model 
achieved higher accuracy, specificity, sensitivity, Matthews correlation coefficient, and 
ROC-AUC values, enhancing by 1.68%, 2.20%, 1.47%, 0.037, and 0.007, respectively. 
These results demonstrate the superior performance of our model.

Finally, we assessed the impact of pLDDT on the performance of our GraphIdn model 
by partitioning the independent test set into two subsets based on pLDDT scores, 
specifically pLDDT > 70 and pLDDT < 70. Remarkably, the ratio of samples possess-
ing pLDDT > 70 to those with pLDDT < 70 stands at an approximate proportion of 4:1 
within the independent test set. Subsequently, we compared the accuracy discrepancy 
between these two subsets. The outcomes of this experimentation are presented in 
Table 10. The findings indicate that the model’s accuracy in the pLDDT > 70 subset of the 
independent test set is approximately 4.8% higher compared to the pLDDT < 70 subset. 
Moreover, all other performance metrics also exhibit improvements in the pLDDT > 70 
subset compared to the pLDDT < 70 subset. This observation underscores that a higher 
pLDDT score corresponds to more reliable predictions from our model, thus leading to 
enhanced experimental outcomes.

In order to verify the generalization performance of our model, we also experimented 
on the dataset for peroxisomal proteins. The AlphaFold2 algorithm was utilized to obtain 
the structural information of peroxisomal proteins, and then contact maps were calcu-
lated and inputted into the graph convolutional neural network to identify peroxisomal 
proteins. After tenfold cross-validation, the model performance in Acc, F1-score, Sp, 

Table 9  Comparison of GraphIdn model with previous models on the fivefold cross- validation

Bolded values are the models that perform better

Model Acc (%) Sn (%) Sp (%) MCC ROC-AUC​

VacPred-DPC 75.50 70.00 81.00 0.510 0.800

VacPred-PSSM 81.75 76.50 87.00 0.640 0.860

iPVP-DRLF 88.25 89.00 87.50 0.765 0.933

GraphIdn 89.93 90.47 89.70 0.802 0.940

Table 10  The effect of pLDDT on the experimental results of our GraphIdn model

PLDDT Acc (%) Sn (%) Sp (%) MCC ROC-AUC​

 > 70 85.47 93.22 77.59 0.718 0.930

 < 70 80.65 86.66 75.00 0.619 0.913
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Sn, MCC, ROC-AUC, PR-AUC values reached 94.90%, 0.970, 82.27%, 98.60%, 0.8230, 
0.9093, 0.9748, respectively. In addition, we also compared with the model named In-
Pero proposed in 2021[29]. As shown in Table 11, the Acc, F1-score and MCC values are 
increased by 3%, 0.111, 0.102, respectively. This experiment further proves the superior-
ity and good generalization performance of the proposed GraphIdn model.

Discussion
From the experimental results presented in this paper, it is evident that we have achieved 
promising outcomes in using protein structure information for the identification of plant 
vacuole and peroxisomal proteins. This lays the groundwork for future applications of 
this method in identifying proteins in other organelles. However, our research has cer-
tain limitations. Firstly, for the problem of identifying plant vacuole proteins, the perfor-
mance of our model is influenced by the pLDDT score from AlphaFold2. The pLDDT 
score provided by AlphaFold2 serves as an indicator of the accuracy and reliability of 
the predicted protein structure at a per-residue level. In general, higher pLDDT scores, 
approaching 100, signify a more accurate and reliable prediction for each residue, and 
consequently, the predicted results encompass valuable spatial structure information. 
This wealth of information is expected to contribute to the facilitation of plant vacuole 
protein identification using our model. Otherwise, it is not conducive to the identifica-
tion of plant vacuole proteins by our model. Furthermore, our current research may be 
limited to the identification of organelle proteins. Going forward, we will refine and opti-
mize our methods so that they can be utilized for other protein prediction tasks, includ-
ing the analysis of primary protein sequences such as protein function, folding, solubility 
prediction, and drug design.

Conclusions
This paper proposes a model named GraphIdn, which utilizes the structural character-
istics of proteins to identify plant vacuole proteins. The model combines the AlphaFold2 
algorithm with a graph convolutional neural network to obtain the structural charac-
teristics of proteins. Through the multi-head attention module, the model learns the 
weighted contribution of different amino acids in different feature representation sub-
spaces and identifies plant vacuole proteins. The implementation of our model shows 
superior accuracy in comparison to existing plant vacuole protein (PVP) predictors. The 
fivefold cross-validation and independent testing have achieved accuracies of 89.93% 
and 88.51%, respectively. The model has also been successfully extended to identify per-
oxisomal proteins. The results of the cross-validation show that the GraphIdn model has 
an accuracy of 94.9% in identifying peroxisomal proteins. This confirms the feasibility of 
the model and its potential for identifying other organelle proteins.

Table 11  Performance comparison between GraphIdn model and In-Pero model

Bolded values are the models that perform better

Model Acc (%) F1-score MCC

In-Pero 91.9 0.859 0.721

GraphIdn 94.9 0.970 0.823
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Of course, there is always room for improvement in our model. In addition to uti-
lizing graph convolutional neural network, we could also explore other graph neural 
network structures. For protein sequence representation, we could also investigate 
other methods based on deep representation learning to further enhance the robust-
ness of our model.

Through experiments, we believe that the use of protein structure information is an 
effective method to improve the performance of sequence-based protein prediction 
models. More importantly, this architecture could be easily extended to other protein 
prediction tasks requiring a raw protein sequence.
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